Системы системный анализ. исследование структуры теорий систем и различных системных концепций и разработок. Конечной целью системного анализа является разработка и внедрение выбранной эталонной модели системы управления

Щего права» (а нормы права тем более!) мы ставим права и свободы человека, гражданина или меры и формы свободы индивида, то нам, хотим мы того или не хотим, при анализе структуры нормы права (да и права!) никак не обойтись без этого человека, гражда­нина, индивида. В гипотезе, диспозиции и санкции его «не видно, он где-то там просто спрятан...», а тем более права и свободы.

Это, однако, плохо увязывается с идеями демократического, гу­манного общества и правового государства, не говоря о свободе че­ловека, личности. Более того, если придерживаться концепции ры­ночного правопонимания, то в качестве субъектов в структуре норм права могут выступать разные участники общественных отношений (и не только субъекты, о которых упоминает Г.О. Петров). Нужно иметь в виду и то, что правовая норма часто адресована кругу лиц, определенных видовыми признаками (граждане, родители, супруги, налоговая инспекция, судебный пристав и т.д.).

В отличие от распоряжения, адресованного точно обозначенным субъектам и действующего до его исполнения (решения о строи­тельстве здания, передаче точно определенного имущества, выплате премии, об увольнении), норма права не исчерпывается исполне­нием. Она обращена в будущее в том смысле, что рассчитана не только на данный, наличный случай, но и на вид, неопределенное число определенных в общей форме случаев и отношений (заклю­чение договора, передача имущества, вступление в брак, рождение ребенка) и реализуется каждый раз, когда возникают предусмот­ренные ею обстоятельства и ситуации.

Применительно к процессуальным нормам, как показала Р.В. Ша-гиева, очень важен субъект. Он характеризуется многими специфиче­скими чертами и моментами. В частности, процессуальное состояние может быть связано и с естественными свойствами неодушевлен­ных предметов. Опираясь на естественные свойства вещей, законо­датель строит нормирование связанного с этими вещами поведения субъектов. К таким состояниям относятся хранение вещественных источников доказательств и различных предметов, ценностей, де­нег. Аналогичное состояние возникает и в связи с избранием меры пресечения в виде залога: залог в денежном выражении или в виде ценностей вносится в депозит суда обвиняемым, подозреваемым или другим лицом и хранится судом, пока не отпадет надобность в этой мере пресечения. Оно встречается и при применении такой меры обеспечения иска, как наложение ареста на имущество или денежные суммы, принадлежащие ответчику.

Такой возможный элемент процессуально-правовой нормы, как указание на субъект, часто фигурирует в законодательстве потому, что процессуальные нормы почти всегда рассчитаны не на любых, а лишь на определенных лиц (субъектов), которые могут оказаться


в сфере юридического процесса. Это суд, избранный в порядке, ус­тановленном законом, прокурор, следователь, арбитраж, комиссия по трудовым спорам, администрация организации и т.д. Однако это касается и участников процесса (например, лица, владеющего язы­ками, знание которых необходимо по делу, и назначенного органом дознания, следователем, прокурором в качестве переводчика). При­чем большинство процессуальных норм адресованы не к каждому, а лишь к вполне определенному участнику регулируемых ими об­щественных отношений (суду, истцу, ответчику, защитнику и т.д.), потому указание в них на субъектный состав часто бывает необхо­димым. Содержанием субъектного состава процессуальных норм выступает обычно описание качества субъекта, приобретенного им в силу рождения или производного от каких-либо действий (граж­данство, брак, нетрудоспособность, стаж, родство, специальность).

В силу специфики деятельности те или иные лица не могут (а под­час и не хотят) реализовать свои процессуальные права и обязанно­сти без вмешательства специально на то уполномоченных предста­вителей власти, без проявления их властных полномочий. Так, лицо, которому преступлением причинен моральный, физический или имущественный вред, вовлекается в уголовный процесс лишь после того, как лицо, производящее дознание, следователь и судья вынесет постановление о признании его потерпевшим. Все это ска­зывается на структуре процессуальных норм, предполагая необхо­димость четкого указания на их субъектный состав.

Указание на адресатов уголовно-правовой нормы иногда фор­мулируются не только в положительной, но и в негативной форме. Процессуальный закон содержит большое число статей, посвящен­ных условиям, исключающим возможность и необходимость уча­стия субъектов в процессуальных действиях. Так, переводчик не только должен владеть требуемым языком, но и не иметь прямой или косвенный заинтересованности в исходе дела (по закону). Большую роль в определении субъектного состава играют институ­ты отвода, замены ненадлежащей стороны (в гражданском процессе) и т.д. Не очень часто в процессуальном законодательстве встречает­ся указание на непосредственную цель процессуальных действий. Известно, что следственный эксперимент проводится «в целях про­верки и уточнения данных, имеющих значение для дела».

Субъекты в современных условиях необходимо включать в струк­туру любой нормы права или во всяком случае их необходимо всегда иметь в виду, рассматривать, вводить в действие и т.д., а не отрицать или делать вид, что их просто нет. Причем в каждой норме, ситуации и т.д. субъект будет свой, со своим набором черт, прав, обязанностей, линией поведения и пр. Субъект - важнейший элемент нормы пра-

III. Проблемы теории права


Ва. Но как же быть с другими звеньями нормы права? С той же ги­потезой, диспозицией и санкцией? Без них мы тоже никогда не по­лучили бы полной нормы (при одном звене, двух или трех, не важ­но). Гипотеза, диспозиция и санкция составляют сердцевину любой нормы права, базу логического строения любой правовой нормы.

Гипотеза, как и прежде, выступает как часть нормы, указываю­щая на жизненные обстоятельства, наступление которых повлечет «включение» действия той или иной правовой нормы. Ими могут быть события (например, сильное наводнение), конкретный ре­зультат действия (сдача рукописи в издательство), возрастной факт (60 лет - у мужчин появляется возможность ставить вопрос о на­значении пенсии), время, место и т.п. Гипотезы будут либо про­стыми (одно условие, одно обстоятельство), либо сложными (не­сколько обстоятельств, необходимых для действия нормы).

Диспозиция выступает как «корневая» часть нормы права, со­держащая само правило поведения, которому должны следовать субъекты регулируемого этой нормой отношения. В диспозиции чаще всего указываются права и обязанности субъектов, содержать­ся предписания (указание), как должны действовать те, кто будет подпадать под него, т.е. дается эталон желательного поведения.

Санкция определяет вид и меру последствий, наступающих в ре­зультате соблюдения или несоблюдения диспозиции. С санкцией нормы права связываются прежде всего вид и мера принуждения, применяемого к субъектам - нарушителям этой нормы. Однако есть определенное число санкций, предусматривающих положительный результат (получение премии, благодарности, награды) за совершение каких-либо особых, значительных действий в соответствии с предпи­санием правовой нормы. При этом санкция будет выступать также как предусматривающая прежде всего вид и меру принудительных мер, отрицательных, не желательных для субъекта последствий.

В санкциях предусматриваются следующие возможности:

Лишение субъекта определенных материальных ценностей;

Лишение субъекта (физического или юридического) принад­
лежащих ему благ или непредоставление тех благ, которыми
пользуются другие субъекты права (тюремное заключение, за­
прещение выпуска нестандартной продукции, перевод в осо­
бый режим кредитования и т.п.);

Умаление чести и достоинства субъекта (объявление выгово­
ра, увольнение со службы);

Признание недействительным актов субъекта (физического
или юридического), направленных на достижение определен­
ных юридических результатов (признание сделки недействи­
тельной, отмена принятого в нарушение компетенции право­
вого акта и т.п.).


Иногда ученые ошибочно отождествляют санкцию с юридиче­ской ответственностью. Однако санкция - элемент правовой нор­мы, реализуемый лишь при правонарушении. Он существует всегда, а ответственность наступает лишь при реальном нарушении этой нормы. Санкция как бы предваряет ответственность, предусматри­вая заранее, указывая правоприменительным органам вид и объем ответственности, которые можно применить к субъекту (гражданину) за совершенное им правонарушение. Субъекту-правонарушителю, в свою очередь, санкция указывает методы, к которым могут при­бегнуть соответствующие органы государства, порядок, предел мер взыскания, принудительные и карательные методы воздействия. Общепризнано, что санкции являются юридической основой всех видов ответственности.

Логическая структура нормы имеет большое значение для со­вершенствования практики применения правовых норм. Систем­ность права, неразрывная связь и согласованность норм, элементы которых содержатся в различных нормативных актах (или статьях, разделах закона), требуют при решении любого юридического дела тщательно изучить все те положения законодательства, которые связаны с применяемым правоположением.

Достоинством четырех элементной схемы как раз и является то, что эта схема побуждает ученых-юристов, практических работников не только к всестороннему анализу нормативного материала во всем его объеме, определению условий применения правовой нор­мы, ее содержания, последствий ее нарушения, но и к анализу про­блем субъекта, человека, гражданина и др. в демократическом обще­стве, его прав и свобод, защите этих прав и свобод, их выдвижению. Такой ориентации не дает ни дву- и не трехэлементная схема, отго­раживающая некой стеной право, права и свободы от человека, гражданина, индивида.

Права и свободы человека и гражданина в России признаются высшей ценностью (ст. 2 Конституции РФ). Получается, что эту высшую ценность субъекта (человека, гражданина) нельзя игнориро­вать в структуре нормы права как в исходном элементе права, а ее надо ставить на первое место в сравнении со всеми прочими эле­ментами этой нормы. При этом права и свободы человека и граж­данина и их меры важно учитывать и в комплексном исследовании внутренней и внешней формы права.

Однако внутренняя и внешняя форма норм часто не совпадают. Очень редко встречаются такие статьи законов, которые содержат в себе все составные части нормы права (субъекта, гипотезу, диспо­зицию, санкцию). Чаще всего встречаются статьи, в которых со­держатся диспозиция и санкция, а гипотеза должна либо подразу­меваться, либо содержаться в другой статье. Точно так же может

III. Проблемы теории права


10. Системный анализ норм права

Оказаться, что диспозиция содержится в одной статье, санкция - во второй, а субъект - в третьей. Так, в соответствии с УПК «при предъявлении обвинения следователь обязан разъяснить обвиняе­мому его права, предусмотренные законом, о чем делается отметка на постановлении о привлечении в качестве обвиняемого, которая удостоверяется подписью обвиняемого» (ст. 149).

В этой статье есть субъект - «обвиняемый», «его права», гипо­теза - «при предъявлении обвинения (обстоятельства)», есть дис­позиция - правило: «обязан разъяснить права и сделать отметку в постановлении». Однако отсутствует санкция, которая содержится в ст. 213-214 УПК: когда прокурор, утверждая обвинительное за­ключение, обнаружит, что не выполнены требования этой статьи, он не утвердит заключение, а, возвратив следователю, заставит по­следнего устранить это нарушение. Возврат дела на доследование и есть санкция.

В процессе правотворчества выработалась практика изложения норм права в статьях нормативных актов, состоящая в его многова­риантности, когда одна статья нормативного акта соответствует од­ной норме права (статья и норма совпадают), т.е. в одной статье имеются субъект, гипотеза, диспозиция, санкция. Это изложение правовой нормы встречается редко. Одна статья нормативного акта содержит только одну часть нормы права, например диспозицию; одна статья нормативного акта содержит несколько норм права; одна статья нормативного акта содержит две части нормы права, например гипотезу и санкцию (или гипотезу и диспозицию).

Наиболее распространен вариант изложения норм права, когда одна норма располагается в нескольких статьях нормативного акта и даже в нескольких нормативных актах, например субъект - в од­ном, гипотеза - во втором, а диспозиция - в третьем нормативном акте. Это связано с требованиями (правилами) законодательной техники, предполагающими краткость и компактность издания нормативного акта. В противном случае кодексы превратились бы из удобных для использования компактных изданий в пухлые, не­подъемные тома, которыми было бы очень сложно пользоваться.

Системный, комплексный анализ норм права требует выработки научно обоснованной классификации норм права, которые играют большую роль для правоприменительной практики государственных органов и иных субъектов. Теоретики государства и права часто на­чинают с дифференциации норм по отраслевому критерию (исходя из отраслей права). Потом они анализируют нормы материального и процессуального права, затем разграничивают нормы по форме предписания (на обязывающие, управомочивающие и запретитель­ные) и наконец характеризуют основные (программные нормы, нормы-правила поведения и общие нормы).


Классификацию норм, если придерживаться концепции циви-литарного права, необходимо начинать с программных, исходных норм права. Именно с них и начинается все «правовое начало» вся­кого демократического государства, весь (а не с отраслей) процесс общего познания, осмысления и в дальнейшем - построения всей нормативно-правовой системы демократического государства. Это программные, основные (исходные) нормы, нормы правила-поведения и общие нормы.

Программные, исходные нормы - это нормы-принципы, нор­мы-дефиниции, служащие отправным исходным началом для пра­вотворческих органов демократического государства. Ими необхо­димо руководствоваться всем субъектам, принимая все иные нормы. Это своего рода указатель, ориентир и одновременно требо­вание для законодателя. Такие нормы содержатся в основном в кон­ституциях. В конституционном праве содержится много программ­ных идей, которые важны для установления порядка во многих сферах общественных отношений, но не путем возникновения кон­кретных правовых отношений, а путем провозглашения самых об­щих правил и принципов, которые направлены на создание кон­кретных норм.

Примером может служить норма, содержащаяся в ст. 2 Консти­туции РФ: «Права и свободы человека в Российской Федерации яв­ляются высшей ценностью», или в ч. 1 ст. 68: «Государственным языком Российской Федерации на всей ее территории является рус­ский язык». Такой же нормой будет установленное ч. 1 ст. 129 по­ложение о том, что «прокуратура Российской Федерации составляет единую централизованную систему с подчинением нижестоящих прокуроров вышестоящим и Генеральному прокурору Российской Федерации».

Нормы - правила поведения - это основная масса правовых норм. Именно такие правила составляют большинство во всех от­раслях права. Среди них наиболее распространены регулятивные и охранительные нормы.

Общие нормы - это нормы, распространяющие свое действие не на оду отрасль или институт права, а на несколько отраслей и институтов. Наиболее очевиден такой вид норм в общих частях той или иной отрасли права (уголовного, административного, уго­ловно-исполнительного и др.). Общие нормы охватывают комплекс регулируемых ими отношений в качестве общего правила для их участников. К программным, исходным нормам могут примыкать нормы по способам воздействия на поведение субъектов.

Эта классификация правовых норм несет на себе следы первона­чального образования права. В период становления прав его источ-


Похожая информация.


  • Перевод

Системный анализ обеспечивает строгий подход к технике принятия решений. Он используется для исследования альтернатив и включает моделирование и имитацию, анализ затрат, анализ технических рисков и анализ эффективности.

В отличие от SWEBoK , SEBoK распространен в России намного меньше. По крайней мере при подготовке учебного курса для магистратуры, найти хоть каких-то переводов его статей мне не удалось. А тем не менее, книга структурирует очень полезные и пока что разрозненные знания в области разработки больших систем и, в том числе, системного анализа.

Так как мой курс касался именно системного анализа, под катом будет перевод этой главы SEBoK… Но это всего несколько глав одного из 7 разделов книги.

P.S. Буду благодарен за комментарии и Ваше мнение об этой статье (качестве, необходимости) и об интересе к системному анализу и системной инженерии.

Основные принципы системного анализа

Одна из основных задач системной инженерии является оценка результатов, полученных в результате ее процессов. Сравнение, проведение оценки – это центральный объект системного анализа, обеспечивающего необходимые техники и средства для:
  • Определения критериев сравнения на основе системных требований;
  • Оценки предполагаемых свойств каждого альтернативного решений в сравнении с выбранными критериями;
  • Сводной оценки каждого варианта и ее объяснения;
  • Выбора наиболее подходящего решения.

Процесс анализа и выбора между альтернативными решениями выявленной проблемы/возможности описывается во 2 разделе SEBoK (глава Системный подход в проектировании систем). Определим основные принципы системного анализа:

  • Системный анализ – итеративный процесс, состоящий из оценки альтернативных решений, полученных в процессе синтеза системы.
  • Системный анализ основывается на критериях оценки, основанных на описании проблемы или возможности системы;
    • Критерии основываются на базе идеального описания системы;
    • Критерии должны учитывать требуемое поведение и свойства системы в итоговом решении, во всех возможных более широких контекстах;
    • Критерии должны включать нефункциональные вопросы, например: безопасность и защищенность системы и т.д. (подробнее описывается в главе «Системная инженерия и специальное проектирование»).
    • «Идеальная» система может поддерживать «нестрогое» описание, из которого могут быть определены «нечеткие» критерии. Например, стейкхолдеры выступают за или против некоторых видов решений, соответствующие социальные, политические или культурные условности должны также учитываться и т.д.
  • Критерии сравнения должны включать, как минимум, ограничения по расходам и времени, приемлемые для стейхолдеров.
  • Системный анализ предоставляет отдельный механизм исследования компромиссов для анализа альтернативных решений
    • Исследование компромиссов – междисциплинарный подход для поиска наиболее сбалансированного решения среди множества предполагаемых жизнеспособных вариантов.
    • При исследовании рассматривается весь набор критериев оценки, с учетом их ограничений и взаимосвязей. Создается «система критериев оценки».
    • При сравнении альтернатив придется иметь дело одновременно с объективными и субъективными критериями. Необходимо особо внимательно относиться к определению влияния каждого критерия на общую оценку (чувствительность общей оценки).
Примечание: «Мягкое»/«нестрогое» и «строгое» описание системы отличается возможностью четко определить цели, задачи и миссию системы (для «мягких» систем это зачастую сделать крайне сложно).

Исследование компромиссов

Примечание: В нашей литературе чаще встречается термин «Анализ альтернатив» или «Оценка альтернатив»
В контексте описания системы, исследование компромиссов состоит из сравнения характеристик каждого элемента системы и каждого варианта архитектуры систем для определения решения, в целом наиболее подходящего по оцениваемым критериям. Анализ различных характеристик выполняется в процессах анализа затрат, анализа рисков, и анализа эффективности. С точки зрения системной инженерии эти три процесса будут рассматриваться более подробно.

Все методы анализа должны использовать общие правила:

  • Критерии оценки используются для классификации различных вариантов решения. Они могут быть относительные или абсолютные. Например, максимальная цена на единицу продукции – в рублях, снижение затрата - %, повышение эффекивности - %, снижение риска так же в %.
  • Определяются допустимые границы критериев оценки, которые применяется во время анализа (например, вид издержек, которые необходимо принять во внимание; приемлемые технические риски и т.д.);
  • Для сравнения количественных характеристик используются шкалы оценки. Их описание должно включать максимальный и минимальный предел, а также порядок изменения характеристики в этих пределах (линейная, логарифмическая и т.д.).
  • Оценочный балл присваивается каждому варианту решения по всем критериям. Цель исследования компромиссов – обеспечить количественное сравнение по трем направлениям (и их декомпозиции на отдельные критерии) для каждого варианта решения: затраты, риск и эффективность. Эта операция как правило сложна и требует создания моделей.
  • Оптимизация характеристик или свойств улучшает оценку наиболее интересных решений.
Процесс принятия решений – это не точная наука, поэтому исследование альтернатив имеет свои ограничения. Необходимо принимать во внимание следующие проблемы:
  • Субъективные критерии оценки – персональное мнение аналитика. Например, если компонент должен быть красивым, то что собой представляет критерий «красивый»?
  • Неопределенные данные. Например, инфляция должна быть учтена при расчете затрат на обслуживание для полного жизненного цикла системы. Как системный инженер может прогнозировать развитие инфляции в следующие пять лет?
  • Анализ чувствительности. Общая оценка, выставляемая каждому альтернативному решению, не абсолютна; поэтому рекомендуется проводить анализ чувствительности, который учитывает небольшие изменения «весов» каждого критерия оценки. Оценка считается надежной, если изменение «весов» не изменяет существенно саму оценку.

Тщательно проведенное исследование компромиссов определяет допустимые значения результатов.

Анализ эффективности

Анализ эффективности отталкивается от контекста использования системы или проблемы.

Эффективность решения определяется исходя из выполнения основных и дополнительных функций системы, которые выявляются исходя удовлетворения требований стейкхолдеров. Для продуктов, это будет набор общих нефункциональных качеств, например: безопасность, защищенность, надежность, ремонтопригодность, удобство использования и т.д. Эти критерии часто точно описаны в смежных технических дисциплинах и сферах. Для услуг или организаций, критерии могут быть больше связаны с определением потребностей пользователей или целей организации. Типичные характеристики таких систем включают устойчивость, гибкость, возможность развития и т.д.

В дополнение к оценке абсолютной эффективности решения, необходимо также учитывать ограничения по затратам и времени реализации. В целом, роль системного анализа сводится к выявлению решений, которые могут обеспечить эффективность в какой-то мере с учетом затрат и времени выделенных для каждой заданной итерации.

Если ни одно из решений не может предоставить уровень эффективности, оправдывающий предполагаемые инвестиции, тогда необходимо вернуться к первоначальному состоянию проблемы. Если хотя бы один из вариантов показывает достаточную эффективность, тогда может выполняться выбор.

Эффективность решения включает несколько существенных характеристик (но не ограничивается): производительность, удобство использования, надежность, производство, обслуживание и поддержку, и т.д. Анализ в каждом из этих направлений выделяет предложенные решения с точки зрения различных аспектов.

Важно установить классификацию важности аспектов для анализа эффективности, т.н. ключевые показатели производительности. Основная сложность анализа эффективности – правильно отсортировать и выбрать набор аспектов, в точки зрения которых оценивается эффективность. Например, если продукт выпускается для одноразового использования, ремонтопригодность не будет подходящим критерием.

Анализ затрат

Анализ затрат рассматривает затраты полного жизненного цикла. Базовый набор типовых расходов может изменяться для конкретного проекта и системы. В структуру затрат могут входить как трудовые затраты (на оплату труда), так и не трудовые.
Тип Описание и пример
Разработка Проектирование, разработка инструментов (оборудование и программное обеспечение), управление проектом, тестирование, макетирование и прототипирование, обучение и т.д.
Производство продукта или оказание услуги Сырье и поставки, запасные части и складской запас, необходимые для работы ресурсы (вода, электричество и т.д.), риски, эвакуация, переработка и хранение отходов или брака, административные расходы (на налоги, администрацию, документооборот, контроль качества, уборку, контроль и т.д.), упаковка и хранение, необходимая документация.
Продажи и постпродажное обслуживание Расходы на сеть продаж (филиалы, магазины, сервисные центры, дистрибьюторов, получение информации и т.д.), работу с жалобами и обеспечение гарантии и т.д.
Использование у клиентов Налоги, установка (у заказчика), необходимые для работы ресурсы (вода, топливо и т.д.), финансовые риски и т.д.
Поставки Транспортировка и доставка
Обслуживание Сервисные центры и выезды, профилактика, контроль, запасный части, затраты на гарантийное обслуживание и т.д.
Удаление Сворачивание, демонтаж, транспорт, уничтожение отходов и т.д.

Методы определения стоимости затрат описываются в разделе «Планирование» (раздел 3).

Анализ технических рисков

Риск – потенциальная неспособность к достижению целей в рамках определенных затрат, графика и технических ограничений. Состоит из двух частей:
  1. Вероятность реализации (вероятность того, что риск оправдается, и цели не будут достигнуты);
  2. Степень влияния или последствия реализации.
Каждый риск имеет вероятность больше 0 и меньше 1, степень влияния больше 0 и сроки в будущем. В случае, если вероятность равна 0 – риска нет, если равна 1 – это уже факт, а не риск; если степень влияния равна 0 - риска нет, т.к. нет никаких последствий его возникновения (можно игнорировать); если сроки не в будущем – значит это уже свершившийся факт.

Анализ рисков в любой сфере основан на трех факторах:

  1. Анализ наличия потенциальных угроз или нежелательных событий и вероятности их возникновения.
  2. Анализ последствий выявленных угроз и их классификация по шкале тяжести.
  3. Снижение вероятности угроз или уровня их воздействия до приемлемых значений.
Технические риски реализуются, когда система перестает удовлетворять требованиям к ней. Причины этого находятся либо в требованиях, либо в самом решении. Они выражаются в виде недостаточной эффективности и могут иметь несколько причин:
  • Неправильная оценка технологических возможностей;
  • Переоценка технической готовности элемента системы;
  • Аварии из-за износа или устаревания оборудования, комплектующих или ПО,
  • Зависимость от поставщика (несовместимые детали, задержка поставки и т.д.);
  • Человеческий фактор (недостаточное обучение, неправильные настройки, недостаточная обработка ошибок, выполнение несоответствующих процедур, злой умысел) и т.д.
Технические риски не должны смешиваться с проектными рисками, хотя и методы управления ими совпадают. Не смотря на то, что технические риски могут приводить к проектным рискам, они ориентированы на саму систему, а не на процесс ее разработки (подробнее описано в главе «Управление рисками» раздела 3).

Процессный подход

Цель и принципы подхода

Процесс системного анализа используется для:
  1. Обеспечения строгого подхода к принятию решений, разрешения конфликта требований, и оценке альтернативных физических решений (отдельных элементов и всей архитектуры);
  2. Определения уровня удовлетворения требований;
  3. Поддержки управления рисками;
  4. Подтверждения, что решения принимаются только после расчета затрат, сроков, производительности и влияния рисков на проектирование или перепроектирование системы.
Этот процесс был также назван процессом анализа решений (NASA, 2007) и использовался для оценки технических задач, альтернативных решений и их неопределенности для принятия решений. Подробнее в главе «Управление решениями» (раздел 3).
Системный анализ поддерживает другие процессы описания системы:
  • Процессы описания требований стейкхолдеров и описания требований системы используют системный анализ для решения конфликтов между требованиями; в частности связанными с затратами, техническими рисками и эффективностью. Системные требования, подверженные высоким рискам или требующие существенных изменений архитектуры – дополнительно обсуждаются.
  • Процессы разработки логической и физической архитектуры используют системный анализ для оценки характеристик или разработки свойств вариантов архитектуры, получения обоснования для выбора наиболее эффективного варианта с точки зрения затрат, технических рисков и эффективности.
Как и любой процесс описания системы, системный анализ – повторяющийся. Каждая операция выполняется несколько раз, каждый шаг улучшает точность анализа.

Задачи в рамках процесса

Основные виды деятельности и задачи в рамках этого процесса включают:
  • Планирование изучения альтернатив:
    • Определение количества альтернативных вариантов для анализа, используемых методов и процедур, ожидаемых результатов (примеры объектов для выбора: поведенческий сценарий, физическая архитектура, элемент системы и т.д.), и обоснование.
    • Создание графика анализа согласно наличию моделей, технических данных (системные требования, описание свойств системы), квалификации персонала и выбранных процедур.
  • Определение критериев выбора модели:
    • Выбор критериев оценки из нефункциональных требований (производительность, условия эксплуатации, ограничения и т.д.) и/или описания свойств.
    • Сортировка и упорядочивание критериев;
    • Определение шкалы сравнения для каждого оценочного критерия, и определение веса каждого критерия в соответствии с его уровнем важности относительно других критериев.
  • Определение вариантов решений, связанных с ними моделей и данных.
  • Оценка вариантов с использованием ранее определенных методов и процедур:
    • Выполнение анализа затрат, анализа технических рисков и анализа эффективности, размещая все альтернативные варианты на шкале для каждого критерия оценки.
    • Оценить все альтернативные варианты по общей шкале оценок.
  • Предоставление результатов инициировавшему процессу: критериев оценки, выбор оценок, шкалы сравнения, результаты оценки для всех вариантов, и возможные рекомендации с обоснованием.

Артефакты и терминология процесса

В рамках процесса создаются такие артефакты, как:
  • Модель критериев выбора (список, шкалы оценки, веса);
  • Отчеты по анализу затрат, рисков, эффективности;
  • Отчет с обоснованием выбора.

В процессе используются термины, перечисленные в таблице ниже.

Термин Описание
Критерий оценки В контексте системного анализа, критерий оценки – характеристика, используемая для сравнения элементов системы, физической архитектуры, функциональных сценариев и других элементов, которые могут сравниваться.
Включает: идентификатор, название, описание, вес.
Оценочный выбор Управление элементами системы, на основе оценочного балла, который объясняет выбор элементов системы, физической архитектуры или сценария использования.
Оценочный балл (оценка) Оценочный балл получают элементы системы, физической архитектуры, функциональных сценариев используя набор критериев оценки.
Включает: идентификатор, название, описание, значение.
Затраты Значение в выбранной валюте, связанное со значением элемента системы и т.д.
Включает: идентификатор, название, описание, сумма, тип затрат (разработка, производство, использование, обслуживание, утилизация), метод оценки, период действия.
Риск Событие, которое может произойти и повлиять на цели системы или ее отдельные характеристики (технические риски).
Включает: идентификатор, название, описание, статус.

Проверка правильности системного анализа

Для получения проверенных результатов, необходимо обеспечить выполнение следующих пунктов:
  • Соответствие моделей и данных в контексте использования системы;
  • Соответствие критериев оценки относительно контекста использования системы;
  • Воспроизводимость результатов моделирования и расчетов;
  • Достаточный уровень точности шкал сравнения;
  • Доверие к оценкам;
  • Достаточный уровень чувствительности полученных баллов относительно весов критериев оценки.

Принципы использования моделей

  • Использование общих моделей. Различные типы моделей могут быть использованы в контексте системного анализа.
    • Физические модели – масштабные модели, позволяющие экспериментировать с физическими явлениями. Специфичны для каждой дисциплины; например: макеты, испытательные стенды, прототипы, вибростолы, декомпрессионные камеры, воздушные тоннели и т.д.
    • Модели представлений в основном используются для моделирования поведения системы. Например, диаграммы состояний и т.д.
    • Аналитические модели используются для установления значения оценок. Используют уравнения или диаграммы для описания реальной работы системы. Они могут быть как очень простые (сложение элементов), так и невероятно сложные (вероятностное распределение с несколькими переменными).
  • Использование необходимых моделей. На каждом этапе проекта должны использоваться соответствующие модели:
    • В начале проекта используются простые инструменты, позволяющие получить грубые приближения без особых затрат и усилий. Такого приближения бывает достаточно, чтобы сразу определить нереальные варианты решений.
    • По мере продвижения проекта необходимо повышать точность данных для сравнения еще конкурирующих вариантов. Работа будет сложнее при высоком уровне инноваций в проекте.
    • Системный инженер сам по себе не может моделировать сложную систему, для этого ему помогает эксперты из соответствующих предметных областей.
  • Экспертиза предметными экспертами: когда значение критерия оценки не может быть установлено объективно и точно. Экспертиза проводится в 4 этапа:
    1. Выбор респондентов для получения квалифицированных мнений по рассматриваемому вопросу.
    2. Создание проекта анкеты. Анкеты с точными вопросами проще оценивать, но если она слишком закрыта – есть риск упустить существенные пункты.
    3. Проведение интервью со специалистами по анкете, включая проведение углубленного обсуждения проблемы для получения более точного мнения.
    4. Анализ полученных результатов с несколькими разными людьми, сравнивая их отзывы до тех пор, пока соглашение классификации критериев оценки или вариантов решения не будет достигнуто.

    Наиболее часто используемые аналитические модели в рамках системного анализа приведены в таблице.

    Тип модели Описание
    Детерминированные (определенные) модели Детерминированной называется модель, которая не зависит от теории вероятности.
    • К этой категории относятся модели, основанные на статистике. Принцип состоит в создании модели на основании значительного количества данных и результатов прежних проектов. Могут применяться только к тем компонентам системы, технология которых уже известна.
    • Модели «по аналогии» также используют предыдущие проекты. Изучаемый элемент сравнивается с уже существующим элементом, с известными характеристиками. Затем эти характеристики уточняются на основе опыта специалистов.
    • Кривые обучения позволяют предвидеть изменение характеристики или технологии. Один из примеров: «Каждый раз, когда число произведенных модулей удваивается, стоимость этого модуля уменьшается на определенную, постоянную, долю».
    Стохастические (вероятностные) модели Если в модели среди величин имеются случайные, т.е. определяемые лишь некоторыми вероятностными характеристиками, то модель называется стохастической (вероятностной, случайной). В этом случае и все результаты, полученные при рассмотрении модели, имеют стохастический характер и должны быть соответственно интерпретированы.
    Теория вероятности позволяет классифицировать возможные решения как следствие множества событий. Эти модели применимы для ограниченного числа событий с простыми комбинациями возможных вариантов.
    Многокритериальные модели Если критериев больше 10, рекомендуется использовать многокритериальные модели. Они получаются в результате следующих действий:
    • Построить иерархию критериев;
    • Связать с каждым критерием каждой ветви дерева с его «весом» относительно критериев того же уровня.
    • Вычисляется вес для каждого «листа» критериев для каждой ветви умножением на все веса ветки.
    • Оценить каждый альтернативный вариант решения по листьям критериев, суммировать оценки и сравнить между собой.
    • С использованием компьютера можно провести анализ чувствительности для получения точного результата.
    Основные «подводные камни» и успешные практики системного анализа описаны в двух разделах ниже.

    Подводные камни

    Подводный камень Описание
    Аналитическое моделирование – не инструмент принятия решений Аналитическая модель предоставляет аналитический результат из анализированных данных. Ее следует рассматривать как помощь, но не как инструмент принятия решений.
    Модели и уровни декомпозиции системы Модель может быть хорошо адаптирована для энного уровня декомпозиции системы и несовместима с моделью более высокого уровня, которая использует данные дочерних уровней. Важно, чтобы системный инженер обеспечивал согласованность моделей на различных уровнях.
    Оптимизация – это не сумма оптимизированных элементов Общая оптимизация исследуемой системы – это не сумма оптимизации каждой ее части.

    Проверенные методики

    Методика Описание
    Оставаться в оперативном поле Модели никогда не смогут показать все поведение и реакцию системы: они работают в ограниченном пространстве с узким набором переменных. Используя модель, всегда необходимо убедиться, что входные данные и параметры являются частью операционного поля. Иначе есть высокий риск неправильных результатов.
    Развивайте модели Модели должны развиваться на протяжении проекта: путем изменения настроек параметров, вводя новые данные (изменение критериев оценки, выполняемых функций, требований и т.д.), и путем использования новых инструментов, когда предыдущие достигают предела своих возможностей.
    Используйте несколько типов моделей Рекомендуется одновременно использовать несколько различных типов моделей для сравнения результатов и учета других аспектов системы.
    Поддерживайте согласованность элементов контекста Результаты моделирования всегда получаются в рамках контекста моделирования: используемых инструментов, допущений, введенных параметров и данных, и разброса выходных значений.

Системный анализ - научный метод познания, представляющий собой последовательность действий по установлению структурных связей между элементами исследуемых сложных систем - технических, экономических и т.д. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов. Проводится с использованием современных средств вычислительной техники. Результатом системных исследований является, как правило, выбор вполне определенной альтернативы: плана развития, технической системы, региона, коммерческой структуры и т.д. Поэтому истоки системного анализа, его методические концепции лежат в тех дисциплинах, которые занимаются проблемами принятия решений: теории операций и общей теории управления и системном подходе.

Целью системного анализа является упорядочение последовательности действий при решении крупных проблем, основываясь на системном подходе. В системном анализе решение проблемы определяется как деятельность, которая сохраняет или улучшает характеристики системы. Приемы и методы системного анализа направлены на выдвижение альтернативных вариантов решения проблемы, выявление масштабов неопределенности по каждому варианту и сопоставление вариантов по их эффективности.

Системный анализ базируется на ряде общих принципов, среди которых:

    принцип дедуктивной последовательности - последовательного рассмотрения системы по этапам: от окружения и связей с целым до связей частей целого (см. этапы системного анализа подробнее ниже);

    принцип интегрированного рассмотрения - каждая система должна быть неразъемна как целое даже при рассмотрении лишь отдельных подсистем системы;

    принцип согласования ресурсов и целей рассмотрения, актуализации системы;

    принцип бесконфликтности - отсутствия конфликтов между частями целого, приводящих к конфликту целей целого и части.

2. Применение системного анализа

Область применения методов системного анализа весьма широка. Существует классификация, согласно которой все проблемы, к решению которых можно применить методы системного анализа, подразделяются на три класса:

    хорошо структурированные (well-structured), или количественно сформулированные проблемы, в которых существенные зависимости выяснены очень хорошо;

    неструктурированные (unstructured), или качественно выраженные проблемы, содержащие лишь описание важнейших ресурсов, признаков и характеристик, количественные зависимости между которыми совершенно неизвестны;

    слабо структурированные (ill-structured), или смешанные проблемы, которые содержат как качественные элементы, так и малоизвестные, неопределенные стороны, которые имеют тенденцию доминировать.

Для решения хорошо структурированных количественно выражаемых проблем используется известная методология исследования операций, которая состоит в построении адекватной математической модели (например, задачи линейного, нелинейного, динамического программирования, задачи теории массового обслуживания, теории игр и др.) и применении методов для отыскания оптимальной стратегии управления целенаправленными действиями.

Привлечение методов системного анализа для решения указанных проблем необходимо, прежде всего, потому, что в процессе принятия решений приходится осуществлять выбор в условиях неопределённости, которая обусловлена наличием факторов, не поддающихся строгой количественной оценке. В этом случае все процедуры и методы направлены именно на выдвижение альтернативных вариантов решения проблемы, выявление масштабов неопределённости по каждому из вариантов и сопоставление вариантов по тем или иным критериям эффективности. Специалисты только готовят или рекомендуют варианты решения, принятие же решения остаётся в компетенции соответствующего должностного лица (или органа).

Для решения слабо структурированных и неструктурированных проблем используются системы поддержки принятия решений.

Технология решения таких сложных задач может быть описана следующей процедурой:

    формулировка проблемной ситуации;

    определение целей;

    определение критериев достижения целей;

    построение моделей для обоснования решений;

    поиск оптимального (допустимого) варианта решения;

    согласование решения;

    подготовка решения к реализации;

    утверждение решения;

    управление ходом реализации решения;

    проверка эффективности решения.

Центральной процедурой в системном анализе является построение обобщённой модели (или моделей), отображающей все факторы и взаимосвязи реальной ситуации, которые могут проявиться в процессе осуществления решения. Полученная модель исследуется с целью выяснения близости результата применения того или иного из альтернативных вариантов действий к желаемому, сравнительных затрат ресурсов по каждому из вариантов, степени чувствительности модели к различным внешним воздействиям.

Исследования опираются на ряд прикладных математических дисциплин и методов, широко используемых в современной технической и экономической деятельности, связанной с управлением. К ним относятся:

    методы анализа и синтеза систем теории управления,

    метод экспертных оценок,

    метод критического пути,

    теория очередей и т. п.

Техническая основа системного анализа - современные вычислительные мощности и созданные на их основе информационные системы.

Методологические средства, применяемые при решении проблем с помощью системного анализа, определяются в зависимости от того, преследуется ли единственная цель или некоторая совокупность целей, принимает ли решение одно лицо или несколько и т. д. Когда имеется одна достаточно четко выраженная цель, степень достижения которой можно оценить на основе одного критерия, используются методы математического программирования. Если степень достижения цели должна оцениваться на основе нескольких критериев, применяют аппарат теории полезности, с помощью которого проводится упорядочение критериев и определение важности каждого из них. Когда развитие событий определяется взаимодействием нескольких лиц или систем, из которых каждая преследует свои цели и принимает свои решения, используются методы теории игр.

Несмотря на то, что диапазон применяемых в системном анализе методов моделирования и решения проблем непрерывно расширяется, он по своему характеру не тождествен научному исследованию: он не связан с задачами получения научного знания в собственном смысле, но представляет собой лишь применение методов науки к решению практических проблем управления и преследует цель рационализации процесса принятия решений, не исключая из этого процесса неизбежных в нём субъективных моментов.

Методы системного анализа

Системный анализ - научный метод познания, представляющий собой последовательность действий по установлению структурных связей между переменными или элементами исследуемой системы. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов.

Для решения хорошо структурированных количественно выражаемых проблем используется известная методология исследования операций, которая состоит в построении адекватной математической модели (например, задачи линейного, нелинейного, динамического программирования, задачи теории массового обслуживания, теории игр и др.) и применении методов для отыскания оптимальной стратегии управления целенаправленными действиями.

Системный анализ предоставляет к использованию в различных науках, системах следующие системные методы и процедуры:

· абстрагирование и конкретизация

· анализ и синтез, индукция и дедукция

· формализация и конкретизация

· композиция и декомпозиция

· линеаризация и выделение нелинейных составляющих

· структурирование и реструктурирование

· макетирование

· реинжиниринг

· алгоритмизация

· моделирование и эксперимент

· программное управление и регулирование

· распознавание и идентификация

· кластеризация и классификация

· экспертное оценивание и тестирование

· верификация

и другие методы и процедуры.

Следует отметить задачи исследования системы взаимодействий анализируемых объектов с окружающей средой. Решение данной задачи предполагает:

– проведение границы между исследуемой системой и окружающей средой, предопределяющей предельную глубину

влияния рассматриваемых взаимодействий, которыми ограничивается рассмотрение;

– определение реальных ресурсов такого взаимодействия;

– рассмотрение взаимодействий исследуемой системы с системой более высокого уровня.

Задачи следующего типа связаны с конструированием альтернатив этого взаимодействия, альтернатив развития системы во времени и в пространстве. Важное направление развития методов системного анализа связано с попытками создания новых возможностей конструирования оригинальных альтернатив решения, неожиданных стратегий, непривычных представлений и скрытых структур. Другими словами, речь здесь идёт о разработке методов и средств усиления индуктивных возможностей человеческого мышления в отличие от его дедуктивных возможностей, на усиление которых, по сути дела, направлена разработка формальных логических средств. Исследования в этом направлении начаты лишь совсем недавно, и единый концептуальный аппарат в них пока отсутствует. Тем не менее, и здесь можно выделить несколько важных направлений – таких, как разработка формального аппарата индуктивной логики, методов морфологического анализа и других структурно-синтаксических методов конструирования новых альтернатив, методов синтактики и организации группового взаимодействия при решении творческих задач, а также изучение основных парадигм поискового мышления.

Задачи третьего типа заключаются в конструировании множества имитационных моделей , описывающих влияние того или иного взаимодействия на поведение объекта исследования. Отметим, что в системных исследованиях не преследуется цель создания некоей супермодели. Речь идёт о разработке частных моделей, каждая из которых решает свои специфические вопросы.

Даже после того как подобные имитационные модели созданы и исследованы, вопрос о сведении различных аспектов поведения системы в некую единую схему остается открытым. Однако решить его можно и нужно не посредством построения супермодели, а анализируя реакции на наблюдаемое поведение других взаимодействующих объектов, т.е. путём исследования поведения объектов – аналогов и перенесения результатов этих исследований на объект системного анализа. Такое исследование даёт основание для содержательного понимания ситуаций взаимодействия и структуры взаимосвязей, определяющих место исследуемой системы в структуре суперсистемы, компонентом которой она является.

Задачи четвёртого типа связаны с конструированием моделей принятия решений. Всякое системное исследование связано с исследованием различных альтернатив развития системы. Задача системных аналитиков – выбрать и обосновать наилучшую альтернативу развития. На этапе выработки и принятия решений необходимо учитывать взаимодействие системы с её подсистемами, сочетать цели системы с целями подсистем, выделять глобальные и второстепенные цели.

Наиболее развитая и в то же время наиболее специфическая область научного творчества связана с развитием теории принятия решений и формированием целевых структур, программ и планов. Здесь не ощущается недостатка и в работах, и в активно работающих исследователях. Однако и в данном случае слишком многие результаты находятся на уровне неподтверждённого изобретательства и разночтений в понимании как существа стоящих задач, так и средств их решения. Исследования в этой области включают:

а) построение теории оценки эффективности принятых решений или сформированных планов и программ;

б) решение проблемы многокритериальности в оценках альтернатив решения или планирования;

в) исследования проблемы неопределённости, особенно связанной не с факторами статистического характера, а с неопределённостью экспертных суждений и преднамеренно создаваемой неопределённостью, связанной с упрощением представлений о поведении системы;

г) разработка проблемы агрегирования индивидуальных предпочтений на решениях, затрагивающих интересы нескольких сторон, которые влияют на поведение системы;

д) изучение специфических особенностей социально-экономических критериев эффективности;

е) создание методов проверки логической согласованности целевых структур и планов и установления необходимого баланса между предопределённостью программы действий и её подготовленностью к перестройке при поступлении новой

информации как о внешних событиях, так и изменении представлений о выполнении этой программы.

Для последнего направления требуется новое осознание реальных функций целевых структур, планов, программ и определение тех, которые они должны выполнять, а также связей между ними.

Рассмотренные задачи системного анализа не охватывают полного перечня задач. Здесь перечислены те, которые представляют наибольшую сложность при их решении. Следует отметить, что все задачи системных исследований тесно взаимосвязаны друг с другом, не могут быть изолированы и решаться отдельно как по времени, так и по составу исполнителей. Более того, чтобы решать все эти задачи, исследователь должен обладать широким кругозором и владеть богатым арсеналом методов и средств научного исследования.



АНАЛИТИЧЕСКИЕ И СТАТИСТИЧЕСКИЕ МЕТОДЫ. Эти группы методов получили наибольшее распространение в практике проектирования и управления. Правда, для представления промежуточных и окончательных результатов моделирования широко используются графические представления (графики, диаграммы и т.п.). Однако последние являются вспомогательными; основу же модели, доказательства её адекватности составляют те или иные направления аналитических и статистических представлений. Поэтому, несмотря на то что по основным направлениям этих двух классов методов в вузах читаются самостоятельные курсы лекций, мы всё же кратко охарактеризуем их особенности, достоинства и недостатки с точки зрения возможности использования при моделировании систем.

Аналитическими в рассматриваемой классификации названы методы, которые отображают реальные объекты и процессы в виде точек (безразмерных в строгих математических доказательствах), совершающих какие-либо перемещения в пространстве или взаимодействующих между собой. Основу понятийного (терминологического) аппарата этих представлений составляют понятия классической математики (величина, формула, функция, уравнение, система уравнений, логарифм, дифференциал, интеграл и т.д.).

Аналитические представления имеют многовековую историю развития, и для них характерно не только стремление к строгости терминологии, но и к закреплению за некоторыми специальными величинами определённых букв (например, удвоенное отношение площади круга к площади вписанного в него квадрата p » 3,14; основание натурального логарифма – е » 2,7 и т.д.).

На базе аналитических представлений возникли и развиваются математические теории различной сложности – от аппарата классического математического анализа (методов исследования функций, их вида, способов представления, поиска экстремумов функций и т.п.) до таких новых разделов современной математики, как математическое программирование (линейное, нелинейное, динамическое и т.п.), теория игр (матричные игры с чистыми стратегиями, дифференциальные игры и т.п.).

Эти теоретические направления стали основой многих прикладных, в том числе теории автоматического управления, теории оптимальных решений и т.д.

При моделировании систем применяется широкий спектр символических представлений, использующих «язык» классической математики. Однако далеко не всегда эти символические представления адекватно отражают реальные сложные процессы, и их в этих случаях, вообще говоря, нельзя считать строгими математическими моделями.

Большинство из направлений математики не содержат средств постановки задачи и доказательства адекватности модели. Последняя доказывается экспериментом, который по мере усложнения проблем становится также всё более сложным, дорогостоящим, не всегда бесспорен и реализуем.

В то же время в состав этого класса методов входит относительно новое направление математики математическое программирование, которое содержит средства постановки задачи и расширяет возможности доказательства адекватности моделей.

Статистические представления сформировались как самостоятельное научное направление в середине прошлого века (хотя возникли значительно раньше). Основу их составляет отображение явлений и процессов с помощью случайных (стохастических) событий и их поведений, которые описываются соответствующими вероятностными (статистическими) характеристиками и статистическими закономерностями. Статистические отображения системы в общем случае (по аналогии с аналитическими) можно представить как бы в виде «размытой» точки (размытой области) в n-мерном пространстве, в которую переводит систему (её учитываемые в модели свойства) оператор Ф. «Размытую» точку следует понимать как некоторую область, характеризующую движение системы (её поведение); при этом границы области заданы с некоторой вероятностью p («размыты») и движение точки описывается некоторой случайной функцией.

Закрепляя все параметры этой области, кроме одного, можно получить срез по линии а – b, смысл которого – воздействие данного параметра на поведение системы, что можно описать статистическим распределением по этому параметру. Аналогично можно получить двумерную, трёхмерную и т.д. картины статистического распределения. Статистические закономерности можно представить в виде дискретных случайных величин и их вероятностей, или в виде непрерывных зависимостей распределения событий, процессов.

Для дискретных событий соотношение между возможными значениями случайной величины xi и их вероятностями pi, называют законом распределения.

Метод "мозговой атаки"

Группа исследователей (экспертов) разрабатывает способы решения поставленной задачи, при этом любой способ (любая мысль, высказанная вслух) включается в число рассматриваемых, чем больше идей - тем лучше. На предварительном этапе качество предложенных способов не учитывается, то есть предметом поиска является создание возможно большего количества вариантов решения задачи. Но для достижения успеха должны соблюдаться следующие условия:

· наличие вдохновителя идей;

· группа экспертов не превышает 5-6 человек;

· потенциал исследователей соизмерим;

· обстановка спокойная;

· соблюдены равные права, может быть предложено любое решение, критика идей не допускается;

· продолжительность работы не более 1 часа.

После того, как прекращается "поток идей", эксперты осуществляют критический отбор предложений, учитывая ограничения организационного и экономического характера. Отбор лучшей идеи может осуществляться по нескольким критериям.

Данный метод наиболее продуктивен на этапе разработки решения по реализации поставленной цели, при раскрытии механизма функционирования системы, при выборе критерия решения проблемы.

Метод "концентрации внимания на целях поставленной проблемы"

Этот метод состоит в том, что отбирается один из объектов (элементов, понятий), ассоциируемых с решаемой проблемой. При этом известно, что принятый к рассмотрению объект связан непосредственно с конечными целями этой проблемы. Затем исследуется связь между этим объектом и каким-либо другим, выбранным наугад. Далее отбирается третий элемент, точно также наугад, и исследуется его связь с первыми двумя и так далее. Таким образом создается некая цепь связанных между собой объектов, элементов или понятий. Если цепь обрывается, то процесс возобновляется, создается вторая цепочка и так далее. Таким образом происходит исследование системы.

Метод "входы-выходы системы"

Исследуемая система рассматривается обязательно совместно с окружающей средой. При этом особое внимание обращается на ограничения, которые накладывает внешняя среда на систему, а также ограничения, свойственные самой системе.

На первом этапе изучения системы рассматриваются возможные выходы системы и оцениваются результаты ее функционирования по изменениям окружающей среды. Затем исследуются возможные входы системы и их параметры, позволяющие системе функционировать в рамках принятых ограничений. И, в конце концов, на третьем этапе выбирают приемлемые входы, не нарушающие ограничения системы и не приводящие ее в рассогласование с целями окружающей среды.

Данный способ наиболее эффективен на этапах познания механизма функционирования системы и принятия решений.

Метод сценариев

Особенность метода состоит в том, что группа высококвалифицированных специалистов в описательной форме представляет возможный ход событий в той или иной системе - начиная от сложившейся ситуации и заканчивая некоторой результирующей ситуацией. При этом соблюдаются искусственно воздвигаемые, но возникающие в реальной жизни ограничения на вход и выход системы (по сырью, энергетическим ресурсам, финансам и так далее).

Основная идея данного метода - выявление связей различных элементов системы, которые проявляются при том или ином событии или ограничении. Результатом такого исследования является совокупность сценариев - возможных направлений решения проблемы, из которых путем сопоставления по какому-либо критерию можно было бы выбрать наиболее приемлемые.

Морфологический метод

Данный метод предусматривает поиск всех возможных решений проблемы путем исчерпывающей переписи этих решений. Например, Ф.Р.Матвеев выделяет шесть этапов претворения в жизнь этого метода:

· формулировка и определение ограничений проблемы;

· поиск возможных параметров решений и возможных вариаций этих параметров;

· нахождение всех возможных комбинаций этих параметров в получаемых решениях;

· сравнение решений с точки зрения преследуемых целей;

· выбор решений;

· углубленное изучение отобранных решений.

Методы моделирования

Модель представляет собой некоторую систему, созданную с целью представления в упрощенной и понятной форме сложной реальности, другими словами - модель представляет собой имитацию этой реальности.

Проблемы, решаемые при помощи моделей, многочисленны и разнообразны. Важнейшие из них:

· с помощью моделей исследователи пытаются лучше понять протекание сложного процесса;

· с помощью моделей осуществляют экспериментирование в том случае, когда это невозможно на реальном объекте;

· с помощью моделей оценивают возможность осуществления различных альтернативных решений.

Кроме того модели обладают такими ценными свойствами как:

· воспроизводимостью независимыми экспериментаторами;

· изменчивостью и возможностью совершенствования путем введения в модель новых данных или модификаций связей внутри модели.

Среди основных типов моделей следует отметить символические и математические модели.

Символические модели - схемы, диаграммы, графики, блок-схемы и так далее.

Математические модели - абстрактные построения, которые в математической форме описывают связи, отношения между элементами системы.

При построении моделей необходимо соблюдать следующие условия:

· иметь достаточно большой объем информации о поведении системы;

· стилизация механизмов функционирования системы должна происходить в таких пределах, чтобы имелась возможность достаточно точно отразить число и природу отношений и связей существующих в системе;

· использование методов автоматической обработки информации, особенно когда количество данных велико или природа взаимоотношений между элементами системы весьма сложна.

Вместе с тем математические модели имеют некоторые недостатки:

· стремление отразить изучаемый процесс в форме условий приводит к модели, которая может быть понятна только ее разработчику;

· с другой стороны, упрощение ведет к ограничению числа факторов, включенных в модель; следовательно, появляется неточность в отражении действительности;

· автор, создав модель, "забывает", что не учитывает действие многочисленных, может быть малозначительных факторов. Но совместное воздействие этих факторов на систему бывает таково, что конечные результаты не могут быть достигнуты на данной модели.

С целью нивелирования указанных недостатков модель необходимо проверить:

· насколько она правдоподобно и удовлетворительно отражает реальный процесс;

· вызывает ли изменение параметров соответствующее изменение результатов.

Сложные системы, в силу наличия множества дискретно функционирующих подсистем, как правило не могут быть адекватно описаны с помощью только математических моделей, поэтому широкое распространение получило имитационное моделирование. Имитационные модели получили большое распространение по двум причинам: во-первых, данные модели позволяют использовать всю располагаемую информацию (графическую, словесную, математические модели…) и, во-вторых, потому, что эти модели не накладывают жестких ограничений на используемые исходные данные. Таким образом имитационные модели позволяют творчески использовать всю имеющеюся информацию об объекте исследования.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Системный анализ

Заключение

Список литературы

Введение

Системный анализ с практической точки зрения представляет собой универсальную методику решения сложных проблем произвольной природы, где понятие «проблемы» определяется как «субъективное отрицательное отношение субъекта к реальности». Сложность диагностики проблемы отчасти связана с тем, что субъект может не обладать специальными знаниями и потому не способен адекватно интерпретировать результаты исследования, проведенного системным аналитиком.

Системный анализ со временем стал меж- и над дисциплинарным курсом, обобщающий методологию исследования сложных технических и социальных систем.

С ростом населения на планете, ускорением научно-технического прогресса, угрозой голода, безработицы и различных экологических катастроф, становится все более важным применение системного анализа.

Западные авторы (Дж. ван Гиг, Р. Эшби, Р. Акофф, Ф. Эмери, С. Бир) большей частью склоняются к прикладному системному анализу, применению его для анализа и проектирования организаций. Классики советского системного анализа (А.И. Уемов, М.В. Блауберг, Э.Г. Юдин, Ю.А. Урманцев и др.) большее внимание уделяют теории системного анализа, как каркаса увеличивающегося научного знания, определению философских категорий «система», «элемент», «часть», «целое» и т.п.

Системный анализ требует дальнейшего исследования особенностей и закономерностей самоорганизующихся систем; развития информационного подхода, основанного на диалектической логике; подхода, основанного на постепенной формализации моделей принятия решений на основе сочетания формальных методов и методик; становления теории системно-структурного синтеза; разработки методов организации сложных экспертиз.

Разработанность темы «системный анализ» достаточно велика: понятием системности занимались многие ученые, исследователи, философы. Однако можно отметить недостаточное количество полных и явных теорий исследования тематики его применения в управлении.

Объектом исследования работы является системный анализ, а предметом - изучение и анализ эволюции системного анализа в теории и практики.

Целью работы является выявление основных этапов развития и становления системного анализа.

Данная цель обусловливает необходимость решения следующих основных задач:

Изучить историю развития и изменение системного анализа;

Рассмотреть методологию системного анализа;

Изучить и проанализировать возможности реализации системного анализа.

1. Системный анализ

1.1 Определения системного анализа

Системный анализ как дисциплина сформировался в результате возникновения необходимости исследовать и проектировать сложные системы, управлять ими в условиях неполноты информации, ограниченности ресурсов и дефицита времени.

Системный анализ является дальнейшим развитием целого ряда дисциплин, таких как исследование операций, теория оптимального управления, теория принятия решений, экспертный анализ, теория организации эксплуатации систем и т.д. Для успешного решения поставленных задач системный анализ использует всю совокупность формальных и неформальных процедур. Перечисленные теоретические дисциплины являются базой и методологической основой системного анализа. Таким образом, системный анализ - междисциплинарный курс, обобщающий методологию исследования сложных технических, природных и социальных систем. Широкое распространение идей и методов системного анализа, а главное - успешное их применение на практике стало возможным только с внедрением и повсеместным использованием ЭВМ. Акофф, Р.О целеустремленных системах / Р. Акофф, Ф. Эмери. - М.: Советское радио, 2008. - 272 с. Именно применение ЭВМ как инструмента решения сложных задач позволило перейти от построения теоретических моделей систем к широкому их практическому применению. В связи с этим Н.Н. Моисеев пишет, что системный анализ - это совокупность методов, основанных на использовании ЭВМ и ориентированных на исследование сложных систем - технических, экономических, экологических и т.д. Центральной проблемой системного анализа является проблема принятия решения.

Применительно к задачам исследования, проектирования и управления сложными системами проблема принятия решения связана с выбором определённой альтернативы в условиях различного рода неопределённости. Неопределённость обусловлена многокритериальностью задач оптимизации, неопределённостью целей развития систем, неоднозначностью сценариев развития системы, недостаточностью априорной информации о системе, воздействием случайных факторов в ходе динамического развития системы и прочими условиями. Учитывая данные обстоятельства, системный анализ можно определить как дисциплину, занимающуюся проблемами принятия решений в условиях, когда выбор альтернативы требует анализа сложной информации различной физической природы. Волкова, В.Н. Системный анализ и его применение в АСУ / В.Н. Волкова, А.А. Денисов. - Л.: ЛПИ, 2008. - 83 с.

Системный анализ является дисциплиной синтетической. В нём можно выделить три главных направления. Эти три направления соответствуют трём этапам, которые всегда присутствуют в исследовании сложных систем:

1) построение модели исследуемого объекта;

2) постановка задачи исследования;

3) решение поставленной математической задачи.

Рассмотрим данные этапы.

Построение модели (формализация изучаемой системы, процесса или явления) есть описание процесса на языке математики. При построении модели осуществляется математическое описание явлений и процессов, происходящих в системе.

Поскольку знание всегда относительно, описание на любом языке отражает лишь некоторые стороны происходящих процессов и никогда не является абсолютно полным. С другой стороны, следует отметить, что при построении модели необходимо уделять основное внимание тем сторонам изучаемого процесса, которые интересуют исследователя. Глубоко ошибочным является желание при построении модели системы отразить все стороны существования системы. При проведении системного анализа, как правило, интересуются динамическим поведением системы, причём при описании динамики с точки зрения проводимого исследования есть первостепенные параметры и взаимодействия, а есть несущественные в данном исследовании параметры. Таким образом, качество модели определяется соответствием выполненного описания тем требованиям, которые предъявляются к исследованию, соответствием получаемых с помощью модели результатов ходу наблюдаемого процесса или явления. Построение математической модели есть основа всего системного анализа, центральный этап исследования или проектирования любой системы. От качества модели зависит результат всего системного анализа. Берталанфи Л. Фон. Общая теория систем: критический обзор / Берталанфи Л. Фон // Исследования по общей теории систем. - М.: Прогресс, 2009. - С. 23 - 82.

Постановка задачи исследования

На данном этапе формулируется цель анализа. Цель исследования предполагается внешним фактором по отношению к системе. Таким образом, цель становится самостоятельным объектом исследования. Цель должна быть формализована. Задача системного анализа состоит в проведении необходимого анализа неопределённостей, ограничений и формулировании, в конечном счёте, некоторой оптимизационной задачи

Анализируя требования к системе, т.е. цели, которые предполагает достигнуть исследователь, и те неопределённости, которые при этом неизбежно присутствуют, исследователь должен сформулировать цель анализа на языке математики. Язык оптимизации оказывается здесь естественным и удобным, но вовсе не единственно возможным.

Решение постановленной математической задачи

Только этот третий этап анализа можно отнести собственно к этапу, использующему в полной степени математические методы. Хотя без знания математики и возможностей её аппарата успешное выполнение двух первых этапов невозможно, так как и при построении модели системы, и при формулировании цели и задач анализа широкое применение должны находить методы формализации. Однако отметим, что именно на завершающем этапе системного анализа могут потребоваться тонкие математические методы. Но следует иметь в виду, что задачи системного анализа могут иметь ряд особенностей, которые приводят к необходимости применения наряду с формальными процедурами эвристических подходов. Причины, по которым обращаются к эвристическим методам, в первую очередь связаны с недостатком априорной информации о процессах, происходящих в анализируемой системе. Также к таковым причинам можно отнести большую размерность вектора х и сложность структуры множества G. В данном случае трудности, возникающие в результате необходимости применения неформальных процедур анализа, зачастую являются определяющими. Успешное решение задач системного анализа требует использования на каждом этапе исследования неформальных рассуждений. Ввиду этого проверка качества решения, его соответствие исходной цели исследования превращается в важнейшую теоретическую проблему.

1.2 Характеристика задач системного анализа

Системный анализ в настоящее время вынесен на самое остриё научных исследований. Он призван дать научный аппарат для анализа и изучения сложных систем. Лидирующая роль системного анализа обусловлена тем, что развитие науки привело к постановке тех задач, которые призван решать системный анализ. Особенность текущего этапа состоит в том, что системный анализ, ещё не успев сформироваться в полноценную научную дисциплину, вынужден существовать и развиваться в условиях, когда общество начинает ощущать потребность в применении ещё недостаточно разработанных и апробированных методов и результатов и не в состоянии отложить решение связанных с ними задач на завтра. В этом источник, как силы, так и слабости системного анализа: силы - потому, что он постоянно ощущает воздействие потребности практики, вынужден непрерывно расширять круг объектов исследования, и не имеет возможности абстрагироваться от реальных потребностей общества; слабости - потому, что нередко применение «сырых», недостаточно проработанных методов системных исследований ведёт к принятию скороспелых решений, пренебрежению реальными трудностями. Клир, Д. Системология / Д. Клир. - М.: Радио и связь, 2009. - 262 с.

Рассмотрим основные задачи, на решение которых направлены усилия специалистов и которые нуждаются в дальнейшей разработке. Во-первых, следует отметить задачи исследования системы взаимодействий анализируемых объектов с окружающей средой. Решение данной задачи предполагает:

Проведение границы между исследуемой системой и окружающей средой, предопределяющей предельную глубину влияния рассматриваемых взаимодействий, которыми ограничивается рассмотрение;

Определение реальных ресурсов такого взаимодействия;

Рассмотрение взаимодействий исследуемой системы с системой более высокого уровня.

Задачи следующего типа связаны с конструированием альтернатив этого взаимодействия, альтернатив развития системы во времени и в пространстве. Важное направление развития методов системного анализа связано с попытками создания новых возможностей конструирования оригинальных альтернатив решения, неожиданных стратегий, непривычных представлений и скрытых структур. Другими словами, речь здесь идёт о разработке методов и средств усиления индуктивных возможностей человеческого мышления в отличие от его дедуктивных возможностей, на усиление которых, по сути дела, направлена разработка формальных логических средств. Исследования в этом направлении начаты лишь совсем недавно, и единый концептуальный аппарат в них пока отсутствует. Тем не менее, и здесь можно выделить несколько важных направлений - таких, как разработка формального аппарата индуктивной логики, методов морфологического анализа и других структурно-синтаксических методов конструирования новых альтернатив, методов синтектики и организации группового взаимодействия при решении творческих задач, а также изучение основных парадигм поискового мышления.

Задачи третьего типа заключаются в конструировании множества имитационных моделей, описывающих влияние того или иного взаимодействия на поведение объекта исследования. Отметим, что в системных исследованиях не преследуется цель создания некоей супермодели. Речь идёт о разработке частных моделей, каждая из которых решает свои специфические вопросы.

Даже после того как подобные имитационные модели созданы и исследованы, вопрос о сведении различных аспектов поведения системы в некую единую схему остается открытым. Однако решить его можно и нужно не посредством построения супермодели, а анализируя реакции на наблюдаемое поведение других взаимодействующих объектов, т.е. путём исследования поведения объектов - аналогов и перенесения результатов этих исследований на объект системного анализа.

Такое исследование даёт основание для содержательного понимания ситуаций взаимодействия и структуры взаимосвязей, определяющих место исследуемой системы в структуре суперсистемы, компонентом которой она является.

Задачи четвёртого типа связаны с конструированием моделей принятия решений. Всякое системное исследование связано с исследованием различных альтернатив развития системы. Задача системных аналитиков - выбрать и обосновать наилучшую альтернативу развития. На этапе выработки и принятия решений необходимо учитывать взаимодействие системы с её подсистемами, сочетать цели системы с целями подсистем, выделять глобальные и второстепенные цели.

Наиболее развитая и в то же время наиболее специфическая область научного творчества связана с развитием теории принятия решений и формированием целевых структур, программ и планов. Здесь не ощущается недостатка и в работах, и в активно работающих исследователях. Однако и в данном случае слишком многие результаты находятся на уровне неподтверждённого изобретательства и разночтений в понимании, как существа стоящих задач, так и средств их решения. Исследования в этой области включают: Волкова, В.Н. Системный анализ и его применение в АСУ / В.Н. Волкова, А.А. Денисов. - Л.: ЛПИ, 2008. - 83 с.

а) построение теории оценки эффективности принятых решений или сформированных планов и программ;

б) решение проблемы многокритериальности в оценках альтернатив решения или планирования;

в) исследования проблемы неопределённости, особенно связанной не с факторами статистического характера, а с неопределённостью экспертных суждений и преднамеренно создаваемой неопределённостью, связанной с упрощением представлений о поведении системы;

г) разработка проблемы агрегирования индивидуальных предпочтений на решениях, затрагивающих интересы нескольких сторон, которые влияют на поведение системы;

д) изучение специфических особенностей социально-экономических критериев эффективности;

е) создание методов проверки логической согласованности целевых структур и планов и установления необходимого баланса между предопределённостью программы действий и её подготовленностью к перестройке при поступлении новой информации, как о внешних событиях, так и изменении представлений о выполнении этой программы.

Для последнего направления требуется новое осознание реальных функций целевых структур, планов, программ и определение тех, которые они должны выполнять, а также связей между ними.

Рассмотренные задачи системного анализа не охватывают полного перечня задач. Здесь перечислены те, которые представляют наибольшую сложность при их решении. Следует отметить, что все задачи системных исследований тесно взаимосвязаны друг с другом, не могут быть изолированы и решаться отдельно как по времени, так и по составу исполнителей. Более того, чтобы решать все эти задачи, исследователь должен обладать широким кругозором и владеть богатым арсеналом методов и средств научного исследования. Анфилатов, В.С. Системный анализ в управлении: учеб. пособие / В.С. Анфилатов и др.; под ред. А.А. Емельянова. - М.: Финансы и статистика, 2008. - 368 с.

Конечной целью системного анализа является разрешение проблемной ситуации, возникшей перед объектом проводимого системного исследования (обычно это конкретная организация, коллектив, предприятие, отдельный регион, социальная структура и т.п.). Системный анализ занимается изучением проблемной ситуации, выяснением её причин, выработкой вариантов её устранения, принятием решения и организацией дальнейшего функционирования системы, разрешающего проблемную ситуацию. Начальным этапом любого системного исследования является изучение объекта проводимого системного анализа с последующей его формализацией. На этом этапе возникают задачи, в корне отличающие методологию системных исследований от методологии других дисциплин, а именно, в системном анализе решается двуединая задача. С одной стороны, необходимо формализовать объект системного исследования, с другой стороны, формализации подлежит процесс исследования системы, процесс постановки и решения проблемы. Приведём пример из теории проектирования систем. Современная теория автоматизированного проектирования сложных систем может рассматриваться как одна из частей системных исследований. Согласно ей проблема проектирования сложных систем имеет два аспекта. Во-первых, требуется осуществить формализованное описание объекта проектирования. Причём на этом этапе решаются задачи формализованного описания как статической составляющей системы (в основном формализации подлежит её структурная организация), так и её поведение во времени (динамические аспекты, которые отражают её функционирование). Во-вторых, требуется формализовать процесс проектирования. Составными частями процесса проектирования являются методы формирования различных проектных решений, методы их инженерного анализа и методы принятия решений по выбору наилучших вариантов реализации системы.

В различных областях практической деятельности (технике, экономике, социальных науках, психологии) возникают ситуации, когда требуется принимать решения, для которых не удаётся полностью учесть предопределяющие их условия.

Принятие решения в таком случае будет происходить в условиях неопределённости, которая имеет различную природу.

Один из простейших видов неопределённости - неопределённость исходной информации, проявляющаяся в различных аспектах. В первую очередь, отметим такой аспект, как воздействие на систему неизвестных факторов.

Неопределённость, обусловленная неизвестными факторами, также бывает разных видов. Наиболее простой вид такого рода неопределённости - стохастическая неопределённость. Она имеет место в тех случаях, когда неизвестные факторы представляют собой случайные величины или случайные функции, статистические характеристики которых могут быть определены на основании анализа прошлого опыта функционирования объекта системных исследований.

Следующий вид неопределённости - неопределённость целей. Формулирование цели при решении задач системного анализа является одной из ключевых процедур, потому что цель является объектом, определяющим постановку задачи системных исследований. Неопределённость цели является следствием из многокритериальности задач системного анализа.

Назначение цели, выбор критерия, формализация цели почти всегда представляют собой трудную проблему. Задачи со многими критериями характерны для крупных технических, хозяйственных, экономических проектов.

И, наконец, следует отметить такой вид неопределённости, как неопределённость, связанная с последующим влиянием результатов принятого решения на проблемную ситуацию. Дело в том, что решение, принимаемое в настоящий момент и реализуемое в некоторой системе, призвано повлиять на функционирование системы. Собственно для того оно и принимается, так как по идее системных аналитиков данное решение должно разрешить проблемную ситуацию. Однако поскольку решение принимается для сложной системы, то развитие системы во времени может иметь множество стратегий. И, конечно же, на этапе формирования решения и принятия управляющего воздействия аналитики могут не представлять себе полной картины развития ситуации. Анфилатов, В.С. Системный анализ в управлении: учеб. пособие / В.С. Анфилатов и др.; под ред. А.А. Емельянова. - М.: Финансы и статистика, 2008. - 368 с.

анализ система технический природный социальный

2. Понятие «проблемы» в системном анализе

Системный анализ с практической точки зрения представляет собой универсальную методику решения сложных проблем произвольной природы. Ключевым понятием в данном случае является понятие «проблемы», которое можно определить как «субъективное отрицательное отношение субъекта к реальности». Соответственно этап выявления и диагностики проблемы в сложных системах является наиболее важными, т. к. определяет цели и задачи проведения системного анализа, а также методы и алгоритмы, которые будут применяться в дальнейшем при поддержке принятия решений. В тоже время этот этап является наиболее сложным и наименее формализованным.

Анализ русскоязычных трудов по системному анализу позволяет выделить два наиболее крупных направления в данной области, которые можно условно назвать рациональный и объективно-субъективныйподходы.

Первое направление (рациональный подход) рассматривает системный анализ как набор методов, и в том числе методов, основанных на использовании ЭВМ, ориентированных на исследование сложных систем. При таком подходе наибольшее внимание уделяется формальным методам построения моделей систем и математическим методам исследования системы. Понятия «субъект» и «проблема» как таковые не рассматриваются, а вот понятие «типовых» систем и проблем как раз встречается часто (система управления - проблема управления, финансовая система - финансовые проблемы и др.).

При таком подходе «проблема» определяется как несоответствие действительного желаемому, т. е. несоответствие между реально наблюдаемой системой и «идеальной» моделью системы. Важно отметить, что в данном случае система определяется исключительно как та часть объективной реальности, которую необходимо сравнить с эталонной моделью.

Если опираться на понятие «проблемы», то можно сделать заключение, что при рациональном подходе проблема возникает только у системного аналитика, который имеет некую формальную модель некоторой системы, находит данную систему и обнаруживает несоответствие модели и реальной системы, что и вызывает его «отрицательное отношение к реальности». Волкова, В.Н. Системный анализ и его применение в АСУ / В.Н. Волкова, А.А. Денисов. - Л.: ЛПИ, 2008. - 83 с.

Очевидно, что существуют системы, организация и поведение которых строго регламентирована и признана всеми субъектами - это, например, юридические законы. Несоответствие модели (закона) и действительности в данном случае является проблемой (правонарушением), которую нужно решить. Однако для большинства искусственных систем строгих регламентов не существует, а субъекты имеют свои личные цели по отношению к подобным системам, редко совпадающие с целями других субъектов. Более того, конкретный субъект имеет свое собственное представление о том, частью какой системы он является, с какими системами он взаимодействует. Понятия, которыми оперирует субъект, могут кардинально отличаться от «рациональных» общепринятых. Например, субъект может вообще не выделять из окружающей среды систему управления, а использовать некую только ему понятную и удобную модель взаимодействия с миром. Получается, что навязывание общепринятых (даже если и рациональных) моделей может привести к возникновению «отрицательного отношения» у субъекта, а значит к появлению новых проблем, что в корне противоречит самой сути системного анализа, который предполагает улучшающее воздействие - когда хотя бы одному участнику проблемы станет лучше и никому не станет хуже.

Очень часто постановку задачи системного анализа в рациональном подходе выражают в терминах задачи оптимизации, т. е. идеализируют проблемную ситуацию до уровня, позволяющего использовать математические модели и количественные критерии для определения наилучшего варианта разрешения проблемы.

Как известно для системной проблемы не существует какой-либо модели, исчерпывающе устанавливающей причинно-следственные связи между ее компонентами, потому оптимизационный подход кажется не вполне конструктивным: «…теория системного анализа исходит из отсутствия оптимального, абсолютно лучшего варианта разрешения проблем любой природы… предлагается итеративный поиск реально достижимого (компромиссного) варианта разрешения проблемы, когда желаемым можно поступиться в угоду возможному, а границы возможного могут быть существенно расширены за счет стремления достичь желаемого. Тем самым предполагается использование ситуативных критериев предпочтительности, т. е. критериев, которые не являются исходными установками, а вырабатываются в ходе проведения исследования…».

Другое направление системного анализа - объективно-субъективный подход, основанное на работах Акоффа, ставит понятие субъекта и проблемы во главу системного анализа. По сути, в данном подходе мы включаем субъекта в определение существующей и идеальной системы, т.е. с одной стороны системный анализ исходит из интересов людей - вносит субъективнуюсоставляющую проблемы, с другой стороны исследует объективнонаблюдаемые факты и закономерности.

Вернемся к определению «проблемы». Из него, в частности, следует, что когда мы наблюдаем нерациональное (в общепринятом смысле) поведение субъекта, и субъект не имеет отрицательного отношения к происходящему, то нет и проблемы, которую нужно было бы решать. Данный факт хотя и не противоречит понятию «проблемы», но в определенных ситуациях исключать возможность существования объективной составляющей проблемы нельзя.

Системный анализ имеет в своем арсенале следующие возможности решить проблему субъекта:

* вмешаться в объективную реальность и, устранив объективную часть проблемы, изменить субъективное отрицательное отношение субъекта,

* изменить субъективное отношение субъекта, не вмешиваясь в реальность,

* одновременно вмешаться в объективную реальность и изменить субъективное отношение субъекта.

Очевидно, что второй способ не решает проблему, а всего лишь устраняет ее влияние на субъект, а значит объективная составляющая проблемы остается. Справедлива и обратная ситуация, когда объективная составляющая проблемы уже проявилась, но субъективное отношение еще не сформировано, либо по ряду причин оно пока не стало отрицательным.

Вот несколько причин, почему у субъекта может отсутствовать «отрицательное отношение к реальности»: Директор, С. Введение в теорию систем / С. Директор, Д. Рорар. - М.: Мир, 2009. - 286 с.

* имеет не полную информацию о системе или использует ее не полностью;

* меняет оценку взаимоотношений с окружающей средой на психическом уровне;

* прерывает взаимоотношение с окружающей средой, которая вызывала «отрицательное отношение»;

* не верит информации о существовании проблем и их сущности, т.к. полагает, что сообщающие ее люди очерняют его деятельность или преследуют свои корыстные интересы, а может быть и потому, что просто лично не любит этих людей.

Следует помнить о том, что при отсутствии отрицательного отношения субъекта объективная составляющая проблемы остается и в той или иной степени продолжает влиять на субъект, либо проблема может существенно обостриться в будущем.

Поскольку выявление проблемы требует анализа субъективного отношения, то этот этап относится к неформализуемым этапам системного анализа.

Каких-либо эффективных алгоритмов или приемов на настоящий момент не предложено, чаще всего авторы работ по системному анализу полагаются на опыт и интуицию аналитика и предлагают ему полную свободу действий.

Системный аналитик должен обладать достаточным набором инструментов для описания и анализа той части объективной реальности, с которой взаимодействует или может взаимодействовать субъект. Инструменты могут включать методы экспериментального исследования систем и их моделирования. С повсеместным внедрением современных информационных технологий в организациях (коммерческих, научных, медицинских и др.) почти каждый аспект их деятельности регистрируется и сохраняется в базах данных, которые уже сегодня имеют очень большие объемы. Информация в подобных базах данных содержит детальное описание, как самих систем, так и истории их (систем) развития и жизни. Можно сказать, что сегодня при анализе большинства искусственных систем аналитик вероятнее столкнется с недостатком эффективных методов исследования систем, нежели с недостатком информации о системе.

Однако субъективное отношение должен сформулировать именно субъект, а он может не обладать специальными знаниями и потому не способен адекватно интерпретировать результаты исследования, проведенного аналитиком. Поэтому знания о системе и прогнозные модели, которые в итоге получит аналитик, должны быть представлены в явном, доступном к интерпретации виде (возможно на естественном языке). Такое представление можно назвать знаниями об исследуемой системе.

К сожалению эффективных методов получения знаний о системе на текущий момент не предложено. Наибольший интерес представляют модели и алгоритмы Data Mining (интеллектуальные анализ данных), которые в частных приложениях используются для извлечения знаний из «сырых» данных. Стоит отметить, что Data Mining является эволюцией теории управления баз данными и оперативного анализа данных (OLAP), основанной на использовании идеи многомерного концептуального представления.

Но в последние годы в связи с нарастающей проблемой «перегрузки информацией», все больше исследователей используют и совершенствуют методы Data Mining для решения задач извлечения знаний.

Широкое применение методов извлечения знаний весьма затруднено, что с одной стороны связано с недостаточной эффективностью большинства известных подходов, которые базируется на достаточно формальных математических и статистических методах, а с другой - с трудностью использования эффективных методов интеллектуальных технологий, которые не имеют достаточного формального описания и требуют привлечения дорогих специалистов. Последнее можно преодолеть, используя перспективный подход к построению эффективной системы анализа данных и извлечения знаний о системе, основанный на автоматизированном генерировании и настройке интеллектуальных информационных технологий. Такой подход позволит, во-первых, за счет применения передовых интеллектуальных технологий существенно повысить эффективность решения задачи извлечения знаний, которые будут предъявляться субъекту на этапе выявления проблемы при системном анализе. Во-вторых, исключить потребность в специалисте по настройке и использования интеллектуальных технологий, т. к. последние будут генерироваться, и настраиваться в автоматическом режиме. Берталанфи Л. Фон. История и статус общей теории систем / Берталанфи Л. Фон // Системные исследования: ежегодник. - М.: Наука, 2010. - C. 20 - 37.

Заключение

Становление системного анализа связывают с серединой ХХ века, но на самом деле он начал применялся значительно раньше. Именно в экономике его использование связывают с именем теоретика капитализма К. Марксом.

Сегодня этот метод можно назвать универсальным - системный анализа применяется в управлении любыми организациями. Значение его в управленческой деятельности сложно не переоценить. Управление с позиции системного похода есть осуществление совокупности воздействий на объект для достижения заданной цели, на основании информации о поведении объекта и состояния внешней среды. Системный анализ позволяет учитывать различие социокультурных особенностей людей, которые работают в компании, и культурной традиции общества, в которой функционирует организация. Менеджеры могут проще согласовывать свою конкретную работу с работой организации в целом, если они понимают систему и свою роль в ней.

К минусам системного анализа, можно отнести то, что системность означает определенность, непротиворечивость, целостность, а в реальной жизни это не наблюдается. Но эти принципы относятся к любой теории, и это не делает их неопределенными или противоречивыми. В теории каждый исследователь должен найти основные принципы и корректировать их в зависимости от ситуации. В рамках системного так же можно выделить проблемы копирования стратегии или даже техники ее формирования, которая может работать в одной фирме и быть совершенно бесполезной в другой

Системный анализ в процессе развития совершенствовался, изменялась и сфера его применения. На его базе разрабатывались задачи управления в нескольких направлениях.

Список литературы

1. Акофф, Р. Основы исследования операций / Р. Акофф, М. Сасиенн. - М.: Мир, 2009. - 534 с.

2. Акофф, Р. О целеустремленных системах / Р. Акофф, Ф. Эмери. - М.: Советское радио, 2008. - 272 с.

3. Анохин, П.К. Избранные труды: философские аспекты теории систем / П.К. Анохин. - М.: Наука, 2008.

4. Анфилатов, В.С. Системный анализ в управлении: учеб. пособие / В.С. Анфилатов и др.; под ред. А.А. Емельянова. - М.: Финансы и статистика, 2008. - 368 с.

5. Берталанфи Л. Фон. История и статус общей теории систем / Берталанфи Л. Фон // Системные исследования: ежегодник. - М.: Наука, 2010. - C. 20 - 37.

6. Берталанфи Л. Фон. Общая теория систем: критический обзор / Берталанфи Л. Фон // Исследования по общей теории систем. - М.: Прогресс, 2009. - С. 23 - 82.

7. Богданов, А.А. Всеобщая организационная наука: текстология: в 2 кн. / А.А. Богданов. - М., 2005

8. Волкова, В.Н. Основы теории систем и системного анализа: учебник для вузов / В.Н. Волкова, А.А. Денисов. - 3-е изд. - СПб.: Изд-во СПбГТУ, 2008.

9. Волкова, В.Н. Системный анализ и его применение в АСУ / В.Н. Волкова, А.А. Денисов. - Л.: ЛПИ, 2008. - 83 с.

10. Воронов, А.А. Основы теории автоматического управления / А.А. Воронов. - М.: Энергия, 2009. - Т. 1.

11. Директор, С. Введение в теорию систем / С. Директор, Д. Рорар. - М.: Мир, 2009. - 286 с.

12. Клир, Д. Системология / Д. Клир. - М.: Радио и связь, 2009. - 262 с.

Размещено на Allbest.ru

Подобные документы

    Выбор критерия оценки эффективности управленческого решения. Предварительная формулировка задачи. Составление математических моделей. Сопоставление вариантов решения по критерию эффективности. Системный анализ как методология принятия сложных решений.

    контрольная работа , добавлен 11.10.2012

    Предмет и история развития системного анализа. Моделирование – составляющие целенаправленной деятельности. Субъективные и объективные цели. Классификация систем. Модели обработки данных. Множественность задач принятия решений. Выбор как реализации цели.

    шпаргалка , добавлен 19.10.2010

    Основные положения теории систем. Методология системных исследований в экономике. Процедуры системного анализа, их характеристика. Модели поведения человека и общества. Постулаты системного подхода к управлению. Ключевые идеи для поиска решения проблем.

    контрольная работа , добавлен 29.05.2013

    Определение системного анализа. Основные аспекты системного подхода. Процедура принятия решений. Разработка управленческого решения создания службы управления персоналом в соответствии с технологией применения системного анализа к решению сложных задач.

    курсовая работа , добавлен 07.12.2009

    Изучение объектов как систем, выявление особенностей и закономерностей их функционирования. Методы принятия решения. Организационная структура службы. Диагностика состояния производственной системы ОАО "Муромский радиозавод" с помощью сложных графиков.

    контрольная работа , добавлен 16.06.2014

    Состояние, проблемы и основные направления развития ЖКХ. Системный анализ деятельности ООО "Хабтеплосеть 1", выявление проблем, направления и пути их решения. Построение дерева решений, структурно-логическая схема обработки информации на предприятии.

    курсовая работа , добавлен 18.07.2011

    Анализ и выявление основных проблем приобретения квартиры на современном этапе. Порядок и принципы применения методов системного анализа в решении данной проблемы. Выбор системы оценки для решений и выявление оптимального решения поставленной задачи.

    контрольная работа , добавлен 18.10.2010

    Системный подход к управлению производством, проектирование и обеспечение функционирования систем. Принятие управленческих решений, выбор одного курса действия из альтернативных вариантов. Принцип проектной организации. Системный анализ в управлении.

    реферат , добавлен 07.03.2010

    Зависимость успеха предприятия от способности быстро адаптироваться к внешним изменениям. Требования к системе управления предприятием. Исследование систем управления, методика выбора оптимального варианта решения проблемы по критериям результативности.

    реферат , добавлен 15.04.2010

    Понятие управления сложными организационно-экономическими системами в логистике. Системный подход к проектированию логистической системы промышленного предприятия. Совершенствование управляющих параметров сложных организационно-экономических систем.