Имитационного моделирования. Реферат: Имитационные модели. Способы исследования системы

Имитационное моделирование является мощным инструментом исследования поведения реальных систем. Методы имитационного моделирования позволяют собрать необходимую информацию о поведении системы путем создания ее компьютерной модели. Эта информация используется затем для проектирования системы.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами в предметной области для проведения различных экспериментов.

Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны.

К имитационному моделированию прибегают, когда:

1. Дорого или невозможно экспериментировать на реальном объекте.

2. Невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные.

3. Необходимо сымитировать поведение системы во времени.

Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950х — 1960х годах.

Можно выделить две разновидности имитации:

1. Метод Монте-Карло (метод статистических испытаний);

2. Метод имитационного моделирования (статистическое моделирование).

В настоящее время выделяют три направления имитационных моделей:

1. Агентное моделирование — относительно новое (1990е-2000е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот. Когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы.

Цель агентных моделей — получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. Агент — некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.

2. Дискретно-событийное моделирование — подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений — от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов.


3. Системная динамика — парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии.

Основные понятия построения модели

Имитационное моделирование основано на воспроизведении с помощью компьютеров развернутого во времени процесса функционирования системы с учетом взаимодействия с внешней средой.

Основой всякой имитационной модели (ИМ) является:

· разработка модели исследуемой системы на основе частных имитационных моделей (модулей) подсистем, объединенных своими взаимодействиями в единое целое;

· выбор информативных (интегративных) характеристик объекта, способов их получения и анализа;

· построение модели воздействия внешней среды на систему в виде совокупности имитационных моделей внешних воздействующих факторов;

· выбор способа исследования имитационной модели в соответствии с методами планирования имитационных экспериментов (ИЭ).

Условно имитационную модель можно представить в виде действующих, программно (или аппаратно) реализованных блоков.

На рисунке показана структура имитационной модели. Блок имитации внешних воздействий (БИВВ) формирует реализации случайных или детерминированных процессов, имитирующих воздействия внешней среды на объект. Блок обработки результатов (БОР) предназначен для получения информативных характеристик исследуемого объекта. Необходимая для этого информация поступает из блока математической модели объекта (БМО). Блок управления (БУИМ) реализует способ исследования имитационной модели, основное его назначение - автоматизация процесса проведения ИЭ.

Целью имитационного моделирования является конструирование ИМ объекта и проведение ИЭ над ней для изучения закономерностей функционирования и поведения с учетом заданных ограничений и целевых функций в условиях имитации и взаимодействия с внешней средой.

Принципы и методы построения имитационных моделей

Процесс функционирования сложной системы можно рассматривать как смену ее состояний, описываемых ее фазовыми переменными

Z1(t), Z2(t), Zn(t) в n - мерном пространстве.

Задачей имитационного моделирования является получение траектории движения рассматриваемой системы в n - мерном пространстве (Z1, Z2, Zn), а также вычисление некоторых показателей, зависящих от выходных сигналов системы и характеризующих ее свойства.

В данном случае “движение” системы понимается в общем смысле - как любое изменение, происходящее в ней.

Известны два принципа построения модели процесса функционирования систем:

1. Принцип Δt для детерминированных систем

Предположим, что начальное состояние системы соответствует значениям Z1(t0), Z2(t0), Zn(t0). Принцип Δt предполагает преобразование модели системы к такому виду, чтобы значения Z1, Z2, Zn в момент времени t1 = t0 + Δt можно было вычислить через начальные значения, а в момент t2 = t1+ Δt через значения на предшествующем шаге и так для каждого i-ого шага (t = const, i = 1 M).

Для систем, где случайность является определяющим фактором, принцип Δt заключается в следующем:

1. Определяется условное распределение вероятности на первом шаге (t1 = t0+ Δt) для случайного вектора, обозначим его (Z1, Z2, Zn). Условие состоит в том, что начальное состояние системы соответствует точке траектории.

2. Вычисляются значения координат точки траектории движения системы (t1 = t0+ Δt), как значения координат случайного вектора, заданного распределением, найденным на предыдущем шаге.

3. Отыскиваются условное распределение вектора на втором шаге (t2 = t1 + Δ t), при условии получения соответствующих значений на первом шаге и т.д., пока ti = t0 + i Δ t не примет значения (tМ = t0 + М Δ t).

Принцип Δ t является универсальным, применим для широкого класса систем. Его недостатком является неэкономичность с точки зрения затрат машинного времени.

2. Принцип особых состояний (принцип δz).

При рассмотрении некоторых видов систем можно выделить два вида состояний δz:

1. Обычное, в котором система находится большую часть времени, при этом Zi(t), (i=1 n) изменяются плавно;

2. Особое, характерное для системы в некоторые моменты времени, причем состояние системы изменяется в эти моменты скачком.

Принцип особых состояний отличается от принципа Δt тем, что шаги по времени в этом случае не постоянны, является величиной случайной и вычисляется в соответствии с информацией о предыдущем особом состоянии.

Примерами систем, имеющих особые состояния, являются системы массового обслуживания. Особые состояния появляются в моменты поступления заявок, в моменты освобождения каналов и т.д.

Основные методы имитационного моделирования.

Основными методами имитационного моделирования являются: аналитический метод, метод статического моделирования и комбинированный метод (аналитико-статистический) метод.

Аналитический метод применяется для имитации процессов в основном для малых и простых систем, где отсутствует фактор случайности. Метод назван условно, так как он объединяет возможности имитации процесса, модель которого получена в виде аналитически замкнутого решения, или решения полученного методами вычислительной математики.

Метод статистического моделирования первоначально развивался как метод статистических испытаний (Монте-Карло). Это - численный метод, состоящий в получении оценок вероятностных характеристик, совпадающих с решением аналитических задач (например, с решением уравнений и вычислением определенного интеграла). В последствии этот метод стал применяться для имитации процессов, происходящих в системах, внутри которых есть источник случайности или которые подвержены случайным воздействиям. Он получил название метода статистического моделирования.

Комбинированный метод (аналитико-статистический) позволяет объединить достоинства аналитического и статистического методов моделирования. Он применяется в случае разработки модели, состоящей из различных модулей, представляющих набор как статистических так и аналитических моделей, которые взаимодействуют как единое целое. Причем в набор модулей могут входить не только модули соответствующие динамическим моделям, но и модули соответствующие статическим математическим моделям.

Вопросы для самопроверки

1. Определить, что такое оптимизационная математическую модель.

2. Для чего могут использоваться оптимизационные модели?

3. Определить особенности имитационного моделирования.

4. Дать характеристику метода статистического моделирования.

5. Что есть модель типа «черный ящик», модель состава, структуры, модель типа «белый ящик»?

Введение

Имитационное моделирование (simulation) является одним из мощнейших методов анализа экономических систем.

В общем случае, под имитацией понимают процесс проведения на ЭВМ экспериментов с математическими моделями сложных систем реального мира.

Цели проведения подобных экспериментов могут быть самыми различными - от выявления свойств и закономерностей исследуемой системы, до решения конкретных практических задач. С развитием средств вычислительной техники и программного обеспечения, спектр применения имитации в сфере экономики существенно расширился. В настоящее время ее используют как для решения задач внутрифирменного управления, так и для моделирования управления на макроэкономическом уровне. Рассмотрим основные преимущества применения имитационного моделирования в процессе решения задач финансового анализа.

Как следует из определения, имитация - это компьютерный эксперимент. Единственное отличие подобного эксперимента от реального состоит в том, что он проводится с моделью системы, а не с самой системой. Однако проведение реальных экспериментов с экономическими системами, по крайней мере, неразумно, требует значительных затрат и вряд ли осуществимо на практике. Таким образом, имитация является единственным способом исследования систем без осуществления реальных экспериментов.

Часто практически невыполним или требует значительных затрат сбор необходимой информации для принятия решений. Например, при оценке риска инвестиционных проектов, как правило, используют прогнозные данные об объемах продаж, затратах, ценах и т.д.

Однако чтобы адекватно оценить риск необходимо иметь достаточное количество информации для формулировки правдоподобных гипотез о вероятностных распределениях ключевых параметров проекта. В подобных случаях отсутствующие фактические данные заменяются величинами, полученными в процессе имитационного эксперимента (т.е. сгенерированными компьютером).

При решении многих задач финансового анализа используются модели, содержащие случайные величины, поведение которых не поддается управлению со стороны лиц, принимающих решения. Такие модели называют стохастическими. Применение имитации позволяет сделать выводы о возможных результатах, основанные на вероятностных распределениях случайных факторов (величин). Стохастическую имитацию часто называют методом Монте-Карло. Существуют и другие преимущества имитации.

Мы же рассмотрим технологию применения имитационного моделирования для анализа рисков инвестиционных проектов в среде MS Excel.

Имитационное моделирование

Имитационное моделирование (ситуационное моделирование) -- метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно "проиграть" во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Имитационное моделирование -- это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация -- это постижение сути явления, не прибегая к экспериментам на реальном объекте).

Имитационное моделирование -- это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью.

Имитационным моделированием иногда называют получение частных численных решений сформулированной задачи на основе аналитических решений или с помощью численных методов.

Имитационная модель -- логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.

К имитационному моделированию прибегают, когда:

· дорого или невозможно экспериментировать на реальном объекте;

· невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные;

· необходимо сымитировать поведение системы во времени.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами или другими словами -- разработке симулятора (англ. simulation modeling) исследуемой предметной области для проведения различных экспериментов.

Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны. С наступлением эпохи персональных компьютеров производство сложных и уникальных изделий, как правило, сопровождается компьютерным трёхмерным имитационным моделированием. Эта точная и относительно быстрая технология позволяет накопить все необходимые знания, оборудование и полуфабрикаты для будущего изделия до начала производства. Компьютерное 3D моделирование теперь не редкость даже для небольших компаний.

Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950-х--1960-х годах.

Можно выделить две разновидности имитации:

· Метод Монте-Карло (метод статистических испытаний);

· Метод имитационного моделирования (статистическое моделирование).

Виды имитационного моделирования:

· Агентное моделирование -- относительно новое (1990-е-2000-е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей -- получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении её отдельных активных объектов и взаимодействии этих объектов в системе. Агент -- некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.

· Дискретно-событийное моделирование -- подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: "ожидание", "обработка заказа", "движение с грузом", "разгрузка" и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений -- от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960-х годах.

· Системная динамика -- парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Джеем Форрестером в 1950 годах.

Имитационное моделирование (ситуационное моделирование) - метод, позволяющий строить модели , описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику .

Имитационное моделирование - это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация - это постижение сути явления, не прибегая к экспериментам на реальном объекте).

Имитационное моделирование - это частный случай математического моделирования . Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью.

Имитационным моделированием иногда называют получение частных численных решений сформулированной задачи на основе аналитических решений или с помощью численных методов .

Имитационная модель - логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.

Энциклопедичный YouTube

    1 / 3

    ✪ Моделирование систем. Лекция 8. Имитационное моделирование систем

    ✪ Вебинар: Имитационное моделирование бизнес процессов

    ✪ Применение Имитационного Моделирования в Логистике.

    Субтитры

Применение имитационного моделирования

К имитационному моделированию прибегают, когда:

  • дорого или невозможно экспериментировать на реальном объекте;
  • невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные;
  • необходимо сымитировать поведение системы во времени.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между её элементами или другими словами - разработке симулятора (англ. simulation modeling ) исследуемой предметной области для проведения различных экспериментов.

Виды имитационного моделирования

  • Агентное моделирование - относительно новое (1990-е-2000-е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей - получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении её отдельных активных объектов и взаимодействии этих объектов в системе. Агент - некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.
  • Дискретно-событийное моделирование - подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие, как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений - от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960-х годах.
  • Системная динамика - парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Джеем Форрестером в 1950 годах.

Области применения

  • Динамика населения
  • ИТ-инфраструктура
  • Математическое моделирование исторических процессов
  • Пешеходная динамика
  • Рынок и конкуренция
  • Сервисные центры
  • Цепочки поставок
  • Уличное движение
  • Экономика здравоохранения

Модель представляет собой абстрактное описание системы, уровень детализации которого определяет сам исследователь. Человек принимает решение о том, является ли данный элемент системы существенным, а, следовательно, будет ли он включен в описание системы. Это решение принимается с учетом цели, лежащей в основе разработки модели. От того, насколько хорошо исследователь умеет выделять существенные элементы и взаимосвязи между ними, зависит успех моделирования.

Система рассматривается как состоящая из множества взаимосвязанных элементов, объединенных для выполнения определенной функции. Определение системы во многом субъективно, т.е. оно зависит не только от цели обработки модели, но и от того, кто именно определяет систему.

Итак, процесс моделирования начинается с определения цели разработки модели, на основе которой затем устанавливаются границы системы и необходимый уровень детализации моделируемых процессов. Выбранный уровень детализации должен позволять абстрагироваться от неточно определенных из-за недостатка информации аспектов функционирования реальной системы. В описание системы, кроме того, должны быть включены критерии эффективности функционирования системы и оцениваемые альтернативные решения, которые могут рассматриваться как часть модели или как ее входы. Оценки же альтернативных решений по заданным критериям эффективности рассматриваются как выходы модели. Обычно оценка альтернатив требует внесения изменений в описание системы и, следовательно, перестройки модели. Поэтому на практике процесс построения модели является итеративным. После того как на основе полученных оценок альтернатив могут быть выработаны рекомендации, можно приступать к внедрению результатов моделирования. При этом в рекомендациях должны быть четко сформулированы как основные решения, так и условия их реализации.

Имитационное моделирование широком смысле) - есть процесс конструирования модели реальной системы и постановки экспериментов на этой модели с целью либо понять поведение системы, либо оценить (в рамках накладываемых ограничений) различные стратегии, обеспечивающие функционирование данной системы.

Имитационное моделирование (в узком смысле) - это представление динамического поведения системы посредством продвижения ее от одного состояния к другому в соответствии с хорошо известными операционными правилами (алгоритмами).

Итак, для создания имитационной модели надо выделить и описать состояния системы и алгоритмы (правила) его изменения. Далее это записывается в терминах некоторого инструментального средства моделирования (алгоритмического языка, специализированного языка) и обрабатывается на ЭВМ.

Имитационная модель (ИМ)- это логико-математическое описание системы, которое может быть использовано в ходе проведения экспериментов на цифровой ЭВМ.

ИМ могут использоваться для проектирования, анализа и оценки функционирования систем. С ИМ проводятся машинные эксперименты, которые позволяют сделать выводы о поведении системы:

· в отсутствии ее построения, если это проектируемая система;

· без вмешательства в ее функционирование, если это действующая система, экспериментирование с которой невозможно или нежелательно (высокие затраты, опасность);

· без разрушения системы, если цель эксперимента состоит в определении воздействия на нее.

Процесс формирования имитационной модели коротко можно представить следующим образом (Рис.2 ):

Рис.2 . Схема формирования имитационной модели

Вывод: для ИМ характерно воспроизведение явлений, описываемых формализированной схемой процесса, с сохранением их логической структуры, последовательности чередования во времени, а иногда и физического содержания.

Имитационное моделирование (ИМ) на ЭВМ находит широкое применение при исследовании и управлении сложными дискретными системами (СДС) и процессами, в них протекающими. К таким системам можно отнести экономические и производственные объекты, морские порты, аэропорты, комплексы перекачки нефти и газа, ирригационные системы, программное обеспечение сложных систем управления, вычислительные сети и многие другие. Широкое использование ИМ объясняется тем, что размерность решаемых задач и неформализуемость сложных систем не позволяют использовать строгие методы оптимизации.

Под имитацией будем понимать численный метод проведения на ЭВМ экспериментов с математическими моделями, описывающими поведение сложных систем в течение продолжительного времени.

Имитационный эксперимент представляет собой отображение процесса, протекающего в СДС в течение длительного отрезка времени (минута, месяц, год и т.д.), что занимает, как правило, несколько секунд или минут времени работы ЭВМ. Однако существуют задачи, для решения которых необходимо проводить так много вычислений при моделировании (как правило, это задачи, связанные с системами управления, моделированием поддержки принятия оптимальных решений, отработки эффективных стратегий управления и т.п.), что ИМ работает медленнее реальной системы. Поэтому возможность за короткое время промоделировать длительный период работы СДС не самое главное, что обеспечивает имитация.

Возможности имитационного моделирования:

1. С ИМ проводятся машинные эксперименты, которые позволяют сделать выводы о поведении системы:

· без ее построения, если это проектируемая система;

· без вмешательства в ее функционирование, если это действующая система, экспериментирование с которой невозможно или нежелательно (дорого, опасно);

· без ее разрушения, если цель эксперимента состоит в определении предельного воздействия на систему.

2. Экспериментально исследовать сложные взаимодействия внутри системы и понять логику ее функционирования.

4. Изучить воздействие внешних и внутренних случайных возмущений.

5. Исследовать степень влияния параметров системы на показатели эффективности.

6. Проверить новые стратегии управления и принятия решений при оперативном управлении.

7. Прогнозировать и планировать функционирование системы в будущем.

8. Проводить обучение персонала.

Основой имитационного эксперимента служит модель имитируемой системы.

ИМ развивалось для моделирования сложных стохастических систем - дискретных, непрерывных, комбинированных.

Моделирование означает, что задаются последовательные моменты времени и состояние модели вычисляется ЭВМ последовательно в каждый из этих моментов времени. Для этого необходимо задать правило (алгоритм) перехода модели из одного состояния в следующее, то есть преобразование:

, ,

где - состояния модели в - ый момент времени, представляющее собой вектор.

Введем в рассмотрение:

- вектор состояния внешней среды (вход модели) в -ый момент времени,

- вектор управления в -ый момент времени.

Тогда ИМ определяется заданием оператора , с помощью которого можно определить состояние модели в следующий момент времени по состоянию в текущий момент, векторам управления и внешней среды:

, .

Это преобразование запишем в рекуррентной форме:

, .

Оператор определяет имитационную модель сложной системы с ее структурой и параметрами.

Важное достоинство ИМ - возможность учета неконтролируемых факторов моделируемого объекта, представляющих собой вектор:

.

Тогда имеем:

, .

Имитационная модель – это логико-математическое описание системы, которое может быть использовано в ходе проведения экспериментов на ЭВМ.

Рис.3. Состав ИМ сложной системы

Возвращаясь к проблеме имитационного моделирования сложной системы, условно выделим в ИМ: модель управляемого объекта, модель системы управления и модель внутренних случайных возмущений (Рис.3 ).

Входы модели управляемого объекта делятся на контролируемые управляемые и неконтролируемые неуправляемые возмущения. Последние генерируются датчиками случайных чисел по заданному закону распределения. Управление, в свою очередь является выходом модели системы управления, а возмущения – выходом датчиков случайных чисел (модели внутренних возмущений).

Здесь - алгоритм системы управления.

Имитация позволяет исследовать поведение моделируемого объекта в течение продолжительного интервала времени – динамическая имитация . В этом случае как говорилось выше трактуется как номер момента времени. Кроме этого можно исследовать поведение системы в определенный момент времени – статическая имитация , тогда трактуется как номер состояния.

При динамической имитации время может меняться с постоянным и переменным шагом (Рис.4 ):

Рис.4. Динамическая имитация

Здесь g i – моменты совершения событий в СДС, g * i – моменты совершения событий при динамической имитации с постоянным шагом, g ‘ i - моменты совершения событий при переменном шаге.

С постоянным шагом проще реализация, но меньше точность и могут быть пустые (то есть лишние) точки времени, когда рассчитывается состояние модели.

С переменным шагом время переходит от события к событию. Этот способ – более точное воспроизведение процесса, нет лишних расчетов, однако его труднее реализовать.

Основные положения , вытекающие из сказанного:

1. ИМ это численный метод и должен применяться тогда, когда другие методы использовать невозможно. Для сложных систем это в данный момент основной метод исследования.

2. Имитация это эксперимент, а значит, при ее проведении должна использоваться теория планирования эксперимента и обработки его результатов.

3. Чем более точно описывается поведение моделируемого объекта, тем точнее требуется модель. Чем точнее модель, тем она сложнее и требует больших ресурсов ЭВМ и времени для исследования. Поэтому надо искать компромисс между точностью модели и ее простотой.

Примеры решаемых задач: анализ проектов систем на различных стадиях, анализ действующих систем, использование в системах управления, использование в системах оптимизации и т.д.

При имитационном моделировании результат нельзя заранее вычислить или предсказать. Поэтому для предсказания поведения сложной системы (электроэнергетической, СЭС крупного производственного объекта и т.п.) необходим эксперимент, имитация на модели при заданных исходных данных.

Имитационное моделирование сложных систем используется при решении следующих задач.

    Если не существует законченной постановки задачи исследования и идёт процесс познания объекта моделирования.

    Если аналитические методы имеются, но математические процедуры столь сложны и трудоемки, что имитационное моделирование даёт более простой способ решения задачи.

    Когда кроме оценки параметров сложных систем желательно осуществить наблюдение за поведением их компонент в течение определённого периода.

    Когда имитационное моделирование является единственным способом исследования сложной системы из-за невозможности наблюдения явлений в реальных условиях.

    Когда необходимо контролировать протекание процессов в сложной системе путём ускорения или замедления явлений в ходе имитации.

    При подготовке специалистов и освоении новой техники.

    Когда изучаются новые ситуации в сложных системах, о которых мало известно или ничего неизвестно.

    Тогда особое значение имеет последовательность событий в проектируемой сложной системе и модель используется для предсказания «узких мест» функционирования системы.

Создание имитационной модели сложной системы начинается с постановки задачи. Но часто заказчик формулирует задачу недостаточно чётко. Поэтому работа обычно начинается с поискового изучения системы. Это порождает новую информацию, касающуюся ограничений, задач и возможных альтернативных вариантов. В результате возникают следующие этапы:

Составление содержательного описания системы;

Выбор показателей качества;

Определение управляющих переменных;

Детализация описания режимов функционирования.

Основу имитационного моделирования составляет метод статистического моделирования (метод Монте-Карло). Это численный метод решения математических задач при помощи моделирования случайных величин. Датой рождения этого метода принято считать 1949 г. Создатели его – американские математики Л. Нейман и С. Улам. Первые статьи о методе Монте-Карло у нас были опубликованы в 1955 г. Однако до появления ЭВМ этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины вручную – очень трудоемкая работа. Название метода происходит от города Монте-Карло в княжестве Монако, знаменитого своими игорными домами. Дело в том, что одним из простейших механических приборов для получения случайных величин является рулетка.

Рассмотрим классический пример. Нужно вычислить площадь произвольной плоской фигуры . Граница ее может быть криволинейной, заданной графически или аналитически, состоящей из нескольких кусков. Пусть это будет фигура рис. 3.20. Допустим, что вся фигура расположена внутри единичного квадрата. Выберем в квадрате
случайных точек. Обозначим через
число точек, попавших внутрь фигуры. Геометрически очевидно, что площадьприближённо равна отношению
. Чем больше
, тем больше точность оценки.

Рис.3.20. Иллюстрация примера

В нашем примере
,
(внутри). Отсюда
. Истинная площадь может быть легко подсчитана и составляет 0,25.

Метод Монте-Карло имеет две особенности.

Первая особенность – простота вычислительного алгоритма. В программе для вычислений необходимо предусмотреть, что для осуществления одного случайного события надо выбрать случайную точку и проверить, принадлежит ли она . Затем это испытание повторяется
раз, причем каждый опыт не зависит от остальных, а результаты всех опытов усредняются. Поэтому метод и называют – метод статистических испытаний.

Вторая особенность метода: ошибка вычислений, как правило, пропорциональна

,

где
– некоторая постоянная;
– число испытаний.

Из этой формулы видно, что для того, чтобы уменьшить ошибку в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить
(объём испытаний) в 100 раз.

Замечание. Метод вычисления справедлив только тогда, когда случайные точки будут не просто случайными, а еще и равномерно распределёнными.

Использование имитационного моделирования (в том числе метода Монте-Карло и его модификаций) для расчёта надёжности сложных технических систем основано на том, что процесс их функционирования представляется математической вероятностной моделью, отражающей в реальном масштабе времени все события (отказы, восстановления), происходящие в системе.

С помощью такой модели на ЭВМ многократно моделируется процесс функционирования системы и по полученным результатам определяются искомые статистические характеристики этого процесса, являющиеся показателями надёжности. Применение методов имитационного моделирования позволяет учитывать зависимые отказы, произвольные законы распределения случайных величин и другие факторы, влияющие на надёжность.

Однако эти методы, как и любые другие численные методы, дают лишь частное решение поставленной задачи, соответствующее конкретным (частным) исходным данным, не позволяя получить показатели надёжности в функции времени. Поэтому для проведения всестороннего анализа надёжности приходится многократно моделировать процесс функционирования системы с разными исходными данными.

В нашем случае это, прежде всего, различная структура электрической системы, различные значения вероятностей отказа и длительностей безотказной работы, которые могут изменяться в процессе эксплуатации системы, и другие показатели функционирования.

Процесс функционирования электрической системы (или электротехнической установки) представляется как поток случайных событий – изменений состояния, происходящих в случайные моменты времени. Изменение состояний ЭЭС вызывается отказами и восстановлениями составляющих ее элементов .

Рассмотрим схематическое изображение процесса функционирования ЭЭС, состоящей из элементов (рис. 3.21), где приняты следующие обозначения:

–момент -го отказа-го элемента;

–момент -го восстановления-го элемента;

–интервал времени безотказной работы -го элемента после
-го восстановления;

–продолжительность восстановления -го элемента после-го отказа;

i -е состояние ЭЭС в момент времени .

Величины , связаны между собой соотношениями:

(3.20)

Отказы и восстановления происходят в случайные моменты времени. Поэтому интервалы иможно рассматривать как реализации непрерывных случайных величин:– наработок между отказами,– времени восстановления-го элемента.

Поток событий
описывается моментами их наступления
.

Моделирование процесса функционирования состоит в том, что моделируются моменты изменения состояния ЭЭС в соответствии с заданными законами распределения наработок между отказами и времени восстановления составляющих элементов на интервале времени Т (между ППР).

Возможны два подхода к моделированию функционирования ЭЭС.

При первом подходе необходимо сначала для каждого -гo элемента системы
определить, в соответствии с заданными законами распределения наработок между отказами и временами восстановления, интервалы времени
и
и вычислить по формулам (3.20) моменты его отказов и восстановлений, которые могут произойти за весь исследуемый периодфункционирования ЭЭС. После этого можно расположить моменты отказов и восстановлений элементов, являющиеся моментами изменения состояний ЭЭС, в порядке их возрастания, как показано на рис.3.21.

Рис.3.21. Состояния ЭЭС

Затем следует анализ полученных путем моделирования состояний А i системы на принадлежность их к области работоспособных или неработоспособных состояний. При таком подходе в памяти ЭВМ необходимо фиксировать все моменты отказов и восстановлений всех элементов ЭЭС.

Более удобным является второй подход , при котором для всех элементов сначала моделируются только моменты первого их отказа. По минимальному из них формируется первый переход ЭЭС в другое состояние (из А 0 в А i ) и одновременно проверяется принадлежность полученного состояния к области работоспособных или неработоспособных состояний.

Затем моделируется и фиксируется момент времени восстановления и следующего отказа того элемента, который вызвал изменение предыдущего состояния ЭЭС. Снова определяется наименьший из моментов времени первых отказов и этого второго отказа элементов, формируется и анализируется второе состояние ЭЭС – и т.д.

Такой подход к моделированию в большей мере соответствует процессу функционирования реальной ЭЭС, так как позволяет учесть зависимые события. При первом подходе обязательно предполагается независимость функционирования элементов ЭЭС. Время счёта показателей надёжности методом имитационного моделирования зависит от полного числа опытов
, числа рассматриваемых состояний ЭЭС, числа элементов в ней. Итак, если сформированное состояние окажется состоянием отказа ЭЭС, то фиксируется момент отказа ЭЭС и вычисляетсяинтервал времени безотказной работы ЭЭС от момента восстановления после предыдущего отказа. Анализ сформированных состояний производится на протяжении всего рассматриваемого интервала времениТ .

Программа расчёта показателей надёжности состоит из главной части и отдельных логически самостоятельных блоков-подпрограмм. В главной части в соответствии с общей логической последовательностью расчёта происходят обращения к подпрограммам специального назначения, расчёт показателей надёжности по известным формулам и выдача результатов расчёта на печать.

Рассмотрим упрощенную блок-схему, демонстрирующую последовательность работы по расчёту показателей надёжности ЭЭС методом имитационного моделирования (рис. 3.22).

Подпрограммы специального назначения осуществляют: ввод исходной информации; моделирование моментов отказов и восстановлений элементов в соответствии с законами распределения их наработки и времени воcстановления; определение минимальных значений моментов отказов и моментов восстановлений элементов и идентификацию элементов, ответственных за эти значения; моделирование процесса функционирования ЭЭС на интервале и анализ сформированных состояний.

При таком построении программы можно, не затрагивая общую логику программы, вносить необходимые изменения и дополнения, связанные, например, с изменением возможных законов распределения наработки и времени восстановления элементов.

Рис.3.22 . Блок-схема алгоритма расчёта показателей надежности методом имитационного моделирования