Каталог учебных материалов. Из каких элементов состоит замкнутая система? Идея и основные элементы

Исследуется теоретический и прикладной аппарат оптимального управления в экономике. Основополагающие теоремы о достаточных условиях оптимальности доводятся до вычислительных методов принципа максимума и динамического программирования. В отличие от 1-го издания (2003 г.) радикально переработаны некоторые главы, расширен иллюстративный ряд. Все представленные по тексту задачи даны с решениями, а задачи для самостоятельной работы - с ответами; приведены варианты заданий для курсовых работ.
Для студентов, обучающихся по специальности 080116 «Математические методы в экономике», а также для всех интересующихся математическими основами принимаемых решений.

Теория оптимального управления согласно Государственному образовательному стандарту высшего профессионального образования, утвержденному Министерством образования Российской Федерации в 2000 г., - одна из основных дисциплин специальности 080116 «Математические методы в экономике» при подготовке студентов с присвоением квалификации «экономист-математик». Первое учебное пособие по этой дисциплине было издано в 1990 г.*

Настоящее пособие отражает многолетний опыт работы авторов на кафедре теории оптимального управления в Московском государственном университете экономики, статистики и информатики (МЭСИ) и в системе повышения квалификации в различных ВУЗах. Первые три главы носят справочный характер. Это обусловлено тем, что необходимые для последующего изучения теории оптимального управления разделы математики преподаются студентам в основном на 1-2-м курсах, а конкретные задачи оптимального управления решаются не раньше чем на 4-5-м курсах.

ОГЛАВЛЕНИЕ
Предисловие 3
Глава 1 МАТЕМАТИЧЕСКИЙ АППАРАТ ТЕОРИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ 9
1.1. Основные понятия и определения теории множеств и теории функций 9
1.2. Оптимизация функций на ограниченном множестве 14
1.3. Зависимость функции и множества от параметра 16
1.4. Дифференциальные уравнения первого порядка с разделяющимися переменными 22
1.5. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами 24
1.6. Численное интегрирование систем обыкновенных дифференциальных уравнений 30
Вопросы для самопроверки 33
Задачи для самостоятельной работы 33
Глава 2 ОСНОВЫ МОДЕЛИРОВАНИЯ ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ 35
2.1. Система, модель, моделирование 35
2.2. Управление. Обратная связь. Замкнутая система 39
2.2.1. Принципиальная схема управления 40
2.2.2. Иерархия управления 42
2.3. Экономическая система как объект управления (некоторые аспекты математического моделирования) 43
Вопросы для самопроверки 46
Глава 3 ОПТИМИЗАЦИОННЫЕ МОДЕЛИ ЭКОНОМИЧЕСКОЙ ДИНАМИКИ 47
3.1. Однопродуктовая динамическая макроэкономическая модель 47
3.2. Оптимизационная однопродуктовая динамическая макроэкономическая модель 52
3.3. Нелинейная оптимизационная модель развития многоотраслевой экономики 54
Вопросы для самопроверки 56
Глава 4 ДОСТАТОЧНЫЕ УСЛОВИЯ ОПТИМАЛЬНОСТИ 57
4.1. Вспомогательные математические конструкции 57
4.2. Достаточные условия оптимальности для непрерывных процессов 62
4.3. Достаточные условия оптимальности для многошаговых процессов 67
4.4. Обобщенная теорема о достаточных условиях оптимальности 71
4.5. Применение достаточных условий оптимальности к решению задач 75
4.5.1. Линейные по управлению процессы без ограничений на управление 75
4.5.2. Линейные по управлению процессы
с ограничениями на управление 81
Вопросы для самопроверки 84
Глава 5 ОДНОПРОДУКТОВАЯ МОДЕЛЬ ОПТИМАЛЬНОГО РАЗВИТИЯ МАКРОЭКОНОМИКИ 85
5.1. Моделирование производства на макроуровне 85
5.2. Оптимизационная модель макроэкономической динамики. Магистральная теория 89
Вопросы для самопроверки 101
Глава 6 МЕТОД ЛАГРАНЖА-ПОНТРЯГИНА ДЛЯ НЕПРЕРЫВНЫХ УПРАВЛЯЕМЫХ ПРОЦЕССОВ 102
6.1. Уравнения метода 102
6.2. Принцип максимума Понтрягина 109
6.3. Принцип максимума как достаточное условие оптимальности 114
6.4. Задача Эйлера вариационного исчисления 122
Задачи для самостоятельной работы 126
Глава 7 МЕТОД ЛАГРАНЖА ДЛЯ МНОГОШАГОВЫХ ПРОЦЕССОВ УПРАВЛЕНИЯ 129
7.1. Уравнения метода. Условия оптимальности для многошагового процесса с неограниченным управлением 129
7.2. Условия оптимальности для многошагового процесса при наличии ограничений на управление 137
Задачи для самостоятельной работы 144
Глава 8 ПРИМЕНЕНИЕ НЕОБХОДИМЫХ УСЛОВИЙ ОПТИМАЛЬНОСТИ В ФОРМЕ ЛАГРАНЖА-ПОНТРЯГИНА 146
8.1. Цели исследования. Оптимальное управление движущимся объектом 146
8.2. Календарное планирование поставки продукции. Дискретный вариант. Численное решение 153
8.3. Оптимальное планирование поставки продукции. Непрерывный вариант. Численное решение 161
8.4. Оптимальное потребление в однопродуктовой макроэкономической модели 165
Вопросы для самопроверки 169
Глава 9 МЕТОД ГАМИЛЬТОНА-ЯКОБИ-БЕЛЛМАНА 170
9.1. Идея и основные элементы 170
9.1.1. Уравнение Гамильтона-Якоби-Беллмана. Непрерывный вариант 171
9.1.2. Синтез оптимального управления 175
9.2. Алгоритм Гамильтона-Якоби-Беллмана (для непрерывных процессов) 176
9.3. Метод Гамильтона-Якоби-Беллмана. Многошаговый вариант 183
9.4. Оптимальное распределение инвестиций между проектами методом динамического программирования 189
9.5. Сравнительный анализ методов Лагранжа - Понтрягина и Гамильтона-Якоби-Беллмана 195
Задачи для самостоятельной работы 196
Краткий словарь терминов 198
Рекомендуемая литература 201
Приложения
1. Варианты заданий для курсовых работ 202
2. Ответы к задачам для самостоятельной работы 203
3. Графическое изображение ответов к задачам для самостоятельной работы 210
Предметный указатель 219

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Оптимальное управление в экономике, Теория и приложения, Лагоша Б.А., Апалькова Т.Г., 2008 - fileskachat.com, быстрое и бесплатное скачивание.

Основы моделирования экономических процессов

Система, модель, моделирование

Объектами применения ТОУ являются управляемые системы, описываемые дифференциальными и конечно-разностными уравнениями соответственно для непрерывных или дискретных (многошаговых) процессов. Понятия и определения: система, модель, обратная связь, внешняя среда, замкнутая и разомкнутая системы, существенные или несущественные факторы, обусловленные целевой ориентацией при изучении объекта исследования, - это понятийный аппарат основ управления, в частности ТОУ.

Принимая во внимание, что учебное пособие, кроме специальности «Математические методы в экономике», может использоваться и при подготовке специалистов по менеджменту, прикладной информатике и другим дисциплинам, где курс математического моделирования экономики специально не читается, данный раздел может рассматриваться как вводный, отражающий содержательную сущность и формализованное предствление понятий и принципов формирования структур систем управления. Так как речь идет именно об общих принципах и понятиях, то и примеры заимствуются из различных областей, начиная с физического движения материальной точки и кончая характеристиками сложных производственно-экономических систем. Разумеется, последние доминируют, поскольку учебное пособие рекомендуется прежде всего для экономистов.

Наблюдение, анализ и моделирование являются средствами познания и прогнозирования процессов, явлений и ситуаций во всех сферах объективной действительности.

Говоря, например, о системах застройки города или района, кровообращения, управления предприятием, о системе уравнений, прежде всего имеют в виду некую совокупность. Но любая ли совокупность может быть названа системой? Вряд ли кто назовет системами совокупность выброшенных старых вещей или луж на асфальте после дождя. Ни то, ни другое никак не упорядочено, не отвечает определенной цели, в соответствии с которой эта совокупность сформирована. Первое свойство систематизации, системного представления о рассматриваемом объекте - это наличие цели, для реализации которой предназначается данная совокупность предметов, явлений, логических представлений, формирующих объект. Цель функционирования системы редуцирует системные признаки, с помощью которых описываются и характеризуются элементы системы.

Например, допустим, что целью является реструктуризация системы управления предприятием (фирмой) на ординарном уровне. Нужно ли для этого знать фамилии и размеры зарплаты каждого работника? Нет, так как эти данные хотя в своей совокупности в большей или меньшей степени влияют на режим управления, но не являются наиболее важными на персональном уровне. Выделим существенные системные признаки. К ним относятся: рыночный спрос на продукцию производителя и число наименований выпускаемой продукции, производственные мощности предприятия по выпуску продукции различных наименований и аналогичные показатели предприятий-конкурентов, обеспеченность материальными, трудовыми ресурсами, общий фонд заработной платы и условия ее использования и т.д. Особо следует выделить узкие места. К ним относятся факторы и условия, сдерживающие повышение эффективности производства. Сущностью системы управления предприятием относительно отражения условий управляемости последним является установление и описание взаимосвязей и взаимозависимостей между наиболее существенными факторами и характеристиками предприятия. Еще раз подчеркнем, что речь идет о предприятии (фирме) как производственно-экономической системе с позиций управляемости им, т.е. предприятие рассматривается как объект управления. Именно исходя из этого и определены существенные признаки объекта. При изменении цели могут стать другими как существенные признаки, так и связи с внешней средой. Например, если на том же предприятии будут анализироваться уровень квалификации работников и организация оплаты их труда, то ведомость на получение заработной платы, ранее не представлявшая первостепенного значения, станет теперь основным документом.

Таким образом, для выделения системы требуется наличие:

а) цели, для реализации которой формируется система;

б) объекта исследования, состоящего из множества элементов, связанных в единое целое важными относительно цели системными признаками;

в) субъекта исследования («наблюдателя»), формирующего

г) характеристик внешней среды по отношению к системе.

Наличие субъекта исследования и возможная неоднозначность,

субъективность при выделении существенных системных признаков вызывают значительные трудности в процессе выделения системы и соответственно ее универсального определения. Поэтому необходим более подробный системный анализ .

Изложенный выше вербальный подход дает возможность определить систему как упорядоченное представление об объекте исследования относительно поставленной цели. Упорядоченность заключается в целенаправленном выделении системообразующих элементов, установлении их существенных признаков, характеристик взаимосвязей между собой и с внешней средой. Системный подход, формирование систем позволяют выделить главное, наиболее существенное в исследуемых объектах и явлениях; игнорирование второстепенного упрощает, упорядочивает в целом изучаемые процессы. Для анализа многих сложных ситуаций такой подход важен сам по себе, однако, как правило, построение системы служит предпосылкой для разработки или реализации модели конкретной ситуации.

Описанный подход предполагает ясность цели исследования и детерминированное к ней отношение всех элементов системы, взаимосвязь между ними и с внешней средой. Такие системы называют детерминированными. Это не означает; что все предпосылки, лежащие в основе их построения, на практике выполняются. Однако во многих случаях, и это характерно для экономики, цель исследований - изучение и анализ природы усредненных и устойчивых в среднем показателей. Это определяет детерминированный подход к построению системы.

Перейдем к рассмотрению сущности понятий модель и моделирование . Слово «модель» (фр. modele) имеет несколько значений: образцовый экземпляр какого-либо изделия; вид, тип конструкции (например, автомобиля); материал, натура для художественного произведения; копия, воспроизведение предмета, обычно в уменьшенном размере; исследуемый объект, представленный в наиболее общем виде.

В качестве примеров моделей можно привести глобус как модель земного шара, карту как модель местности, маленькую, например настольную, модель самолета, внешне подобную своему натуральному образцу, и т.д.

Однако по настольной модели самолета нельзя определить его прочностные, аэродинамические характеристики, характеристики системы управления. Следовательно, для реализации названных целей данная модель не годится. Эта модель подошла бы, если бы наша цель была - добиться внешнего подобия. Таким образом, и это главное, структура и свойства модели зависят от целей, для достижения которых она создается. В этом органическое единство системы и модели. Если неизвестна цель моделирования, то и неизвестно, с учетом каких свойств и качеств надо строить модель.

Следовательно, модель - формализованное представление об объекте исследования относительно поставленной цели.

Модели можно различать по характеру моделируемых объектов, сферам приложения, глубине моделирования. В зависимости от средств моделирования выделяют материальное (предметное) и идеальное моделирование.

Материальное моделирование, основывающееся на материальной аналогии моделируемого объекта и модели, осуществляется путем воспроизведения основных геометрических, физических, других функциональных характеристик изучаемого объекта. Частным случаем материального моделирования является физическое моделирование, по отношению к которому, в свою очередь, частным случаем является аналоговое моделирование. Оно основано на аналогии явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими соотношениями. Пример аналогового моделирования - изучение механических колебаний с помощью электрической системы, описываемой теми же дифференциальными уравнениями. Так как эксперименты с электрической системой обычно проще и дешевле, она исследуется в качестве аналога механической системы (например, при изучении колебаний мостов).

Идеальное моделирование отличается от материального принципиально. Оно основано на идеальной, или мыслимой, аналогии. В экономических исследованиях это основной вид моделирования. Идеальное моделирование, в свою очередь, разбивается на два подкласса: знаковое (формализованное) и интуитивное моделирование. При знаковом моделировании моделями служат схемы, графики, чертежи, формулы. Важнейшим видом знакового моделирования является математическое моделирование, осуществляемое средствами логико-математических построений.

Интуитивное моделирование (например, рисковых ситуаций ) встречается в тех областях науки, где познавательный процесс находится на начальной стадии или имеют место очень сложные взаимосвязи. Такие исследования называют мысленными экспериментами. В экономике в основном применяется интуитивное моделирование; оно описывает практический опыт исполнителей и руководящих работников.

Управление. Обратная связь. Замкнутая система

Введенные в разд. 2.1 понятия не дают возможности разделить системы на управляемые и неуправляемые. В широком смысле под управлением понимается конкретная организация тех или иных процессов для достижения намеченных целей. Управляемая система призвана обеспечивать целенаправленное функционирование при изменяющихся внутренних или/и внешних условиях. Неуправляемой системе целенаправленное функционирование не свойственно.

Примеры управляемых систем: движение автомобиля, работа предприятия в соответствии с договорами, планами и стимулами. Примеры неуправляемых систем: движение ветра, работа светофора с точки зрения автомобилистов (переключается автоматически независимо от состояния потока машин). В системе, структура которой установлена ее целевой ориентацией (для решения каких задач создается система), управление сводится к поддержанию расчетных значений выходных параметров при отклонениях внешних условий и внутренних параметров от расчетных.

В экономической системе выбор и формирование как структуры, так и способа функционирования являются задачами управления, обеспечивающими динамику ее развития. Однако соотношение типов задач - формирование или реструктуризация производства и способа функционирования системы - различно на разных уровнях иерархии управления.

Принципиальная схема управления

Любое управление предполагает наличие объекта управления (управляемой системы), субъекта управления (управляющей системы) и внешней среды.

Объект управления производит те или иные действия для реализации намеченных целей. Его сложность зависит от количества входящих в него элементов и природы взаимосвязей между ними. В процессе функционирования объект управления подвергается воздействию внешней среды, которая может способствовать или препятствовать достижению намеченных целей: благоприятная или неблагоприятная рыночная конъюнктура, сложившиеся цены, действия конкурентов и т.п.

Основное назначение управляющей системы - субъекта управления - поддерживать установленный и по каким-либо свойствам признанный нормальным режим работы объекта управления, а также обеспечивать нормальное функционирование отдельных элементов объекта управления в условиях воздействия внешней среды.

Объект управления во взаимодействии с управляющей системой субъектом управления образует замкнутую систему управления, упрощенный вариант которой приведен на рис. 2.1, где X - вектор воздействия внешней среды на объект управления; Y - вектор реакции на воздействие X. Связь, с помощью которой управляющая система - субъект управления воздействует на объект управления, если эта связь имеется, называется обратной связью. Входным сигналом для обратной связи служит выходной сигнал системы Y. Если этот сигнал не соответствует целям управления замкнутой системой, то управляющая система вырабатывает воздействие обратной связи АХ, которое вместе с сигналом X поступает на вход объекта управления (X, Y, АХ - векторы соответствующих размерностей).

X

Объект управления

Управляющая система

Рис. 2.1. Схема замкнутой системы управления (упрощенный вариант)

В правильно работающей с точки зрения поставленной цели системе сигнал Х+ АЛ" должен способствовать улучшению качества функционирования замкнутой системы управления.

Количественные оценки степени достижения цели в модели управления даются в виде значений функционала (целевой функции), а условия, в рамках которых функционирует система, - в виде ограничений модели. Цель оптимального управления -нахождение наилучшего относительно принятой целевой функции критерия оптимизации. Для конкретных ситуаций при выборе способа управления, хозяйствования или ведения деятельности он реализуется в виде экстремального значения функционала.

Обратная связь является средством гибкого управления, когда конкретное управляющее решение вырабатывается в зависимости от сложившейся ситуации - возмущения установленного функционирования системы.

При отсутствии обратной связи (упомянутый выше светофор) движение регулируется по заранее заданной программе независимо от фактических потоков автомобилей, т.е. состояния системы на выходе. Другие примеры управления без обратной связи: уставы, кодексы, инструкции и наставления. При этом может оказаться, что управленческое решение, принятое согласно одному из указанных регламентирующих документов, с учетом конкретной ситуации, характеризующей состояние системы на выходе, когда решение было принято, не является наилучшим по сравнению с другими возможными. Но оно тем не менее считается обязательным, правомочным, так как отвечает регламентирующему документу. Подобные случаи порождают порой ситуации, когда, как говорят, возникает альтернатива - принять решение «по закону» или «по совести». Решение «по совести» может отражать учет неординарных обстоятельств, уводящих в сторону от решений «по закону».

В каких случаях система управления создается с обратной связью, а в каких - без нее, зависит прежде всего от целей функционирования системы.

Итак, в структуре системы управления можно выделить:

объект управления - непосредственное устройство, агрегат, организационную подсистему общей системы, в которой реализуется цель функционирования всей системы;

субъект управления - управляющую систему, которая фиксирует параметры объекта управления и вырабатывает при необходимости управляющие воздействия на объект управления для приведения его функционирования к режиму, который в соответствии с целью управления принято считать нормальным. Если достижение такого режима в условиях имеющихся ресурсов системы невозможно, то в качестве нормального может быть принят режим, отклоняющийся от желаемого минимально;

обратную связь - объект, подсистему, с помощью которой реализуется воздействие субъекта на объект управления.

Эти элементы, формирующие в совокупности замкнутую систему управления, находятся под воздействием внешней среды, которая может способствовать или препятствовать достижению целей системы.

Иерархия управления

Представленное описание замкнутой системы управления весьма схематично и отражает только принцип ее построения. В действительности каждый из указанных элементов, в свою очередь, может включать объект, субъект управления с обратной связью или без нее. Вся система будет иметь, таким образом, иерархическую структуру. Подобное характерно для экономических систем прежде всего. Например, в системе управления крупной фирмой отраслевого профиля (например, автомобильный или нефтяной гигант) в качестве объекта управления рассматривают подведомственные фирмы и дочерние предприятия, а в качестве управляющего органа - центральный аппарат. Обратная связь при этом осуществляется через систему учета, контроля и оперативного управления в отношении подведомственных предприятий. Каждое предприятие, являясь, таким образом, объектом управления, в свою очередь, представляет замкнутую систему под воздействием внешней среды - вышестоящего уровня управления со всеми необходимыми структурными элементами. Объект управления - цеха, производственные участки; управляющая система - дирекция предприятия со своими службами; обратная связь осуществляется через систему учета, контроля и оперативного управления со стороны руководства предприятия.

Если спускаться по этой иерархической лестнице, то по аналогичной схеме можно рассмотреть систему управления цехом. В рамках крупных производственных комплексов (возможно, и международного уровня) такие иерархические структуры могут быть многоступенчатыми.

Анализ влияния природоохранной деятельности на показатели экономического развития предприятия на основе экономико-математического моделирования

Анализ циклов и кризисов с блоками Scope в Simulink

Для управления экспериментами модель насыщается блоками Scope отображения информации о показателях процессов и линиями, питающими блоки информацией. Эта инфраструктура эксперимента затуманивает модель, затрудняет мышление экономиста...

Аналитическое исследование оптимального управления динамической экономической системой

Для начала опишем теоретическую экономическую модель и в ее рамках сформулируем математическую задачу оптимального управления. Трехсекторная модель экономики была разработана В.А.Колемаевым...

Динамическое программирование

Сетевое планирование и управление возникло в 1957 - 1958 гг. под названием «метод критического пути» и метод PERT (метод оценки и пересмотра планов)...

Имитационное моделирование показателей мобильного бюджетирования предприятий ремонтного сектора вагонного хозяйства

Использование метода динамического программирования для решения экономических задач

Широкий класс составляют задачи, в которых речь идет о наиболее целесообразном распределении во времени тех или иных ресурсов (денежных средств, рабочей силы, сырья и т. п.). Рассмотрим простейший пример задачи такого рода...

Класс задач, рассматриваемый в данной главе, имеет многочисленные практические приложения. В общем виде эти задачи могут быть описаны следующим образом. Имеется некоторое количество ресурсов, под которыми можно понимать денежные средства...

Классификация математических моделей, используемых в экономике и менеджменте

Класс задач, в которых рассматривается оптимальное управление Запасами, является наиболее характерным для динамического программирования. Это обусловлено тем, что в задачах управления запасами процесс естественно разворачивается во времени...

Методы определения параметров и характеристик случайных процессов

Условия задачи. Годовая потребность машиностроительного завода в шинах марки Bridgestone В250 (175/70 R13 82H) составляет 70 000 шт., расходы на один заказ - 600 руб., издержки по содержанию запасов - 10 руб. за шт. в год. Завод работает 300 дней в году...

3) теория массового обслуживания; 4) теория игр...

Моделирование систем массового обслуживания

Сетевое планирование и управление вознило в 1957 - 1958 г.г. под названием "метод критического пути" и метод PERT (метод оценки и прерсмотра планов)...

Обзор экономико-математических методов. Применение стохастического программирования для решения экономических задач

До появления сетевых методов планирования работ, проектов осуществлялось в небольшом объеме. Наиболее известным средством такого планирования был ленточный график Ганта, недостаток которого состоит в том...

Пусть имеется некоторое количество ресурсов х, которое необходимо распределить между п различными предприятиями, объектами, работами и т.д. так, чтобы получить максимальную суммарную эффективность от выбранного способа распределения...

Применение динамического программирования для моделирования процессов принятия решений

Общество с ограниченной ответственностью «СТРОЙКРОВЛЯ», специализирующаяся на кровельных работах, использует большое количество металлочерепицы (около 35 000 кв. м в год). При небольших закупках, на одну кровлю (кв. м)...

Проблематика прогнозирования спроса

Первоначально модель LAM (Long-run Adjustment Model) разработали для моделирования и прогнозирования экономик стран восточной Европы в переходный период...

0

В пособие анализируется теоретический и прикладной аппарат оптимального управления в экономике. Основополагающие теоремы о достаточных условиях оптимальности доводятся до вычислительных методов принципа максимума и динамического программирования. В отличие от 1-го издания (2003 г.) радикально переработаны некоторые главы, расширен иллюстративный ряд. Все представленные по тексту задачи даны с решениями, а задачи для самостоятельной работы — с ответами; приведены варианты заданий для курсовых работ.

ОГЛАВЛЕНИЕ
Предисловие 3
Глава 1 МАТЕМАТИЧЕСКИЙ АППАРАТ ТЕОРИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ 9
1.1. Основные понятия и определения теории множеств и теории функций 9
1.2. Оптимизация функций на ограниченном множестве 14
1.3. Зависимость функции и множества от параметра 16
1.4. Дифференциальные уравнения первого порядка с разделяющимися переменными 22
1.5. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами 24
1.6. Численное интегрирование систем обыкновенных дифференциальных уравнений 30
Вопросы для самопроверки 33
Задачи для самостоятельной работы 33
Глава 2 ОСНОВЫ МОДЕЛИРОВАНИЯ ЭКОНОМИЧЕСКИХ ПРОЦЕССОВ 35
2.1. Система, модель, моделирование 35
2.2. Управление. Обратная связь. Замкнутая система... 39
2.2.1. Принципиальная схема управления 40
2.2.2. Иерархия управления 42
2.3. Экономическая система как объект управления (некоторые аспекты математического моделирования) 43
Вопросы для самопроверки 46
Глава 3 ОПТИМИЗАЦИОННЫЕ МОДЕЛИ ЭКОНОМИЧЕСКОЙ ДИНАМИКИ 47
3.1. Однопродуктовая динамическая макроэкономическая модель 47
3.2. Оптимизационная однопродуктовая динамическая макроэкономическая модель 52
3.3. Нелинейная оптимизационная модель развития многоотраслевой экономики 54
Вопросы для самопроверки 56
Глава 4 ДОСТАТОЧНЫЕ УСЛОВИЯ ОПТИМАЛЬНОСТИ 57
4.1. Вспомогательные математические конструкции 57
4.2. Достаточные условия оптимальности для непрерывных процессов 62
4.3. Достаточные условия оптимальности для многошаговых процессов 67
4.4. Обобщенная теорема о достаточных условиях опти¬мальности 71
4.5. Применение достаточных условий оптимальности к решению задач 75
4.5.1. Линейные по управлению процессы без ограничений на управление 75
4.5.2. Линейные по управлению процессы
с ограничениями на управление 81
Вопросы для самопроверки 84
Глава 5 ОДНОПРОДУКТОВАЯ МОДЕЛЬ ОПТИМАЛЬНОГО РАЗВИТИЯ МАКРОЭКОНОМИКИ 85
5.1. Моделирование производства на макроуровне 85
5.2. Оптимизационная модель макроэкономической динамики. Магистральная теория 89
Вопросы для самопроверки 101
Глава 6 МЕТОД ЛАГРАНЖА-ПОНТРЯГИНА ДЛЯ НЕПРЕРЫВНЫХ УПРАВЛЯЕМЫХ ПРОЦЕССОВ 102
6.1. Уравнения метода 102
6.2. Принцип максимума Понтрягина 109
6.3. Принцип максимума как достаточное условие оптимальности 114
6.4. Задача Эйлера вариационного исчисления 122
Задачи для самостоятельной работы 126
Глава 7. МЕТОД ЛАГРАНЖА ДЛЯ МНОГОШАГОВЫХ ПРОЦЕССОВ УПРАВЛЕНИЯ 129
7.1. Уравнения метода. Условия оптимальности для многошагового процесса с неограниченным управлением 129
7.2. Условия оптимальности для многошагового процесса при наличии ограничений на управление 137
Задачи для самостоятельной работы 144
Глава 8. ПРИМЕНЕНИЕ НЕОБХОДИМЫХ УСЛОВИЙ ОПТИМАЛЬНОСТИ В ФОРМЕ ЛАГРАНЖА-ПОНТРЯГИНА 146
8.1. Цели исследования. Оптимальное управление движущимся объектом 146
8.2. Календарное планирование поставки продукции. Дискретный вариант. Численное решение 153
8.3. Оптимальное планирование поставки продукции. Непрерывный вариант. Численное решение 161
8.4. Оптимальное потребление в однопродуктовой макроэкономической модели 165
Вопросы для самопроверки 169
Глава 9. МЕТОД ГАМИЛЬТОНА-ЯКОБИ-БЕЛЛМАНА 170
9.1. Идея и основные элементы 170
9.1.1. Уравнение Гамильтона—Якоби—Беллмана. Непрерывный вариант 171
9.1.2. Синтез оптимального управления 175
9.2. Алгоритм Гамильтона—Якоби—Беллмана (для непрерывных процессов) 176
9.3. Метод Гамильтона-Якоби-Беллмана. Многошаговый вариант 183
9.4. Оптимальное распределение инвестиций между проектами методом динамического программиро¬вания 189
9.5. Сравнительный анализ методов Лагранжа— Понтрягина и Гамильтона—Якоби-Беллмана 195
Задачи для самостоятельной работы 196
Краткий словарь терминов 198
Рекомендуемая литература 201
Приложения
1. Варианты заданий для курсовых работ 202
2. Ответы к задачам для самостоятельной работы 203
3. Графическое изображение ответов к задачам для самостоятельной работы 210
Предметный указатель 219

А также:

Министерство образования Российской Федерации

Международный образовательный консорциум «Открытое образование»

Московский государственный университет экономики, статистики и информатики

АНО «Евразийский открытый институт»

Б.А. Лагоша

Оптимальное управление в экономике

Учебное пособие

Москва 2004

УДК 519.865.7 ББК 65.050

Лагоша Б.А. ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ В ЭКОНОМИКЕ: Учебное пособие. / Московский государственный университет экономики, статистики и информатики - М., 2004. - 133 с.

ISBN 5-7764-0392-8

© Лагоша Б.А., 2004

© Московский государственный университет экономики, статистики и информатики 2004

Предисловие..........................................................................................................................

ГЛАВА 1. ................

1.1. Некоторые понятия и определения теории множеств и функций....................

1.2. Оптимизация функций на ограниченном множестве........................................

1.3. Зависимость функции и множества, на котором она максимизируется,

от параметра...........................................................................................................

1.4. Дифференциальные уравнения первого порядка с разделяющимися

переменными.......................................................................................................... .

1.5. Линейные дифференциальные уравнения с постояннымикоэффициентами......

1.6. Численное интегрирование систем обыкновенных дифференциальных

уравнений...............................................................................................................

Вопросы и задачи для внеаудиторной работы…………………………….........

ГЛАВА 2. Основы моделирования экономических процессов..................................

2.1. Система, модель.....................................................................................................

2.2. Управление. Обратная связь.................................................................................

2.2.1. Общая принципиальная схема управления................................................

2.2.2. Иерархия управления...................................................................................

2.3. Экономическая система как объект управления (некоторые аспекты

математического моделирования) .......................................................................

ГЛАВА 3. Оптимизационные модели экономической динамики..............................

3.1. Однопродуктовая динамическая макроэкономическая модель........................

3.2. Частные случаи......................................................................................................

3.3. Однопродуктовая оптимизационная динамическая макроэкономическая

модель.....................................................................................................................

3.4. Нелинейная оптимизационная модель развития многоотраслевой экономики

Вопросы для внеаудиторной работы..........................................................................

ГЛАВА 4. Достаточные условия оптимальности .........................................................

4.1. Вспомогательные математические конструкции...............................................

4.2. Достаточные условия оптимальности для непрерывных процессов................

4.3. Достаточные условия оптимальности для многошаговых процессов.............

4.4. Обобщенная теорема о достаточных условиях оптимальности.......................

4.5. Непосредственное применение достаточных условий оптимальности

к решению задач....................................................................................................

4.5.1. Процессы, линейные по управлению, без ограничений на управление.

4.5.2. Процессы, линейные по управлению, с ограничениями на управление

Вопросы для внеаудиторной работы..........................................................................

ГЛАВА 5. Однопродуктовая макроэкономическая модель оптимального

развития экономики .........................................................................................

5.1. Моделирование производства на макроуровне: некоторые свойства

производственных функций.................................................................................

5.2. Модель развития экономики: магистральная теория.........................................

Вопросы для внеаудиторной работы..........................................................................

ГЛАВА 6. Метод Лагранжа - Понтрягина для непрерывных управляемых

процессов ...........................................................................................................

6.1. Уравнения метода..................................................................................................

6.2. Принцип максимума Понтрягина........................................................................

6.3. Принцип максимума как достаточное условие оптимальности.......................

6.4. Задача Эйлера вариационного исчисления..................................................................

Задачи для внеаудиторной работы.......................................................................................

ГЛАВА 7. Метод Лагранжа для многошаговых процессов управления..................

7.1. Уравнения метода. Условия оптимальности для многошагового процесса

с неограниченным управлением..........................................................................

7.2. Условия оптимальности для многошагового процесса при наличии

ограничений на управление..................................................................................

Задачи для внеаудиторной работы..............................................................................

ГЛАВА 8. Некоторые применения необходимых условий оптимальности

в форме Лагранжа – Понтрягина .................................................................

8.1. Цели исследования. Оптимальное управление движущимся объектом..........

8.2. Календарное планирование поставки продукции. Дискретный вариант.

8.3. Оптимальное планирование поставки продукции. Непрерывный вариант.

Численное решение................................................................................................

8.4. Оптимальное потребление в однопродуктовой макроэкономической модели

Вопросы и задачи для внеаудиторной работы...........................................................

ГЛАВА 9. Метод Гамильтона – Якоби – Беллмана ......................................................

9.1. Идея и основные элементы...................................................................................

9.1.1. Уравнение Гамильтона - Якоби - Беллмана. Непрерывный вариант......

9.1.2. Синтез оптимального управления...............................................................

9.2. Алгоритм Гамильтона - Якоби - Беллмана (для непрерывных процессов) .....

9.3. Метод Гамильтона - Якоби - Беллмана. Многошаговый вариант....................

9.4. Оптимальное распределение инвестиций между проектами методом

динамического программирования......................................................................

9.5. Сравнительный анализ методов Лагранжа - Понтрягина и

Гамильтона - Якоби – Беллмана...........................................................................

Задачи для самостоятельного решения......................................................................

Краткий словарь терминов...............................................................................................

Литература............................................................................................................................

Предметный указатель......................................................................................................

ПРЕДИСЛОВИЕ

В основе настоящего учебного пособия лежат Государственный образовательный стандарт по специальности 061800 «Математический методы в экономике», результаты многолетнего сотрудничества автора с доктором технический наук, профессором В.Ф. Кротовым на кафедре экономической кибернетики в Московском государственном университете экономики статистики и информатики (МЭСИ) и учебное пособие [ 9 ] по расширенному курсу теории оптимального управления (ТОУ). Это пособие давно стало библиографической редкостью, в связи с чем возникла необходимость подготовки данного учебного пособия с учетом накопленного опыта преподавания и происходящих изменений в экономике с учетом новых возможностей использования вычислительной техники.

Скептикам, полагающим, что ТОУ экономистам вообще не нужна, что это занятие для инженеров, математиков, физиков и других представителей естественно-научных знаний, можно ответить следующее. С позиций прошлого, Вы, безусловно правы. Так было, пока от математики в экономике требовался лишь инструментарий для вычислений при решении расчетных задач.

По мере становления в нашей стране рыночной экономики ситуация начала меняться. Возросла роль математики как аналитического средства в экономике, уменьшилась необходимость ориентировать и направлять интеллектуальные ресурсы прежде всего на нужды обороны. Стало очевидным, что бизнес будет платить (и уже во многих случаях платит) за обоснованные компетентными расчетами и анализом инвестиционные проекты, прогнозы, рекомендации по снижению риска. В этих условиях экономика от апологетиковербальной ориентации прошлого начала поворачиваться к естественно-научным дисциплинам, хотя ее достижения в этом направлении по-прежнему нельзя сопоставлять с точными законами и выводами в естествознании.

Теория оптимального управления инвариантна к прикладным областям применения, если содержательные постановки задач вписываются в рамки принятых в ней канонических правил. Соответствующие возможности в сфере экономики реализуются в форме динамических оптимизационных моделей в управляемых системах с различными целевыми функциями и множеством ограничений на переменные состояния и управления.

В рамках Государственного стандарта и рабочей программы курса рассматриваются только детерминированные модели. Факторам неопределенности и риска в экономической практике, а также соответствующим математическим моделям посвящено учебное пособие.

В настоящем учебном пособии изложение всех конкретных методов оптимального управления ведется с единых методологических позиций - достаточных условий оптимальности В.Ф.Кротова . Результаты соответствующих теорем непосредственно проявляются как признак оптимальности для непрерывных и дискретных (многошаговых) управляемых процессов в общем виде. Ставя при формулировке задачи оптимального управления ряд дополнительных требований (ограничений), получаем соотношения в форме Лагранжа - Понтрягина как необходимые условия оптимальности. Применительно

к непрерывным управляемым процессам (двухточечная краевая задача для системы дифференциальных уравнений) они известны в форме принципа максимума Понтрягина .

Из достаточных условий оптимальности с помощью специального выбора функ-

ции ϕ (t, x ) (результат решения дифференциального уравнения Беллмана в частных про-

изводных для непрерывных и конечно-разностного - для многошаговых процессов) получаем алгоритмы динамического программирования для непрерывных и дискретных управляемых систем [ 9 ]. Таким образом, разработанные ранее как независимые принцип максимума и метод динамического программирования выводятся через достаточные условия оптимальности В.Ф.Кротова.

ПРЕДИСЛОВИЕ

В целом теоретическая часть учебного пособия отражает совокупность математических методов ТОУ, которые могут использоваться в различных прикладных направлениях. Как уже говорилось, внимание сосредоточивается на их применении в макроэкономических динамических исследованиях, хотя будут рассматриваться и другие примеры.

В главе 1 приведены справочные данные по необходимому для изучения ТОУ математическому аппарату. Поскольку в экономических вузах ТОУ читается не раньше, чем на 7-9 семестрах, а математические дисциплины завершаются в основном на втором курсе, к началу изучения ТОУ студенты нередко забывают необходимые математические методы. Это изначально вызывает трудности в изучении курса. Поэтому здесь в стиле справочника отражены сведения по применению элементов дифференциального и интегрального исчисления к исследованию графиков функций и нахождению их экстремальных значений, включая зависимость функций от параметра. В таком же стиле представлены дифференциальные уравнения с разделяющимися переменными, линейные с постоянными коэффициентами, однородные и неоднородные не выше второго порядка (большего в учебных целях не требуется), методы численного интегрирования систем обыкновенных дифференциальных уравнений в формах задач Коши и двухточечной краевой. На примерах поясняется разница между операторами inf и min, sup и max. Приводятся необходимые в ТОУ сведения из теории множеств. В последующих главах, в которых излагаются основные разделы курса, делаются необходимые ссылки на соответствующие разделы и формулы главы 1.

В главе 2 представлены основные понятия системного анализа: система, модель, управление, обратная связь, замкнутая система, внешняя среда. Дается характеристика экономической системы как объекта управления, что отражает некоторые аспекты ее математического моделирования. Приводится пример системы с необходимостью проведения диагностического анализа с позиций указанных выше факторов. Материал этой главы важен для последующего изложения конкретных методов оптимального управления. Он используется для углубления понимания синтеза оптимальных управлений в методе Ла-

гранжа - Понтрягина.

В соответствии с общей направленностью системного анализа, в главе 3, рассматриваются некоторые типовые оптимизационные модели экономической динамики. Данный процесс сопровождается примерами задач оптимального управления в непрерывной и дискретной постановке. Излагается метод построения траекторий управляемых процессов (вектора состояния и управления), на основе чего можно создавать для студентов конкретные упражнения.

В главе 4 представлена общая каноническая постановка задачи оптимального управления для непрерывных и дискретных процессов, вводятся вспомогательные математические конструкции и доказываются три теоремы о достаточных условиях оптимальности:

* для непрерывных процессов, когда оптимальное решение существует в классе допустимых;

* для дискретных (многошаговых) процессов;

* обобщенная теорема для непрерывных процессов, когда оптимальное решение не существует, но находится минимизирующая последовательность допустимых траекторий. Здесь показана разница между операторами инфинум и минимум, супремум и максимум Исследуется тип задачи с линейно входящим управлением без ограничений и с ограничениями на управление, когда решение (непрерывное или разрывное) достигается пу-

тем непосредственного применения достаточных условий оптимальности.

ПРЕДИСЛОВИЕ

В главе 5 в соответствии с постановкой и алгоритмом решения задач, линейных по управлению представлена модификация макроэкономической модели производства и распределения продукции с использованием аппарата линейных по управлению задач с ограничениями на управление и с нелинейной производственной функцией Кобба-Дугласа. Согласно разработанному алгоритму решения, находится оптимальная траектория управления. При этом в каждый момент времени осуществляется разделение валового национального продукта на инвестиции и непроизводственное конечное потребление. Вводится понятие магистрального режима развития экономики, выявляются его свойства и объясняется содержательный смысл.

Глава 6 посвящена методу Лагранжа - Понтрягина (принципу максимума) для непрерывных управляемых процессов. Как необходимые при выполнении двух требований теоремы о достаточных условиях оптимальности выводятся уравнения метода. Дается комментарий к названию «принцип максимума». При наличии свободных граничных условий на правом конце (при t=T ) получаются так называемые условия трансверсальности.

В итоге нахождение оптимального процесса управления сводится к двухточечной краевой задаче для системы 2n дифференциальных уравнений, гдеn - размерность вектора состояния системы. Рассматривается особый частный случай - классическая задача Эйлера вариационного исчисления.

Выводятся ограничения для возможности применения принципа максимума как достаточного условия оптимальности. В этом причина популярности этого метода на практике. Даются примеры нахождения оптимальных процессов с решениями и без решений.

В главе 7 исследуется метод Лагранжа для дискретных (многошаговых) процессов с одномерным аргументом. Выводятся условия оптимальности для вариантов неограниченного управления и при наличии ограничений на управление. Приводятся задачи с решениями и без решений - для самостоятельной и внеаудиторной работы.

В главе 8 демонстрируются некоторые применения необходимых условий оптимальности в форме Лагранжа - Понтрягина. Рассматривается экономическая задача календарного планирования спроса и поставок продукции, не допускающей длительного хранения, в случае дискретного варианта потребления и производства. Задача календарного планирования для непрерывного варианта производства и потребления задается для внеаудиторной работы (при “ручной” технологии решения и с использованием ЭВМ). Все исходные данные, фигурирующие в названных задачах, условные. Для теоретического анализа это оказывается достаточным, а реальные экономические оценки - это специальный вопрос подготовки данных для использования моделей на практике, выходящий за рамки исследования.

В качестве иллюстрации аналитического решения находится и обосновывается оптимальное управление механическим прямолинейным движением. Показывается, что во всех случаях имеют место оптимальные решения.

В завершающей главе 9, исходя из теоремы о достаточных условиях оптимальности для непрерывных и дискретных (многошаговых) процессов реализуются достаточные условия оптимальности в форме Гамильтона - Якоби - Беллмана (динамического программирования). Анализируются различия между непрерывной и дискретной постановками задач. Как дискретный вариант представлен пример использования метода при оптимизации распределения инвестиций между инвестиционными проектами на фирме при условных исходных данных. Проводится сравнительный анализ методов Лагранжа - Понтрягина и Гамильтона - Якоби - Беллмана.

ПРЕДИСЛОВИЕ

В настоящем учебном пособии использованы переработанные материалы ранее изданных с участием автора публикаций [ 6 , 9 ], личный опыт многолетнего преподавания курса ТОУ студентам и преподавателям в системе повышения квалификации, учебнометодические пособия в МЭСИ главным образом для решения задач.

В конце глав приводятся задачи с решениями, вопросы и задачи для самостоятельной работы.

Для изучения материала, изложенного в настоящем учебном пособии, достаточно владеть основами дифференциального и интегрального исчисления, дифференциальных уравнений в объеме первых двух курсов экономических вузов. Кроме того, при необходимости, как уже отмечалось, читатель может обратиться к справочному материалу главы 1.

Автор благодарит доктора технических наук профессора В.Ф.Кротова за многолетнее плодотворное сотрудничество, а также рецензентов: доктора экономических наук, профессора В.В.Лебедева (ГУУ) и доктора экономических наук, профессора Н.Е.Егорову (ЦЭМИ РАН), доктора технических наук, профессора Л.Г.Гагарину (Московский государственный институт электронной техники (Технический университет)) за внимательное прочтение рукописи, пожелания и рекомендации, способствовавшие улучшению учебного пособия.

МАТЕМАТИЧЕСКИЙ АППАРАТ ТЕОРИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

ГЛАВА 1. Математический аппарат теории оптимального управления

1.1. Основные понятия и определения теории множеств и теории функций

Понятие множества в математике постулируется, чтобы оперировать с некоторыми совокупностями чисел, матриц, функций, других элементов, принадлежащих этим совокупностям. Множества могут быть конечными, бесконечными, пустыми. Конечное множество включает ограниченное число элементов, их можно пересчитать. Бесконечное множество содержит бесконечное число элементов.

Пусть заданы множества X иY с элементамиx X иу Y . Прямым (декартовым) произведением множествX иY называется множествоZ = X × Y , которое включает всевозможные парыν = (x ;y ), гдеx X ,y Y ,ν Z .

Пример 1.1 . Пусть даны множестваX ={x : 0≤ x ≤ 1};Y = {у : 0≤ y ≤ 1}. Тогда

Z = X × Y – единичный квадрат:Z ={ν = (x ,y ) : 0≤ x ≤ 1, 0≤ у ≤ 1} (рис.1.1).

Рис. 1.1. Иллюстрация прямого произведение множеств – единичный квадрат

На рис. 1.2 изображен случай, когда X иY – множества всех действительных чисел,Z = X × Y – вся координатная плоскость,V – некоторое ограниченное подмножество на этой плоскости.

Проекцией множества V на множествоX называется такое множествоV х (см. рис. 1.2) всех элементовx , для которого каждому элементуx V х можно поставить в соответствие по крайней мере один элементy Y , так чтобы пара (x ,y )V .

Сечением множества V при данномx (рис. 1.2) называется множествоV х всех эле-

ментов y Y , каждый из которых в паре с заданнымx образует элементν = (x ;y )V ;

Vх Y.

При этом будем обозначать: x V х ,y V х .

МАТЕМАТИЧЕСКИЙ АППАРАТ ТЕОРИИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

В практике оптимального управления важен частный случай, когда проекция V х не зависит отx (рис. 1.3)

Этот частный случай встретится при изучении в главе 6 алгоритма принципа мак-

симума Понтрягина, где y V у . В общем же случае имеют место обозначенияx V х ,y V х .

Рис. 1.2. Координатная плоскость с ограниченным на ней подмножеством V

Vx =Vy

Рис. 1.3. Частный случай независимости Vх от x (проекция Vу

равна сечению Vх )

Функция y = f (x ) называется законом отображения множестваX (x X ) на множе-

ство Y (y Y ). Функциональная связьf – конкретный вид этого отображения. На множест-

ва X иY в общем случае ограничения не накладываются. Элементами этих множеств мо-