Авиационно космическая система. «МИГ АКС» авиационно-космическая система. Общие характеристики системы макс

И две ракетные ступени для вывода корабля на орбиту. В итоге были изготовлены только корабль и несколько его копий в масштабе 1:3 которые слетали в космос. Несмотря на это «Спираль» и американский проект X-15 которые были родом из 1960-х оказались ближе всего к завершению из всех проектов воздушного старта космических грузов на данный момент.

Трудности в создании двигателя для гиперзвукового самолёта-разгонщика (ГПВРД) и хроническое невезение преследовали такие проекты. И даже сейчас, когда казалось бы появление первых рабочих ГПВРД (X-43 и X-51) открыло для таких проектов дорогу в космос, появление многоразовых первых ступеней (от SpaceX , Blue Origin и Индии) похоже собирается окончательно поставить на истории этих проектов жирную точку. Что же им всё время так мешало? Об этом и пойдёт речь ниже.

Теория

Чем же так выгоден воздушный старт? Дело в том, что он позволяет экономить в массе ракеты за счёт того что часть скорости и высоты покрываются самолётом-разгонщиком (то есть снижает необходимый запас характеристической скорости или delta-V), также это позволяет ставить сразу на первую ракетную ступень ЖРД с вакуумными соплами, которые имеют больший удельный импульс , что увеличивает эффективность двигателя и также снижает вес ракеты. При этом двигатели самолётов, такие как турбореактивные (ТРД), прямоточные (ПВРД) и даже гиперзвуковые (ГПВРД) - хоть и имеют удельный импульс, падающий с ростом скорости, но он всё равно остаётся существенно выше чем у ЖРД до 10 скоростей звука (10М):


Параллельно со сбросами ракетопланов «Стратосферные крепости» B-52 участвовали в испытаниях NASA аппаратов с несущим корпусом названных за их форму и посредственную аэродинамику «летающими ванными» - корабли серии M2-F1 , M2-F2 и M2-F3 (по центру). Как высказывался об этом летательном аппарате Милтон Томпсон : «если бы человек выпал из B-52 в момент отделения M2-F1 от самолёта, то аппарат опередил бы его у Земли». В дальнейшем аэродинамику улучшили, благодаря чему появились HL-10 (справа) и X-25A (слева), но все эти аппараты имели лишь небольшие двигатели и предназначались исключительно для исследования аэродинамики при спуске с орбиты что, в итоге легло в основу конструкции «Спейс Шаттла» . Так что рекордом для всех трёх аппаратов стали результаты в 1976 км/ч по скорости и 27524 м по высоте показанные на HL-10 в полётах 18 и 27 февраля 1970 года соответственно.

Сердцем программы должен был стать гиперзвуковой самолёт-разгонщик, который должен был развивать 4-6М. В начале этот проект хотели поручить ОКБ Туполева (уже занимавшемся в тот момент Ту-144) но в итоге он от него отказался. Проект приняло ОКБ Микояна которое проводило продувки моделей самолёта в аэродинамической трубе вплоть до закрытия проекта. Самолёт-разгонщик разгонялся с помощью разгонной тележки до скорости 400 км/ч после чего запускал свои двигатели и отрывался от земли. Для улучшения аэродинамики после взлёта нос самолёта поднимался, ограничивая тем самым обзор в низ - такой вариант использовался на Ту-144 и «Конкорде» , а для советского бомбардировщика Т-4 пошли ещё дальше и сделали кабину полностью закрывающейся.

Так как базовое топливо для ракетных ступеней (фтор/водород) и топливо для ГПВРД самолёта-разгонщика (водород) до этого не применялось для этих целей - решено было на начальном этапе разработать промежуточный вариант системы с несколько худшими показателями. Однако даже этот промежуточный вариант должен был стать по многим показателям лучше всего что было создано до этого, а основной вариант системы и вовсе поражает воображение:
Таким образом данная система могла вывести на орбиту груз в 10+ тонн при стартовой массе всего в 115 тонн - то есть полезный груз составлял около 10% стартовой массы! Это является просто немыслимым показателем для современных химических ракет, которые выводят на орбиту в среднем 3,5% от собственной массы (и только у самой тяжёлой версии полностью водородной Delta IV этот показатель достигает 3,9%). Такие характеристики достигались ГПВРД самолёта-разгонщика, которому не надо было тащить с собой в стратосферу окислитель, и фторным топливом ракетных ступеней которое имело удельный импульс в 479 сек в вакууме.


Несмотря на одновременный старт создания разгонщика, двигателей к нему и орбитального корабля, к закрытию проекта в начале 70-х двигатель был не готов, продувки моделей разгонщика продолжались до 1975 года, а только 25 апреля этого года (уже после официального закрытия проекта) - самолёт-аналог МиГ-105.11 был передан с завода-изготовителя для испытаний. Так как корабль имел военную направленность, предполагалось что кабина пилота будет отстреливаемой, иметь собственные двигатели и парашют для возможности самостоятельного схода с орбиты и посадки на землю. Из-за общих проблем с проектом эта часть корабля реализована так и не была.

В первые самолёт-аналог МиГ-105.11 был сброшен с Ту-95КМ в своём 11 совместном полёте 27 октября 1977 года, после чего приземлился ВПП Грошево. Испытания аналога проходили до 13 сентября 1978 года, когда из-за ошибки руководителя полёта при заходе на посадку по неправильному курсу в вечернее время пилота ослепило Солнце, в результате чего произошла жёсткая посадка повредившая шасси. 24 октября самолёт был отправлен на подвесе того же Ту-95КМ на Тушинский машиностроительный завод для ремонта. Хотя самолёт-аналог в дальнейшем и отремонтировали, однако этот полёт на ТМЗ так и остался для МиГ-105.11 последним.

После официального закрытия проекта оставалась надежда на использования для старта орбитального корабля самолётов из других проектов, более всего на эту роль подходил проект Т-4 ОКБ Сухого, история которого по своему интересна. Так как у СССР не было возможности создать столь большое число авианосных группировок сколько было у США, для борьбы с ними требовалось найти какой-то другой способ. Обычное ядерное оружие для этих целей не подходило, так как за время между получением информации о место положении авианосца и подлётом ракеты он мог выйти из радиуса поражения. Поэтому было предложено для этой цели создание небольшой группировки стратегических бомбардировщиков с ядерным ракетным вооружением.

Расчёты показывали, что для прорыва ПВО авианосного соединения они должны были иметь весьма высокую скорость - порядка 3М. В конкурсе участвовало 3 конструкторских бюро: ОКБ Туполева с проектом Ту-135, ОКБ Яковлева с проектом Як-35 и ОКБ Сухого с проектом Т-4 . В итоге выиграл проект ОКБ Сухого, а сам Сухой и Туполев при этом поссорились, что привело к их знаменитому разговору при обсуждении будущего данного проекта:

Туполев: «Сухой - мой ученик, я его знаю - он с темой не справится.»
Сухой: «Именно потому, Андрей Николаевич, что я ваш ученик, я с ней справлюсь.»
В итоге один экземпляр Т-4 всё-таки был построен и проходил испытания вплоть до перехода на сверхзвук, но из-за того, что Туполев в итоге смог добиться того чтобы новые образцы Т-4 не стали производить на Казанском авиационном заводе - проект в итоге затормозился и вскоре был закрыт.

Для дальнейших испытаний орбитального корабля уже были изготовлен МиГ-105.12 (для испытаний на сверхзвуке) и приступили к строительству МиГ-105.13 (уже для испытаний на гиперзвуке). Оба этих аналога не были закончены до конца к моменту начала строительства «Бурана», когда их строительство полностью было свёрнуто, при этом третий аналог всё же проходил испытания в термобарокамере в то время как второй просто простоял на ТМЗ до конца 70-х. Сейчас единственный летавший экземпляр МиГ-105.11 стоит в Центральном музее военно-воздушных сил в Монино, бок о бок с Т-4 и со сверхзвуковым пассажирским Ту-144 (история которого была немногим удачливее).

Ещё один весьма интересный момент: Гагарин защитил свой диплом 17 февраля 1968 года, темой его дипломной работы стал космический корабль с решётчатыми рулями (как те которые сейчас применяются на многоразовых версиях ракет семейства Falcon 9). В дальнейшем это направление должно было стать темой его кандидатской работы. Юрий Алексеевич погиб 27 марта того же года в своём выпускном полёте с инструктором, в котором он после продолжительного перерыва в полётах должен был снова получить право самостоятельно летать…

Проект предусматривающий старт с АН-325 (увеличенной версии АН-225 , построенный для перевозки «Бурана», центрального бака ракета-носителя «Энергия» и других негабаритных грузов весом до 250 тонн которых он может нести внутри фюзеляжа или на внешней подвеске). Конструкция общим весом в 275 тонн включающая бак, орбитальный корабль и 7 тонн полезной нагрузки должны были выходить на орбиту благодаря уникальному в своём роде двухкамерному двигателю РД-701 работавший на компонентах топлива керосин+водород/кислород. Двигатель имел два режима: в первом из них для увеличения тяги в обе камеры подавалась значительная доля керосина (что обеспечивала в 2,5 раза большую тягу), при этом в дальнейшем двигатель переходил на второй режим в котором подача керосина полностью прекращалась (обеспечивая на 10% больший удельный импульс):
Проект имел широкую известность, но так и не получил должного финансирования. Несмотря на свой уникальный двигатель проект наследует все технические недостатки дозвукового носителя, а также имеет свой собственный - это трёхкомпонентный бак, в котором надо обеспечивать теплоизоляцию трёх компонентов топлива (водород, кислород, керосин) которые должны храниться при разных температурах (около 20К, 50К и 300К соответственно). Намного более перспективным в данном плане (по моему личному мнению конечно) мог бы стать полный отказ от самолёта-носителя в пользу наземного старта, с использованием сбрасываемых баков и сохранением одноступенчатой схемы - это позволило бы решить проблему теплоизоляции стандартными системами дренажа (когда разогреты компоненты топлива сбрасываются, а баки подпитываются за счёт наземных систем до момента пуска).

Европейских проектов было сразу несколько:

Проект RT-8 немецкой фирмы «Юнкерс» - предусматривал старт двухступенчатой крылатой ракеты с 3-километровой тележки с разгоном до 900 км/ч, также рассматривался воздушный старт. Обе ступени предполагали посадку на землю, вторая ступень предполагала вывод чуть менее 3 тонн на орбиту, также предусматривался перелив топлива водород/кислород из 1-й ступени во 2-ю. Проект завершился с закрытием фирмы в 1969 году.

Также именуемый просто как DC-X, этот проект стал первой попыткой продемонстрировать жизнеспособность идеи SSTO «в металле», и первой ракетой которая села на реактивной тяге 18 августа 1993 года (став тем самым основой для «Кузнечика» от SpaceX). По программе было осуществлено 5 полётов последний из которых закончился жёсткой посадкой, повредившей корпус ракеты. Данный испытательный образец решено было не восстанавливать, а изготовить новый (DC-XA) который на свой 3-й полёт смог подняться на высоту в 3140 метров (в 4 раза выше полётов «Кузнечика»), но посадке после следующего полёта одна из опорных ног не вышла из-за чего ракета упала и загорелась (что усугубилось утечкой из бака кислорода). Хотя затраты на проект на тот момент составляли всего 110 млн $ (в пересчёте на текущие цены) - от проекта было решено отказаться в пользу следующего в списке:


Сравнение размеров X-33, VentureStar и Шаттла

Американский проект VentureStar - стартовавший в 1992 году, был весьма немалых размеров как можно судить по схеме: при стартовой массе в тысячу тонн 20 из них должны приходиться на полезную нагрузку. По проекту должен был быть построен и испытан его уменьшенный аналог - X-33 , после чего к 2004 году должен был быть построен уже полноразмерный корабль. Из-за проблем с композитным баком жидкого водорода и другими техническими проблемами X-33 так и не был достроен, что вызвало отмену всего проекта. В дальнейшем NASA удалось решить проблему с композитными баками и ряд других проблем - но было уже поздно. На основе наработок этих проектов сейчас разрабатывается проект XS-1 под эгидой

космических аппаратов">
МАКС

Орбитальный самолёт и внешний топливный бак системы МАКС
Общие сведения
Производитель НПО «Молния»
Страна СССР СССР
Применение Транспортировка на Низкую околоземную орбиту (НОО) и обратно
Технические характеристики
Производство
Статус Отменён, 1991
Запущено не было
Многоцелевая авиационно-космическая система на Викискладе

Многоцелева́я авиацио́нно-косми́ческая систе́ма (МАКС) - проект использующего метод воздушного старта двухступенчатого комплекса космического назначения, который состоит из самолёта-носителя (Ан-225 «Мрия») и орбитального космического корабля -ракетоплана (космоплана), называемого орбитальным самолётом . Орбитальный ракетоплан может быть как пилотируемым, так и беспилотным. В первом случае он устанавливается вместе с одноразовым внешним топливным баком. Во втором - баки с компонентами топлива и окислителя размещаются внутри ракетоплана. Вариант системы допускает также установку вместо многоразового орбитального самолёта одноразовой грузовой ракетной ступени с криогенными компонентами топлива и окислителя.

История

Разработка проекта (код разработки - 9А-1048) велась в НПО «Молния» с начала 1980-х годов под руководством Г. Е. Лозино-Лозинского . Широкой общественности проект был представлен в конце 1980-х гг. При полномасштабном разворачивании работ проект мог быть реализован до стадии начала лётных испытаний уже в 1988 г.

Вместо первой ступени обыкновенной ракеты в проекте используется сверхтяжёлый самолёт Ан-225 ; точнее, на базе Ан-225 предполагалась разработка его нового варианта - Ан-325.

Вторая ступень может быть выполнена в трех вариантах:

  1. МАКС-ОС-П - базовый вариант с пилотируемым орбитальным самолётом (ракетопланом) и одноразовым баком;
  2. МАКС-М - беспилотный транспортный вариант с полностью многоразовым орбитальным самолётом (ракетопланом);
  3. МАКС-Т - беспилотный транспортный вариант с одноразовой ракетной второй ступенью.

В вариантах с ракетопланом полезный груз на низкую орбиту составляет 7 тонн, с одноразовой ракетной ступенью - 18 тонн. Стартовая масса системы - 275 тонн.

Основное назначение многоцелевой системы - доставка грузов и экипажей на орбиту, в том числе на орбитальные станции. МАКС может также использоваться (в том числе оперативно ввиду отсутствия привязки к космодрому и возможности запусков в разных направлениях) для аварийного спасения экипажей космических объектов, для ремонтно-аварийно-технических работ, научных экспериментов, организации производств на орбите, в гражданских и военных целях наземной разведки, экологического и космического контроля.

При разработке проекта использовался опыт НПО «Молния» и результаты работ по проекту АКС «Спираль » и экспериментальному беспилотному орбитальному ракетоплану БОР-4 . Компоновка базового варианта системы МАКС близка к таковой у системы «Спираль», только вместо гиперзвукового используется обычный самолёт-носитель, а вместо ракетной ступени используются двигатели на самом орбитальном ракетоплане.

Важным преимуществом этой системы воздушного старта является отсутствие необходимости в космодроме . «Система базируется на обычных аэродромах 1-го класса, дооборудованных необходимыми для МАКС средствами заправки компонентами топлива, наземного технического и посадочного комплекса и вписывается, в основном, в существующие средства наземного комплекса управления космическими системами».

К преимуществам проекта МАКС можно также отнести бо́льшую экологическую чистоту за счёт применения менее токсичного топлива в разработанном многорежимном трёхкомпонентном двигателе РД-701 керосин /водород +кислород).

В рамках инициативных работ НПО «Молния» по проекту созданы меньшие и полномасштабные габаритно-весовой макет внешнего топливного бака, габаритно-весовой и технологический макеты космоплана. Реализация проекта по-прежнему возможна при наличии инвесторов.

Проект «МАКС» получил золотую медаль (с отличием) и специальный приз премьер-министра Бельгии в 1994 году в Брюсселе на Всемирном салоне изобретений, научных исследований и промышленных инноваций «Брюссель-Эврика-94».

Возобновление проекта

Развитие идея получает в 2012 году . Российские аэрокосмические предприятия НПО «Молния» и Экспериментальный машиностроительный завод имени В. М. Мясищева разрабатывают аэрокосмические системы для осуществления суборбитальных туристических полётов и выведение на орбиту коммерческих спутников, говорится в материалах к докладу специалистов предприятий, имеющихся в распоряжении

Многоцелева́я авиацио́нно-косми́ческая систе́ма (МАКС) - проект использующего метод воздушного старта двухступенчатого комплекса космического назначения, который состоит из самолёта-носителя (Ан-225 «Мрия») и орбитального космического корабля -ракетоплана (космоплана), называемого орбитальным самолётом . Орбитальный ракетоплан может быть как пилотируемым, так и беспилотным. В первом случае он устанавливается вместе с одноразовым внешним топливным баком. Во втором - баки с компонентами топлива и окислителя размещаются внутри ракетоплана. Вариант системы допускает также установку вместо многоразового орбитального самолёта одноразовой грузовой ракетной ступени с криогенными компонентами топлива и окислителя.

Энциклопедичный YouTube

  • 1 / 5

    Разработка проекта (код разработки - 9А-1048) велась в НПО «Молния» с начала 1980-х годов под руководством Г. Е. Лозино-Лозинского . Широкой общественности проект был представлен в конце 1980-х гг. При полномасштабном разворачивании работ проект мог быть реализован до стадии начала лётных испытаний уже в 1988 г.

    Вместо первой ступени обыкновенной ракеты в проекте используется сверхтяжёлый самолёт Ан-225 ; точнее, на базе Ан-225 предполагалась разработка его нового варианта - Ан-325.

    Вторая ступень может быть выполнена в трех вариантах:

    1. МАКС-ОС-П - базовый вариант с пилотируемым орбитальным самолётом (ракетопланом) и одноразовым баком;
    2. МАКС-М - беспилотный транспортный вариант с полностью многоразовым орбитальным самолётом (ракетопланом);
    3. МАКС-Т - беспилотный транспортный вариант с одноразовой ракетной второй ступенью.

    В вариантах с ракетопланом полезный груз на низкую орбиту составляет 7 тонн, с одноразовой ракетной ступенью - 18 тонн. Стартовая масса системы - 275 тонн.

    Основное назначение многоцелевой системы - доставка грузов и экипажей на орбиту, в том числе на орбитальные станции. МАКС может также использоваться (в том числе оперативно ввиду отсутствия привязки к космодрому и возможности запусков в разных направлениях) для аварийного спасения экипажей космических объектов, для ремонтно-аварийно-технических работ, научных экспериментов, организации производств на орбите, в гражданских и военных целях наземной разведки, экологического и космического контроля.

    При разработке проекта использовался опыт НПО «Молния» и результаты работ по проекту АКС «Спираль » и экспериментальному беспилотному орбитальному ракетоплану БОР-4 . Компоновка базового варианта системы МАКС близка к таковой у системы «Спираль», только вместо гиперзвукового используется обычный самолёт-носитель, а вместо ракетной ступени используются двигатели на самом орбитальном ракетоплане.

    Важным преимуществом этой системы воздушного старта является отсутствие необходимости в космодроме . «Система базируется на обычных аэродромах 1-го класса, дооборудованных необходимыми для МАКС средствами заправки компонентами топлива, наземного технического и посадочного комплекса и вписывается, в основном, в существующие средства наземного комплекса управления космическими системами».

    К преимуществам проекта МАКС можно также отнести бо́льшую экологическую чистоту за счёт применения менее токсичного топлива в разработанном многорежимном трёхкомпонентном двигателе РД-701 керосин /водород +кислород).

    В рамках инициативных работ НПО «Молния» по проекту созданы меньшие и полномасштабные габаритно-весовой макет внешнего топливного бака, габаритно-весовой и технологический макеты космоплана. Реализация проекта по-прежнему возможна при наличии инвесторов.

    Проект «МАКС» получил золотую медаль (с отличием) и специальный приз премьер-министра Бельгии в 1994 году в Брюсселе на Всемирном салоне изобретений, научных исследований и промышленных инноваций «Брюссель-Эврика-94».

    Возобновление проекта

    Развитие идея получает в 2012 году . Российские аэрокосмические предприятия НПО «Молния» и Экспериментальный машиностроительный завод имени В. М. Мясищева разрабатывают аэрокосмические системы для осуществления суборбитальных туристических полётов и выведение на орбиту коммерческих спутников, говорится в материалах к докладу специалистов предприятий, имеющихся в распоряжении.

    «Космические туристы смогут испытытать состояние невесомости в течение 3-5 минут и могут наблюдать поверхность Земли через иллюминаторы с высоты космического полёта. После входа в плотные слои атмосферы космический аппарат выполняет планирующий спуск и посадку на полосу аэродрома », - говорится в материалах. В зависимости от типа самолёта-носителя количество пассажиров может варьироваться от 4 до 14. Предполагается также разработать вариант воздушного старта для доставки на орбиту малых коммерческих спутников. По мнению специалистов, одно из возможных решений этой задачи - размещение полезного груза (спутника с небольшим разгонным блоком) внутри пассажирского отсека.

    Многоцелевая авиационно-космическая система (МАКС ) обладает рядом принципиальных преимуществ. Это, в первую очередь, возможность выведения нагрузок на орбиты любого наклонения, высокая оперативность и низкая стоимость применения и отсутствие необходимости отчуждения земель под поля падения элементов конструкции.
    В отличие от ракетных систем, привязанных к стартовым площадкам немногочисленных космодромов и ограниченных в выборе орбит, МАКС может применяться для аварийного спасения экипажей космических объектов или для срочной разведки районов техногенных и природных чрезвычайных ситуаций.

    3D-модель орбитального самолета

    К реализации проекта МАКС НПО «Молния » приступило в 80-х годах XX века, под руководством Г. Е. Лозино-Лозинского, ещё до первого полёта «Бурана », используя при этом опыт и результаты работ по проекту «Спираль », по экспериментальным беспилотным орбитальным ракетопланам — аппаратам «Бор », и «Бурану ». К настоящему времени уже проработаны основные элементы конструкции орбитальной ступени, изготовлен макет внешнего топливного бака, существует значительный задел по двигательным установкам.
    МАКС — двухступенчатый комплекс, состоящий из самолёта-носителя (Ан -225 «Мрия » / «Мечта » — точнее на базе Ан-225 предполагалась разработка нового самолета-носителя Ан-325), на котором устанавливается орбитальный самолёт. Орбитальный самолёт может быть как пилотируемым, так и беспилотным. Конструкция Ан-225 допускает установку грузового контейнера с внешним топливным баком с криогенными компонентами топлива вместо орбитального самолёта.

    Вместо первой ступени обыкновенной ракеты здесь используется самолёт Ан-225; вторая ступень может быть выполнена в трех вариантах:
    1. МАКС-ОС с орбитальным самолётом и одноразовым баком;
    2. МАКС-М с беспилотным самолётом;
    3. МАКС-Т с одноразовой беспилотной второй ступенью и грузом до 18 тонн.

    «Система базируется на обычных аэродромах 1-го класса, дооборудованных необходимыми для МАКСа средствами заправки компонентами топлива, наземного технического и посадочного комплекса, и вписывается в основном в существующие средства наземного комплекса управления космическими системами».
    МАКС может применяться для аварийного спасения экипажей космических объектов или в целях наземной разведки. Отсутствие привязки к космодрому также расширяет применение такой системы.
    Этот проект, в отличие от «Бурана », основан на принципе самоокупаемости. По расчётам, затраты должны окупаться через 1,5 года, а сам проект может дать 8,5-кратную прибыль. Эта система является уникальной, так как в мире не разрабатывалось ни одного подобного аппарата. Кроме того, МАКС значительно дешевле ракет за счёт многократного использования самолёта-носителя (до 100 раз), стоимость выведения груза на низкую околоземную орбиту — порядка 1000 долл./кг; для сравнения: средняя стоимость выведения в настоящее время составляет около 8000-12000 долл./кг, для конверсионной РН «Днепр » — 3500 долл./кг. К преимуществам можно также отнести большую экологическую чистоту за счёт применения менее токсичного топлива (трёхкомпонентный двигатель РД-701 керосин/водород+кислород). В настоящее время на проект уже истрачено около 14 млрд долларов.

    Многоцелевая авиационно-космическая система (МАКС )

    Проект МАКС получил золотую медаль (с отличием) и специальный приз премьер-министра Бельгии в 1994 году в Брюсселе на Всемирном салоне изобретений, научных исследований и промышленных инноваций «Брюссель -Эврика-94».
    Многоцелевые авиационно-космические системы разрабатываются сейчас во многих странах, однако, по мнению ряда зарубежных специалистов, Россия продвинулась на этом пути дальше своих конкурентов. Обладание такой системой, как МАКС, помогло бы ей в начале XXI века занять твёрдые позиции на рынке космических услуг.
    В начале 2006 г. проект МАКС принял участие в конкурсе на проект пилотируемого космического корабля нового поколения, проводимого Роскосмосом в соответствии с федеральной космической программой (ФКП ) в рамках темы «Клипер » (опытно -конструкторская работа «Создание многоразового пилотируемого корабля нового поколения для транспортно-технического обслуживания орбитальных пилотируемых станций, перспективных космических комплексов и других объектов околоземной группировки», N36 по ФКП).
    В конкурсе, помимо НПО «Молния » с проектом МАКС, также участвовали ГКНПЦ им. Хруничева с проектом пилотируемого транспортного корабля и РКК «Энергия » со своим проектом «Клипер ». Последний был первоначальным фаворитом конкурса, точнее — сам конкурс был организован специально под этот проект. Предполагалось, что конкурс будет внутриведомственным, с участием в нем только предприятий, подчиненных Роскосмосу. Однако НПО «Молния », получив письменное согласие от Федерального агентства по промышленности, смогло добиться своего участия в конкурсе, спутав все карты его организаторам. В результате конкурс стал межведомственным. Однако уже в ходе проведения конкурса возникли трения между руководством РКК «Энергия » и Роскосмосом (и наметилось сближение руководства Роскосмоса с руководством ГКНПЦ), и несмотря на то, что условия конкурса ( «Технические требования к пилотируемому космическому кораблю нового поколения») изначально писались под «Клипер » РККЭ и им также со значительным запасом отвечал проект МАКС, Роскосмос информационным письмом (исх . номер ВР-21-1526 от 10.03.2006) поменял условия конкурса, введя надуманное требование к конкурсным предложениям «обеспечения самостоятельного решения задач доставки экипажей к Луне и возвращение их на Землю, а в перспективе — использование модификации корабля в составе марсианских пилотируемых экспедиций». Первенство перешло к бескрылому проекту пилотируемого транспортного корабля ГКНПЦ им. Хруничева, однако ситуация стала настолько скандальной (к этому времени строка по ОКР «Клипер » исчезла из ФКП, и одновременно с этим Европейское космическое агентство (ESA ) вмешалось в события, пообещав $30 млн. на «совместную разработку нового пилотируемого корабля»), что Роскосмос прекратил конкурс, объявив его несостоявшимся. Все проекты были отклонены, причем в обосновании этого решения к проекту МАКС было только одно техническое замечание — самолет-носитель иностранного производства…
    Тем не менее, попытки привлечения внебюджетных средств в проект МАКС продолжаются и сегодня — с целью практической реализации проекта МАКС и его эффективного применения.

    Битва за звезды-2. Космическое противостояние (часть I) Первушин Антон Иванович

    Авиационно-космическая система «Спираль»

    Еще с 1962 года ОКБ-155 Артема Микояна в инициативном порядке проводило исследования комбинированных воздушно-космических систем.

    По мнению «микояновцев», замена баллистической ракеты на самолет-носитель обеспечивала широкую возможность выбора координат точки запуска, исключая привязку к сложному и дорогому наземному стартовому комплексу.

    Кроме этого отпадала необходимость в создании «зон отчуждения» и выбора траектории выведения. Все это позволяло значительно расширить возможности военного использования космических систем и выглядело адекватным ответом на программу «Дайна-Сор». 17 октября 1964 года, через сутки после свержения Никиты Хрущева, была создана комиссия по расследованию деятельности ОКБ-52. 19 октября Владимиру Челомею позвонил главком ВВС Константин Вершинин и сообщил, что, подчиняясь приказу, вынужден передать все материалы по космопланам в ОКБ Микояна.

    После передачи проектов Павла Цыбина по «ПКА» из ОКБ-1 Сергея Королева и по ракетопланам серии «Р» из ОКБ-52 Владимира Челомея в бюро Артема Микояна началась разработка аэрокосмической темы под условным наименованием «Спираль».

    Официально создание воздушно-космической системы «Спираль» («Тема 50», позднее - «105–205») было инициировано приказом Министерства авиационной промышленности от 30 июля 1965 года. Число «50» в названии теми символизировало приближающуюся 50-ю годовщину Великого Октября, когда должны были состояться первые дозвуковые испытания прототипа.

    В конце 1965 года вышло постановление ЦК КПСС и Совета министров СССР о создании Воздушно-орбитальной системы (ВОС) - экспериментального комплекса пилотируемого орбитального самолета «Спираль». Конкурентный проект разрабатывался в ОКБ Сухого, собиравшегося использовать в качестве воздушного носителя самолет «Т-4» («100»).

    В соответствиями с требованиями заказчика конструкторам поручалось создать ВКС, состоящую из гиперзвукового самолета-разгонщика (ГСР) и орбитального самолета (ОС) с макетным ускорителем. Старт системы - горизонтальный, с использованием разгонной тележки. После набора скорости и высоты с помощью двигателей ГСР происходило отделение орбитального самолета и набор скорости с помощью ракетных двигателей двухступенчатого ускорителя. Боевой пилотируемый одноместный ОС многократного применения планировалось использовать в вариантах разведчика, перехватчика или ударного самолета с ракетой класса «орбитаЗемля», а также для инспекции космических объектов.

    Диапазон опорных орбит составлял 130–150 километров, задача полета должна была выполняться в течение двух или трех витков. Маневренные возможности орбитального самолета с использованием бортовой ракетной двигательной установки должны были обеспечивать изменение наклонения орбиты на 17° (ударный самолет с ракетой на борту - 7°) или изменение наклона орбиты на 12° с подъемом на высоту до 1000 километров. После выполнения орбитального полета космоплан должен входить в атмосферу с большим углом атаки (45–65°), управление предусматривалось изменением крена при постоянном угле атаки.

    На траектории планирующего спуска в атмосфере задавалась способность совершения аэродинамического маневра по дальности от 4000 до 6000 километров с боковым отклонением в 1100–1500 километров. В район посадки ОС выводится с выбором вектора скорости вдоль оси взлетно-посадочной полосы и совершает посадку с применением турбореактивного двигателя на грунтовой аэродром II класса со скоростью посадки 250 км/ч.

    29 июня 1966 года Глеб Евгеньевич Лозино-Лозинский, назначенный Главным конструктором системы, подписал подготовленный аванпроект.

    Согласно аванпроекту аэрокосмическая система расчетной массой 115 тонн состояла из многоразового гиперзвукового самолета-разгонщика (ГСР, «Изделие 50–50», «Изделие 205»), несущего на себе орбитальную ступень, состоящую собственно из многоразового орбитального самолета («Изделие 50», «Изделие 105») и одноразового двухступенчатого ракетного ускорителя.

    Гиперзвуковой самолет-разгонщик (по некоторым данным, его должно было создать ОКБ Андрея Туполева) представлял собой самолет-бесхвостку длиной 38 метров, с крылом большой стреловидности типа двойная дельта размаха 16,5 метра, с вертикальными стабилизирующими поверхностями на концах крыла. Герметичная кабина рассчитывалась на экипаж из двух человек и была снабжена катапультируемыми креслами. В верхней части фюзеляжа ГСР в специальном ложе крепился собственно орбитальный самолет и ракетный ускоритель, носовая и хвостовая части которых закрывались обтекателями.

    Блок турбореактивных двигателей располагался под фюзеляжем и имел общий регулируемый воздухозаборник. Рассматривая различные варианты будущей авиационно-космической системы, конструкторы остановились на двух вариантах силовой установки ГСР с четырьмя многорежимными турбореактивными двигателями, работающими на жидком водороде (перспективный вариант) или на керосине (консервативный вариант). ГСР применялся для разгона системы до гиперзвуковой скорости в 6 Махов для 1-го варианта или 4 Маха для 2-го варианта; разделение ступеней системы предполагалось произвести на высоте 28–30 километров или 22–24 километров соответственно.

    Для выведения ОС на орбиту после отделения от ГСР создавался одноразовый ускоритель, представляющий собой двухступенчатую ракету массой 52,5 тонны с кислородно-водородным или кислородно-керосиновым ЖРД. Проектированием ускорителя занималось ОКБ-1 Сергея Королева, который относился к проекту с большим интересом.

    После вывода ОС в намеченную точку ускоритель отделялся и падал в мировой океан. Диапазон высот рабочих орбит изменялся от минимальных порядка 200 километров до максимальных порядка 600 километров; направление азимута запуска в связи с наличием ГСР определялось конкретным целевым назначением полета и в зависимости от точки старта могло варьироваться в пределах от 0 до 97°. Масса выводимого на орбиту полезного груза составляла 1300 килограммов.

    Одноместный орбитальный самолет длиной 8 метров и весом от 8 до 10 тонн (в зависимости от назначения) был выполнен по схеме несущий корпус треугольной в плане формы.

    Он имел стреловидные консоли крыла, которые при выведении и в начальной фазе спуска с орбиты были подняты до 45° от вертикали, а при планировании поворачивались до 95° от вертикали. Размах крыла в этом случае составлял 7,4 метра.

    Для маневрирования ОС на орбите использовался основной жидкостный ракетный двигатель тягой 1500 килограммов, а также два аварийных тягой по 40 килограммов. Для ориентации и управления служили микродвигатели с автономной системой подачи топлива - малоразмерные ЖРД в двух блоках по три сопла тягой 16 килограммов и пять сопел тягой 1 килограмм. Все двигатели орбитального самолета работали на высококипящем топливе (азотный тетраксид и несимметричный диметилгидразин). Количество топлива, которое при этом требовалось системе управления, определялось из длительности орбитального полета - порядка двух суток.

    Аварийное спасение пилота предусматривалось на любом участке полета с помощью отделяемой кабины-капсулы фарообразной формы, имеющей систему катапультирования из ОС, навигационный блок, парашют и тормозные двигатели для входа в атмосферу в случае невозможности возвращения с орбиты всего самолета. В атмосфере летчик мог катапультироваться и из кабины.

    Для защиты фюзеляжа от термодинамического нагрева при входе в атмосферу в конструкции был предусмотрен теплозащитный экран оригинальной конструкции. Как показали теплопрочностные испытания, максимальный его нагрев не превышал 1500 °C, а остальные элементы конструкции, находясь в аэродинамической «тени», нагревались и того меньше. Поэтому в производстве аналогов можно было применять титановые (и даже в отдельных местах алюминиевые) сплавы без специального покрытия, что значительно удешевляло конструкцию по сравнению с более поздним космическим кораблем «Буран».

    Чтобы избежать разрушения от быстрого нагрева в процессе входа в земную атмосферу, экран должен был обладать высокой пластичностью, какую мог обеспечить ниобиевый сплав. Но его тогда еще не выпускали, и конструкторы временно, до освоения производства из ниобия, пошли на замену материала. Теплозащитный экран пришлось выполнить из жаропрочных сталей ВНС, причем не сплошным, а из множества пластин по принципу рыбьей чешуи. К тому же он был подвешен на керамических подшипниках и при колебаниях температуры нагрева автоматически изменял свою форму, сохраняя стабильность положения относительно корпуса.

    Таким образом на всех режимах обеспечивалось постоянство конфигурации орбитального самолета.

    После снижения до высоты 50 километров космоплан переходил в планирующий полет. Как только его скорость становилась ниже звуковой, открывался воздухозаборник в основании киля и набегающим потоком воздуха запускался турбореактивный двигатель. В отличие от спускаемых аппаратов космических кораблей, пилот космоплана мог совершить горизонтальный маневр до 800 километров от траектории спуска.

    Штатная посадка осуществлялась на четырехстоечное лыжное шасси, убираемое в боковые ниши корпуса (передние опоры) и в донный срез фюзеляжа (задние опоры).

    Стойки шасси расставлены были довольно широко и должны были обеспечить посадку практически на любой грунт.

    При проектировании аэрокосмической системы конструкторы исходили из потребных 20–30 полетов в год.

    С технической точки зрения работы шли успешно.

    В 1967 году в отряде космонавтов была сформирована rpyппа, которой предстояло пройти подготовку к полетам на «Спирали». В нее вошли уже летавший в космос Герман Титов и еще только готовившиеся к космическим полетам Анатолий Филипченко и Анатолий Куклин.

    По расчетам, «Спираль» сулила стать гораздо выгоднее существовавших в то время ракетных комплексов. Масса полезной нагрузки системы составляла 12,5 % от ее стартовой массы против 2,5 % у «Союза». У 320-тонного «Союза» на Землю возвращался 2,8-тонный спускаемый аппарат (0,9 %), а у «Спирали» повторно использовались 85 % конструкции, к тому же ей не требовался космодром.

    Из книги Занимательная анатомия роботов автора Мацкевич Вадим Викторович

    Двоичная система счисления – идеальная система для ЭВМ Мы уже говорили о том. что в нервных сетях действуют законы двоичного счисления: О или 1, ДА или НЕТ. Какими особенностями отличается двоичная система? Почему именно её избрали для ЭВМ?Мы принимаем как должное счёт до

    Из книги Пилотируемые полеты на Луну автора Шунейко Иван Иванович

    Экономика США и космическая стратегия NASA Бюджетные ассигнования NASA, начиная с 1961 г., быстро росли и достигли максимума в 6 млрд. долл. в 1966 г. (рис. 01). Однако экономические и финансовые проблемы, возникшие в США вследствие войны во Вьетнаме, привели к резкому сокращению

    Из книги Тайны лунной гонки автора Караш Юрий Юрьевич

    Новая космическая транспортная система многократного применения Принцип создания новой космической транспортной системы состоит в использовании для перевозок пассажиров и грузов трех специализированных пилотируемых космических аппаратов многократного применения,

    Из книги Битва за звезды-2. Космическое противостояние (часть I) автора Первушин Антон Иванович

    Космическая программа США «теряет обороты» Между 1964 и 1966 годами НАСА перестало расти как в количественном, так и в финансовом отношении. В то время, как отношения Уэбба с Кеннеди были достаточно откровенными и доброжелательными, отношения главы НАСА и нового президента

    Из книги Битва за звезды-2. Космическое противостояние (часть II) автора Первушин Антон Иванович

    Космическая отрасль США: из кризиса «под руку» с СССР? Разумеется, стремление Никсона узнать больше о советской заатмосферной деятельности не может само по себе объяснить усилившийся интерес космического сообщества США к сотрудничеству с СССР. Более того, интерес этот

    Из книги Хочу все знать! автора Томилин Анатолий Николаевич

    Ракетно-космическая система «Н1-ЛЗ» То, что Советский Союз проиграл «лунную гонку», ныне принято связывать с провалом программы создания сверхтяжелой ракетыносителя «Н-1». В этом есть свой резон, ведь если бы такая ракета сумела взлететь в установленные сроки, советский

    Из книги Чтобы лучше познать самих себя... (Сборник) автора Комаров Виктор

    Экспериментальная космическая станция «Союз» Когда космические корабли «7К» («Союз») перестали рассматриваться только как составная часть советской лунной программы, было решено использовать их для полетов к разрабатываемым орбитальным станциям. Первым шагом в этом

    Из книги Изобретения Дедала автора Джоунс Дэвид

    Военно-космическая станция «Алмаз» Результаты, полученные в ходе полетов кораблей «Союз-4» и «Союз-5», были признаны удовлетворительными. Системы стыковки и жизнеобеспечения были проверены в деле. Их можно было использовать при монтаже и эксплуатации более крупной

    Из книги Компьютерная лингвистика для всех: Мифы. Алгоритмы. Язык автора Анисимов Анатолий Васильевич

    Глава 20 КОСМИЧЕСКАЯ АРТИЛЛЕРИЯ «Космические» снаряды Джеральда Бюлля Как известно, все новое - это хорошо забытое старое. На примере материала предыдущей главы мы убедились, что развитие техники во многом основывается на этом общеизвестном соображении.Раз за разом

    Из книги Вернер фон Браун: человек, который продал Луну автора Пишкевич Деннис

    П. Клушанцев КОСМИЧЕСКАЯ РАКЕТА Что такое космическая ракета? Как она устроена? Как летит? Почему в космосе путешествуют именно на ракетах?Казалось бы, все это давно и хорошо нам известно. Но давайте на всякий случай проверим себя. Повторим азбуку.Наша планета Земля

    Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

    КОСМИЧЕСКАЯ НООСФЕРА: ПРОГНОЗ НА БУДУЩЕЕ Л. В. Лесков Что такое ноосфераВо все времена человечеству хотелось подальше заглянуть в собственное будущее. Ставит перед собой эту задачу и современная наука, используя самые различные подходы. Один из таких подходов основан на

    Из книги Посвящение в радиоэлектронику автора Поляков Владимир Тимофеевич

    Фокус с канатом и космическая ракета Обычные ракеты на химическом топливе весьма несовершенны в том отношении, что значительная часть их начальной тяги расходуется на подъем необходимого запаса топлива. Насколько более экономично и разумно было бы поднимать топливо

    Из книги автора

    МИФ КАК СИСТЕМА Человек всегда стремился познать истоки своего бытия, пытался понять свой путь, найти начало начал. Почему «в начале было слово», почему по всему миру повторяются сходные предания, почему в этом повторяющемся мире возникают все новые и новые литературные

    Из книги автора

    17 Челнок, космическая станция и упадок НАСА Должны быть новые полеты. Мы должны использовать построенные для программы «Аполлон» ракеты «Сатурн», корабль «Аполлон» и пусковой комплекс снова и снова, чтобы получить полную отдачу от наших вложений. Сделать остановку на

    Из книги автора

    Из книги автора

    12. КОСМИЧЕСКАЯ ЭЛЕКТРОНИКА В этой главе мы не будем обращаться к истории, поскольку космическая эра продолжается всего три десятилетия, а расскажем о том, как радиоэлектроника, которой стало тесно на огромной Земле, завоевывает просторы Солнечной системы. О том, как