Российские производители промышленных роботов. Промышленные роботы в современном производстве. Видео работы промышленного робота GRINIK на производстве у клиента в г. Рязань

Алиса Конюховская - [email protected]

Мировой рынок промышленной робототехники показывает высокий темп роста. Какие регионы и страны являются лидерами мирового рынка? Какие отрасли демонстрируют наибольший спрос? На каком уровне развития находится российский рынок промышленной робототехники? Какие существуют ограничения развития российского рынка? Ответы на все эти вопросы представлены в данной статье.

С 2010 г. спрос на промышленные роботы значительно вырос в связи с трендом автоматизации производства и техническими усовершенствованиями промышленных роботов. В период между 2010 и 2014 гг. средний рост их продаж составлял 17% в год: между 2005 и 2008 гг. было продано в среднем около 115 тыс. шт. роботов, в то время как между 2010 и 2014 гг. средний объем продаж вырос до 171 тыс. шт. (рис. 1). Увеличение поставок произошло приблизительно на 48%, что является признаком значительного роста спроса на промышленных роботов по всему миру. В 2015 г. было продано уже более 250 тыс. роботов, что стало новым рекордом рынка, который вырос на 8% за год. Наибольший спрос был зарегистрирован в автомобилестроении.

Регионы

Азия (включая Австралию и Новую Зеландию) – самый крупный рынок: в 2014 г. было продано около 139 300 промышленных роботов, что на 41% превысило показатель 2013 г.. В 2015 г. в азиатском регионе было продано более 144 тыс. шт.

Европа – второй по размеру рынок, где продажи в 2014 г. увеличились на 5%, т.е. до 45 000 шт. В 2015 г. продажи в Европе выросли на 9% и достигли 50 000 единиц. Самый бурный рост в 2015 г. продемонстрировал рынок Восточной Европы – в 29%.

Северная Америка – третий рынок по объему продаж: в 2014 г. было продано 32 600 шт., что на 8% больше, чем в 2013 г., а в 2015 г. было продано 34 000 шт., что стало новым рекордом для региона. В первом квартале 2016 г. в регионе было продано 7 125 роботов на $448 млн. Также североамериканскими компаниями было заказано 7 406 роботов общей стоимостью около $402 млн, что превышает на 7% объем заказов за тот же период в прошлом году.

Страны-лидеры

Китай крупнейший рынок промышленных роботов и самый быстрорастущий рынок в мире. В 2014 г. было продано 57 096 промышленных роботов, что на 56% больше, чем в 2013 г.. Из них китайскими поставщиками была произведена установка около 16 000 роботов – по информации Китайского Альянса Робототехнической Отрасли (China Robot Industry Alliance, CRIA). Объем продаж стал на 78% выше, чем в 2013 г.. Частично это связано с тем, что увеличилось число компании?, которые впервые предоставили свои данные о продажах в 2014 г.. Иностранные поставщики промышленных роботов в Китае увеличили свои продажи на 49%, т.е. до 41100 единиц, включая роботов, изготовленных международными производителями в Китае. В период между 2010 и 2014 гг. общий объем поставок промышленных роботов увеличивался в среднем примерно на 40% за год, а в 2015 г. Китай продолжил демонстрировать высочайший рост, продажи достигли 66 000 единиц, а рынок вырос на 16%. Такое быстрое развитие является уникальным рекордом для истории робототехники. В самых различных отраслях Китая наблюдается всё большее инвестирование в автоматизацию производства.

В Японии в 2014 г. было продано 29 300 промышленных роботов, рынок вырос на 17%. С 2013 г. Япония стала вторым по величине рынком по размеру годовых продаж. Продажи роботов в Японии имели тенденцию к снижению с 2005 г., когда был пик продаж, который составил составлял 44 000 роботов, до 2009 г., когда продажи упали до 12 800 единиц. В период между 2010 и 2014 гг. продажи увеличивались в среднем на 8% за год.

Рынок промышленных роботов США , третий по величине в мире, в 2014 г. увеличился на 11%, достигнув пика в 26 200 единиц. Драйвер этого роста – тенденция к автоматизации производства с целью укрепления позиции? американской промышленности на мировом рынке и сохранения производства в домашнем регионе, а в некоторых случаях и с целью возращения производства из других регионов.

Продажи в Республике Корея в 2014 г. увеличились на 16%, до 24 700 единиц, немного не дотянув до рекорда 2011 г. – 26 536 единиц. Как и в 2013 г., существенно увеличились закупки промышленных роботов у поставщиков автомобильных компонентов (в частности, в производстве электрических компонентов, например, батареи? и т.п.), в то время как почти все другие отрасли в 2014 г. купили значительно меньше роботов. В течение 2010-2014 гг. годовой объем продаж роботов в Республике Корея был более или менее стабилен.

Германия является пятым по величине рынком промышленных роботов. В 2014 г. продажи роботов увеличились на 10%, до 20 100 единиц, что стало рекордом продаж. Поставки роботов в Германию увеличивались за 2010-2014 гг. в среднем на 9%, несмотря на существующую в стране высокую плотность роботов. Основным драйвером роста продаж в Германии была автомобильная промышленность.

С 2013 г. Тайвань занимает шестое место среди самых важных рынков промышленных роботов в мире по оценке годовых поставок в страну. Инсталляция робототехнических систем значительно увеличивалась между 2010-2014 гг. – в среднем на 20% в год. В 2014 г. объем продаж роботов увеличился на 27%, до 6 900 единиц. Тем не менее, количество установленных роботов в Тайване значительно ниже, чем в Германии, которая занимает пятое место с 20 100 единицами.

Италия является вторым по величине рынком промышленных роботов в Европе после Германии и занимает 7 место в общемировом рейтинге по поставкам промышленных роботов. Продажи в ней увеличились на 32% – до 6 200 единиц в 2014 г.. Начиная с 2001 г., это второй столь высокий уровень годовых продаж, что является явным признаком восстановления экономики Италии. В период между 2010 и 2013 гг. годовой объем продаж в Италии был довольно слабым в связи с кризисной ситуацией в стране.

Таиланд также является растущим рынком промышленных роботов в Азии, занимая 8 место в 2014 г. среди других рынков. Было установлено 3 700 роботов – лишь 2% от общего числа мировых поставок.

В Индию в 2014 году было продано около 2 100 промышленных роботов, что является новым пиком для страны. Поставки роботов в другие страны Южной Азии (Индонезия, Малайзия, Вьетнам, Сингапур и др.) увеличивались в 2014 г.: 10 140 единиц в 2014 г. по сравнению с 661 единицами в 2013 г..

Во Франции также восстановился рынок промышленных роботов – 3 000 единиц (+36%). В Испании продажи промышленных роботов снизились на 16%, до 2 300 единиц. После значительных инвестиции? между 2011 и 2013 гг. продажи в автомобильной промышленности заметно снизились, хотя другие отрасли продолжали увеличивать инвестирование в робототехнику. Продажи промышленных роботов в Великобритании снизились в 2014 г. до 2 100 единиц после значительных инвестиции? в автомобильную промышленность в 2011-2012 гг.

Спрос на промышленных роботов по отраслям

Основные «катализаторы» роста мировых продаж промышленных роботов – автомобильная промышленность и электрика/электроника.

С 2010 г. автомобильная промышленность – это самый важный клиент производителей промышленных роботов, значительно увеличивающий инвестирование в промышленных роботов по всему миру. В 2014 г. был зафиксирован новый пик продаж: на предприятиях было установлено около 98 000 новых роботов, что на 43% больше, чем в 2013 г.. Доля автомобильной промышленности от общего числа поставок промышленных роботов равняется примерно 43%. В период между 2010 и 2014 гг. продажи роботов в автомобильной промышленности возрастали за год в среднем на 27%. Инвестиции в новые производственные мощности на развивающихся рынках и инвестиции в модернизацию производства в основных странах, производящих автомобили, вызвали рост продаж робототехнических установок. В 2014 г. большая часть роботов была продана производителям элементов автомобильной электроники для производства аккумуляторов и других электронных деталей в автомобилях.

Продажи роботов для производства электрики и электроники (в том числе компьютеров, аппаратуры, радио, телевизоров, устройств связи и др.) значительно увеличились в 2014 г. и выросли на 34%, до 48 400 единиц. Доля от общего объема поставок – около 21%. Растущий спрос на электронику и новые продукты, а также необходимость автоматизировать производство, были движущими факторами для ускоряющегося спроса.

Продажи во всех отраслях промышленности, за исключением автомобилестроения и электроники/электрики, увеличились в 2014 г. на 21%. Между 2010 и 2014 гг., средний темп проста составил 17%. Темп роста продаж автомобильной промышленности в данный период равнялся 27%, а электрической/электронной промышленностей – 11%. Это явный признак того, что число продаж увеличилось не только в областях, которые являются основными потребителями промышленных роботов (автомобилестроение и производство электрики и электроники), но и в других отраслях промышленности. Поставщики роботов сообщают, что число клиентов в последние годы демонстрирует значительный рост. Хотя число заказанных клиентом роботов зачастую очень невелико.

Плотность роботизации

Во многих странах наблюдается высокий потенциал использования промышленных роботов. Сравнение в разных странах количественных показателей, например, общего числа единиц робототехники на рынке, может вводить в заблуждение. Для того чтобы учитывать различия в масштабах производящей промышленности, предпочтительно использовать показатель плотности роботизации. Эта плотность выражается в отношении количества многофункциональных роботов на 10 000 работников, задействованных в обрабатывающей, автомобильной промышленности или в промышленности в целом, которая включает в себя все промышленные отрасли за исключением автомобильного производства.

Приблизительная мировая плотность роботов равняется 66 установленным промышленным роботам на 10 000 работников сферы обрабатывающей промышленности (рис. 2). Производства с самым высоким уровнем роботизации – это производства в Республике Корея, Японии и Германии. За счет продолжения расширенной установки роботов на протяжении последних нескольких лет в 2014 г. Республика Корея была первой по уровню плотности роботов (478 промышленных роботов на 10 000 работников). Продолжает снижаться плотность роботов в Японии: в 2014 г. она достигла отметки в 314 единиц. В Германии наблюдается обратная динамика: плотность роботов выросла до 292 единиц. Соединенные Штаты Америки входят в пятерку крупнейших мировых рынков роботизированного производства: плотность в США в 2014 г. составила 164 единицы техники на 10 000 рабочих. Китай – самый большой рынок робототехники в мире с 2013 г. – достиг отметки в 36 единиц техники на 10 000 рабочих, что демонстрирует высокий потенциал для дальнейшей установки роботов в этой стране.

В 2014 г. плотность роботизации в обрабатывающей промышленности по регионам составила: 85 в Европе, 79 в Америке, 54 в Азии (рис. 3).

Плотность роботизации в автомобильной промышленности выше. Несмотря на общее сокращение показателей уровня плотности роботов, на данный момент в Японии самый высокий показатель по плотности использования робототехники в автомобильной промышленности (1 414 единиц техники установлено на 10 000 рабочих). Далее следуют Германия (1 149 единиц техники на 10 000 рабочих), Соединенные Штаты Америки (1 141 единиц техники на 10 000 рабочих) и Республика Корея (1 129 единиц техники на 10 000 рабочих).

С 2007 г. значительно возросла плотность робототехники в автомобильной промышленности в Китае (305 единиц техники), однако она все еще находится на среднем уровне. Причиной этому служит большое количество рабочих, задействованных в данной сфере. Согласно «Китайскому статистическому ежегоднику», на 2013 год в автомобильной промышленности работали около 3,4 млн. людей (включая производство автомобильных запчастей). В 2014 г. в Китае было произведено около 20 млн. автомобилей, что стало рекордом для страны и составило примерно 30% всех произведенных в мире автомобилей. Необходимая модернизация и дальнейший прирост мощностей значительно увеличат установку роботов в ближайшие годы: потенциал для установки робототехники на этом рынке по-прежнему огромен.

Россия

В России продажи роботов крайне низкие – около 500-600 роботов в год, плотность роботизации составляет около 2 роботов на 10 000 рабочих. Помимо действительно низкого уровня использования РТК в производстве, эти цифры также обусловлены сложностью получения данных о рынке, который разрознен и до недавнего времени целенаправленно не изучался. В 2015 г. была образована Национальная Ассоциация участников рынка робототехники (НАУРР), которая, помимо общих задач развития рынка, собирает статистику и создает аналитические материалы о рынке робототехники.

Общее число инсталлированных к 2015 г. промышленных роботов в Российской Федерации – около 2 740 шт. (рис. 4). С 2010 по 2013 год наблюдался стабильный рост продаж промышленных роботов – в среднем около 20% в год. В 2013 г. продажи достигли своего максимума – 615 роботов (увеличение на 34% по сравнению с 2012 г.), но в 2014 г. произошло резкое падение продаж на 56% – до приблизительно 340 роботов. Причиной этому является сильное изменение валютного курса.

Предварительные данные продаж 2015 г. – около 550 роботов. Лидерами российского рынка промышленной робототехники являются KUKA и FANUC, которые занимают около 90% рынка.

В России крайне мало отечественных производителей промышленных роботов. В 2015 г. закрылся Волжский машиностроительный завод, который долгое время был единственным производителем промышленных роботов в стране. В 2016 г. планируется запуск нового завода по производству промышленных роботов в Башкирии. Российские компании «Рекорд-Инжиниринг», «БИТ-Роботикс», «Эйдос-Робототехника» разрабатывают промышленных роботов, но объем их продаж пока неизвестен.

Помимо производителей промышленных роботов, важными игроками рынка являются системные интеграторы, которые встраивают робота в технологический процесс. Стоимость самого робота может составлять около 50% от цены решения, которое требует специализированной оснастки, настройки ПО, сервиса и т.д. В России существует около 50 компаний-интеграторов, которые отличаются по области специализации и своему размеру.

Одной из причин слабого уровня развития рынка промышленной робототехники является малая информированность предприятий о возможностях роботизации производственных процессов и связанных с этим сокращением издержек. Интеграторы почти не занимаются подсчетом реальной окупаемости РТК после установки, оставляя это на откуп предприятиям. Стимулировать развитие промышленной робототехники в стране можно через распространение систематизированной информации о реальной окупаемости РТК по отраслям и выполняемым операциям.

Для исследования различных барьеров развития робототехники (как промышленной, так и сервисной) Национальная Ассоциация участников рынка робототехники в декабре 2015 г. провела опрос российских робототехнических компаний. Ответы респондентов на вопрос об ограничениях, которые препятствуют развитию робототехники в РФ, о существующих рисках и барьерах на рынке робототехнике в целом, структурированы в таблице по группам «Образование и культура», «Технологии», «Экономика», «Государство», «Наука».

Таблица. Результаты опроса россии?ских робототехнических компаний о препятствиях развитию робототехники в стране
Группа Причины
Образование

и культура

  • Менталитет (в вопросах спроса на продукт и ведения бизнеса);
  • Низкая технологическая культура / устаревшая культура производства;
  • Низкий экспертный уровень / слабое профессиональное сообщество;
  • Малое количество узкоспециализированных специалистов;
  • Низкая квалификация в общей массе рабочего и инженерного состава предприятий для освоения робототехники;
  • Отсутствие высоких компетенций в области маркетинга у специалистов внутри РФ;
  • Слабая учебная инфраструктура;
  • Малое количество образовательных центров;
  • Медленное проникновение робототехники в учебные программы.
Технологии
  • Наличие готовых импортных решений;
  • Недостаток собственных технологий производства;
  • Отсутствие российской электронной базы, все современные комплектующие и технологии зарубежные;
  • Слабая инфраструктура;
  • Нехватка оборудования и ПО для проектирования;
  • Слабые аккумуляторы.
Экономика
  • Экономическая нестабильность;
  • Недостаток финансирования области;
  • Неправильное распределение бюджета предприятия;
  • Слабая заинтересованность, отсутствие заказчиков на внутреннем рынке;
  • Нет возможности выиграть конкурс на разработку – отсутствие гарантированного спроса;
  • Сложности с экспортом продукции с территории РФ;
  • Малый опыт работы в гражданской сфере;
  • Недоступность робототехники для обычных граждан в силу роста стоимости российских разработок по причине инфляции;
  • Отсутствие в РФ собственных международных корпораций, способных покупать стартапы и выводить их на мировой рынок;
  • Небольшой объем рынка венчурных инвестиций внутри РФ, ограничивающий скорость развития отечественных проектов по сравнению с аналогичными за рубежом (например, в США).
Государство
  • Бюрократия;
  • Отсутствие нормативно-правовой базы;
  • Устаревшие нормы качества;
  • Таможенная служба затрудняет и замедляет поставки и закупки комплектующих;
  • Недостаток государственной поддержки робототехники в целом;
  • Отсутствие реальной поддержки малых инновационных компаний со стороны государства;
  • Инертность и низкий старт реализации целевой программы развития госпредприятий с применением робототехники;
  • Ориентация на задачи служб специального назначения;
  • Объединение гражданских и военных разработок – нет органа, который бы решал вопросы по постановке робототехнических задач для нужд ВПК.
Наука
  • Отсутствие понятных и прозрачных механизмов финансирования исследований;
  • Отсутствие механизмов учета репутации, позволяющих оценивать успехи коллективов;
  • Проблемы с поставкой и закупкой комплектующих, что существенно тормозит разработки.

Преодоление существующих ограничений, конечно, невозможно мерами одного государства, для формирования стратегии развития отрасли необходим широкий диалог всех участников рынка.

Таким образом, мировой рынок робототехники показывает высокие темпы роста (около 8%). Мировыми лидерами в использовании РТК в промышленности являются Китай, Япония, Южная Корея, США и Германия. Россия же значительно отстает в роботизации производства по целому ряду причин, преодоление которых возможно только при коммуникации и консолидации участников рынка робототехники.

Конечно, компаний гораздо больше — мы выделили лишь самые значимые из них, а также те, которые занимаются разработкой промышленных роботов в России и странах СНГ.

Seiko Epson Corporation более известная как Epson — структурное подразделение японского многоотраслевого концерна Seiko Group. Один из крупнейших производителей струйных, матричных и лазерных принтеров, сканеров, настольных компьютеров, проекторов, а также роботов для монтажа мелких деталей.

Роботы Epson впервые появились на мировом рынке в далеком 1984 году. Изначально созданные для удовлетворения потребностей внутренней автоматизации, роботы компании Epson быстро стали популярным на многих известных производственных площадках по всему миру. За последние 30 лет Epson Robots стала лидером отрасли роботизации для сборки мелких деталей и привнесла множество новинок, включая управление на базе ПК, компактные scara роботы и многое другое. На сегодняшний день более 55 000 роботов Epson установлено на заводах по всему миру. Многие из ведущих компаний-производителей полагаются на этих роботов каждый день, чтобы снизить издержки производства, улучшить качество продукции, увеличить производительность.

Comau (Италия)

Компания Comau — итальянская многонациональная компания, базирующаяся в Турине и являющаяся частью FCA Group. Comau — это интегрированная компания, специализирующаяся в области промышленной автоматизации с международной сетью из 35 действующих центров, 15 производственных предприятий и 5 инновационных центров по всему миру. Компания предлагает полные комплексные решения, услуги, продукты и технологии с компетенциями, начиная от резки металла до полностью роботизированных производственных систем для удовлетворения конкретных производственных потребностей в различных отраслях промышленности, от автомобильной, железнодорожной и тяжелой промышленности до возобновляемой энергетики и других отраслей.

Comau выпускает различные модели промышленных роботов грузоподъемностью до 800 кг.

Применяемость роботов Comau стандартна для любых роботов с антропоморфной кинематикой: сварочные технологии, паллетирование, механическая обработка, нанесение составов: окраска, грунтовка, клеи, геметики.

Panasonic (Япония)

Panasonic - это не только известная во всем мире японская машиностроительная корпорация с почти столетней историей (компания была основана в 1928 году), которая производит бытовую технику и электронные товары, но и один из лидеров рынка промышленной робототехники и сварочного оборудования.

Panasonic Robots - подразделение глобальной корпорации Panasonic, которое специализируется на разработке, производстве и продаже промышленных роботов различного назначения. В частности, робот для сварки от Panasonic - это технологии «все в одном», без дополнительного интерфейса между роботом и сварочным источником. Сегодня продажи сварочных роботов Panasonic достигли отметки 40 000 единиц. Компания также выпускает универсальные манипуляторы для многих видов производственных задач.

Роботы Panasonic отличаются высокой надежностью, долгим сроком службы и относительно низкой стоимостью. В настоящее время они успешно применяются в автомобильной, нефтехимической промышленности, машиностроении, а также логистике (обработке грузов).

Adept (США)

Adept Technology, Inc. - многонациональная корпорация со штаб-квартирой в Калифорнии. Компания специализируется на промышленной автоматизации и робототехнике, включая программное обеспечение. Компания Adept была основана в 1983 году. Все началось, когда основатели компании Брюс Шимано и Брайан Карлайл, оба аспиранты Стэнфордского университета, начали работать с Виктором Шейнманом в стенфордской лаборатории искусственного интеллекта.

Сегодня компания активно работает в различных отраслях промышленности, требующих высокой скорости, точности обработки, включая обработку пищевых продуктов, потребительских товаров и электроники, упаковочной, автомобильной, медицинской и лабораторной автоматизации, а также развивающиеся рынки, такие как производство солнечных панелей.

Universal Robots (Дания)

Universal Robots — это датский производитель небольших гибких производственных совместных роботов, т. н. коллаборативных. Компания была основана в 2005 году тремя датскими инженерами. В ходе совместных исследований они пришли к выводу, что на тот момент на рынке робототехники преобладали тяжелые, дорогие и громоздкие роботы. Как следствие, они разработали идею сделать робототехнику доступной для малых и средних предприятий. В 2008 году первый UR5 cobots был представлен на датском и немецком рынке. В 2012 году был запущен второй робот — UR10. На выставке automatica 2014 в Мюнхене компания запустила полностью пересмотренную версию своего коллаборативного робота. Год спустя, весной 2015 года, был представлен новый робот UR3.

Rozum Robotics (Беларусь)

Rozum Robotics - компания-производитель инновационных продуктов в сфере робототехники. В портфеле компании сегодня ультра-лёгкий коллаборативный робот-манипулятор PULSE. Это лёгкий, компактный, простой в использовании робот, предназначенный для работы на производстве, в сфере обслуживания (а в перспективе и в доме).

Благодаря продуманным характеристикам безопасности робот компании Rozum Robotics не может нанести вред в случае столкновения с человеком. Это позволяет устанавливать роботов рядом с человеком для помощи в рутинных, неинтересных или опасных задачах.

Коллаборативный робот-манипулятор Rozum Robotics может быть использован для автоматизации множества задач и позволяет модернизировать и оптимизировать процессы на всех участках производства.

Торговый дом «АРКОДИМ » (Россия)

Компания «АРКОДИМ-Про» была основана в 2013 году в Казани и изначально производила станки с ЧПУ. Идея освоить производство роботов пришла весной 2014 года. Анализируя рынок станкостроения в России, руководители компании пришли к выводу, что роботов у нас никто не производит, а вот производителей станков с ЧПУ предостаточно. В результате всерьёз задумались разработать собственного промышленного робота.

На сегодняшний день компания выпускает декартовых линейных роботов-манипуляторов ARKODIM. Роботы данной архитектуры нашли широкое применение в производствах, занимающихся литьём пластика под давлением. Также роботы ARKODIM широко применяются вкупе с различными конвейерами, где они захватывают подаваемые конвейером детали и укладывают их в упаковку. Если робота оснастить разрабатываемой этой же компанией системой машинного зрения, то он сможет выполнять ещё ряд дополнительных функций. Ещё одной из сфер применения роботов ARKODIM является сварка.

BIT Robotics (Россия)

Компания BIT Robotics создает новое оборудование для новых технологических процессов. BIT Robotics является создателем первого российского промышленного дельта робота. Созданный компанией дельта робот по характеристикам не уступает самым современным и скоростным иностранным аналогам. В его конструкции применены самые передовые материалы, в том числе композитные.

Возможности предприятия и компетенции позволяют создавать любые роботизированные системы, широко применять серво системы и техническое зрение. Инженеры предприятия имеют богатый опыт работы. Большинство из них из космической и авиационной отрасли. Компания располагает самым современным производством, оснащенным станками с ЧПУ, литейным производством, гальваническим цехом, производством полимерных материалов и пр.

Специализация компании «Рекорд-Инжиниринг»: разработка и производство аналогов промышленных роботов известных иностранных брендов. Также мы располагаем серией роботов-манипуляторов собственной разработки, делаем роботов на заказ. Наша компания является одним из крупнейших производителей промышленных роботов в России.

Кроме того мы изготавливаем вакуумные подъемники, захваты роботов и нестандартное оборудование по спецификациям заказчика. Выполняем комплексную автоматизацию промышленного производства. Купить промышленные роботы российского производства можно, связавшись с нашими специалистами по одному из телефонов, указанных на сайте.

Наши цены промышленных роботов существенно ниже, чем на импортные, при том, что качество не хуже, об этом свидетельствует большое количество успешно реализованных проектов как в России, так и за границей.

Производство промышленных роботов в «Рекорд-Инжиниринг»

Наше главное преимущество в том, что мы делаем не только типовые образцы (например, аналоги продукции известных японских производителей), но и нестандартное оборудование. Это могут быть варианты моделей, которые уже не выпускаются и не поступают в продажу, либо же эксклюзивные, спроектированные под конкретные условия современные промышленные роботы, в т.ч. агрегатно-модульного типа.

Разработка промышленного робота возможна на основании чертежей, предоставленных заказчиком, или «Рекорд-Инжиниринг» разработает проект необходимого оборудования самостоятельно. В этом случае на начальном этапе мы подробно обсуждаем с заказчиком все детали и пожелания относительно готового изделия. Чтобы сделать этот процесс более эффективным, мы используем собственный стандарт - Исходные требования заказчика (ИТЗ). Это набор параметров, с помощью которых клиент может максимально подробно и точно изложить свои требования к оборудованию. Предварительный вариант ИТЗ наша компания разрабатывает самостоятельно с учетом всей полученной от заказчика информации, после чего клиент вносит в ИТЗ свои правки и дополнения.

Производство промышленных роботов для ООО «Рекорд-Инжиниринг» - процесс практически творческий. Для достижения лучшего результата мы вначале создаем электронный прототип готового робота и оцениваем его эффективность и соответствие пожеланиям заказчика. В случае необходимости, в первоначальный проект позднее могут вноситься коррективы.

Благодаря ответственному и продуманному подходу, результат нашей работы - высококачественные современные промышленные роботы российского производства и захватные устройства роботов. Наша продукция долговечна, не нуждается в специализированном обслуживании, проста и доступна в эксплуатации. Стоит отметить, что стоимость наших роботов вполне демократична и купить такой агрегат под силу буквально каждому предприятию.

Для заказа изготовления робота, свяжитесь с нашим менеджером.

История робототехники

Механический манипулятор и система управления - вот основные составляющие современных промышленных роботов. Они используются для выполнения разнообразных производственных процессов и перемещения объектов, многократно повышая эффективность деятельности предприятия. Особое распространение получили промышленные роботы в машиностроении.

Первые опыты разработки и производства промышленных роботов относятся к концу 50-х - началу 60-х годов прошлого века, когда американские инженеры Д.Девол и Д.Энгельберг создали компанию Unimation. Первые такие роботы появились в 1962 году в США; они назывались «Юнимейт» и «Версатран» - это были автоматические манипуляторы, созданные по образу и подобию человеческой руки. Чуть позже эстафету подхватила Япония - в 1968 году компания Kawasaki Heavy Industries получила от вышеупомянутой Unimation лицензию на производство роботов и создала свой первый экземпляр. С тех пор роботы Kawasaki постоянно совершенствуются. В наши дни их используют по всему миру и на мелких, и на крупных производствах разных отраслей. Хорошо известны потребителям также промышленные роботы Kuka и других японских производителей. Продажа роботов для промышленности - одна из основных статей японского экспорта, и более 40% подобного оборудования в мире - японского производства.

В основе промышленного робота лежат пространственные механизмы, обладающие многими степенями свободы. Роботы используются для работы в среде опасной или не доступной для человека, кроме того, они применяются как вспомогательные роботы в промышленном производстве. Промышленные манипуляторы широко используются в медицинской технике при создании протезов. Теория машин и механизмов имеет отдельный раздел, изучающий промышленные манипуляторы - теория манипуляторов. Известно также такое именование манипулятора, как механическая рука - промышленный манипулятор в узком смысле. Сегодня купить промышленного робота-манипулятора способна практически любая производственная компания.

Разработка и проектирование промышленных роботов

Разработка промышленных роботов манипуляторов требует решения большого числа задач, таких как обеспечение маневренности, выбор верного соотношения холостых и полезных ходов, устойчивости в работе. Бывает, что требуется проектирование манипулятора для специальных систем, когда оператор способен чувствовать усилие, которое создается на рабочем органе или грузозахвате.

Робот - программноуправляемое устройство, которое применяется в производственных процессах для выполнения задач, которые аналогичны тем, что выполняет человек, к примеру, перемещение крупногабаритных или массивных грузов, покраска, точная сварка, сортировка продукции. Проектирование робота-манипулятора производится исходя из производственных задач, которые робот должен решать. Роботы-манипуляторы имеют от 2-х до 6 степеней свободы и способен перемещать грузы в несколько сотен килограммов в радиусе до нескольких метров.

Роботы на производстве

В настоящее время тысячи компаний по всему миру делают ставки на использование в производстве роботов. Россия также старается не отставать в гонке производственного оснащения. На сегодня эффективное и конкурентоспособное предприятие просто обязано своевременно модернизировать свое производство, внедрять новые технологии, иметь исследовательскую базу. Сделать производство более эффективным можно за счет использования современных технологий.

Ярким примером такой технологии может стать внедрение робототехники, манипуляторов в технологическую цепь. Купить робот-манипулятор - выгодное решение для производства. Роботы-манипуляторы способны в автоматическом режиме производить технологические и вспомогательные работы.

Достоинства использования промышленных роботов очевидны:

Промышленные роботы российского производства на сегодня стали доступны не только крупным заводам, но и средним производственным предприятиям. На сегодняшний день купить робот-манипулятор стало значительно проще.

Роботы, являются одним из главных направлений, в котором ведется гонка лидеров промышленных держав за звание постиндустриальной экономики.

Да российская робототехника в целом заметно отстает по уровню развития, массовости и разнообразию от робототехники развитых стран, например, США, Японии, Южной Кореи.

Тем не менее, отдельные успехи в этой области возможны, что доказывает существование изделий, перечисленных ниже. Некоторые из них не только успешно производятся, но и пользуются спросом за границей. О миллионных тиражах говорить пока не приходится.

1. Promobot, Promobot, Россия (Пермь)

Разработанный в Перми "промобот", робот-информер, автономный антропоморфный робот на колесной платформе с поддержкой речевого общения.

Способен к распознаванию лиц, возраста и пола собеседника, его эмоций. Может рассказывать о продуктах. По-задумке, служит автоматизации процессов консультирования и повышению потока клиентов.

В октябре 2016 года продукция компании представлена третьей версией робота Prmobot. Компания располагает контрактами на выпуск более 250 роботов. Есть объемные зарубежные заказы (из Китая на 100 роботов). Продано 156 экземпляров по состоянию на октябрь 2016 года. В ряде регионов России появились официальные дилеры.

2. Роботы-тренажеры, Эйдос (Эйдос-Медицина), Россия

Компания Эйдос из Казани занимается разработкой и производством медицинских тренажеров. Это, в основном, роботы-пациенты: симуляторов новорожденных, роженицы, пациента для обучения эндохирургии. Роботы-тренажеры могут "дышать", "потеть", "истекать кровью", у них есть подвижность рук, ног и шеи. Кожа схожа с человеческой, зрачки реагируют на свет и "затухают", если робот "умирает". Робот для хирургических операций имеет отверстия на туловище для лапороскопических инструментов. Роботов Эйдос закупают в России на государственные средства, но есть также опыт поставок нескольких робо-тренажеров за рубеж - в Японию.

3. Аппараты Гном, ООО Индэл-Партнер, Россия

Телеуправляемые подводные аппараты компании Подводная робототехника. Аппараты активно продаются за рубеж, есть более 10 дилеров по всему миру. Также аппараты закупают МЧС и ВМФ России.

4. ТНПА Марлин-350, Тетис ПРО, Россия

ТНПА Марлин-350

Телеуправляемый необитаемый подводный аппарат легкого класса. Предназначен для наблюдения за охраняемой территорией, поиска и обнаружения объектов (нарушителей) на подконтрольной территории и выполнения иных профессиональных операций, связанных с пресечением попыток незаметного проникновения на охраняемый объект.

5. Российский промышленный робот-манипулятор ARKODIM, ООО «Торговый дом «АРКОДИМ», Россия

Промышленные роботы-манипуляторы ARKODIM были разработаны и производятся в России компанией «Торговый дом «АРКОДИМ».

Первый промышленный робот манипулятор был произведён в 2015 году. На сегодняшний день уже ряд предприятий по всей России приобрели и используют их.

Данные роботы применяются практически во всех сферах, где имеется рутинный монотонный труд человека. На сегодняшний день компания выпускает декартовых линейных роботов-манипуляторов. Роботы данной архитектуры нашли широкое применение в производствах, занимающихся литьём пластика под давлением, где они используется в паре со станками термопластавтоматами. Другая область применения промышленных роботов ARKODIM – это металлообрабатывающие предприятия, где роботы чаще всего обслуживают станки с ЧПУ загружая в них заготовки и извлекая затем готовые изделия. Так же на этих же предприятиях роботы применяются для автоматизации сварочного процесса. Роботы-манипуляторы ARKODIM прекрасно заменят человека у конвейера на любых предприятиях, они могут сортировать, узнавать и захватывать предмет с конвейера, а далее перекладывать на паллет или в коробку.

6. Экзоскелет ExoAtlet Albert, ООО ЭкзоАтлет, Россия

действующий прототип медицинского экзоскелета, вторая версия экзоскелета ExoAtlet, разработан в 2014 году. Ожидаемая стоимость первых коммерческих экземпляров - 1.5 млн рублей. Предназначен для параплегиков, кроме того, идет разработка модификации экзоскелета для больных другими заболеваниями.

В июле 2017 года начался сбор предзаказов на приобретение экзоскелета. Идут клинические испытания в НМХЦ им Н.И.Пирогова.

Автономный транспорт

Аврора (КБ Аврора / Avrora Robotics) Разработка решений (ПО и систем управления) для беспилотных и роботизированных автомобилей, а также для другой техники - беспилотных тракторов, беспилотных военных систем.

Вист Майнинг Технолоджи Разработка решений для беспилотных и роботизированных автомобилей. Беспилотные транспортные комплексы для горной промышленности.

Волгабус, Волжский Разработка беспилотного электрического мини-автобуса

ГАЗель Бизнес, Россия

КАМАЗ Разработка беспилотных и роботизированных автомобилей.

НАМИ (Центральный научно-исследовательский автомобильный и автомоторный институт) Разработка авотопилота для роботизации автомобилей

Андроиды с высоким сходством с человеком

Иннополис "Гагарин". Проект робота-андроида, разрабатываемый в Иннополисе. Проектом руководит Николаос Мавридис. В голове робота - 30 актуаторов, управляющих выражением эмоций. Искуственная кожа. Встроенная камера, микрофон и динамик позволяют роботу определять некоторые эмоции людей (используется нейросеть). Робот может воспроизводить эти эмоции своей мимикой.

Нейроботикс Полуторсовый "Робот Пушкин", имитирующий поэта А.С.Пушкина. 19 приводов, отвечающих за мимику. Поддержка распознавания и синтеза речи, чат-бот.

Бытовые роботы

xTurion Разработка мобильного робота-дворецкого Keepy

Robotronic Разработка робота-чемодана Tony

Гуманоидные роботы

Андроидная Техника (НПО "Андроидная техника") AR-600E, AR-601. Разработка двуного ходящего гуманоидного робота, способного ходить на двух ногах. Разработка робота FEDOR - гуманоидного робота, функционирующего по принципу аватара.

Доильные роботы

Промтехника-Приволжье (ООО "Промтехника-Приволжье"/ЗАО "Дробмаш"), Нижегородская область, Выкса Планы производства роботизированного доильного оборудования "Чародей" с 2017 года.

Р.СЕРТ (ООО "Р.СЕРТ") Разработчик автоматизированной системы доения крупного рогатого скота (доильного робота). На июнь 2016 продукт существует концепт. Разработан проект фермы на 200 голов дойного стада с использованием доильного робота, робота-раздатчика кормов, робота-выравнивателя кормов. Также в разработке система автоматизации доильного зала на базе системы карусельного типа - с ориентацией на стадо размером до 1200 голов КРС.

Космические роботы

Андроидная техника (НПО Андроидная техника) Телеуправляемый робот-андроид для работы в космосе. SAR-401

ЦНИИ РТК Космическая транспортно-манипуляционная система для выполнения технологических операций на внешней поверхности космических аппаратов и поддержки экипажа при внекорабельной деятельности.

Центр подготовки космонавтов им. Ю.А.Гагарина проект "Андронавт" - телеуправляемого робота-андроида для работы на орбитальных космических станциях

Медицинские роботы

Эйдос (Эйдос-Медицина), Россия, Татарстан, Казань Компания Эйдос из Казани занимается разработкой и производством медицинских тренажеров. Это, в основном, роботы-пациенты: симуляторов новорожденных, роженицы, пациента для обучения эндохирургии.

Катэрвиль, Россия, Новосибирск Известна разработкой роботизированного кресла Катэрвиль для инвалидов, которое позволяет не только двигаться по ровной плоскости, но и перемещаться по менее ровной поверности, преодолевать бордюры и лестницы. Для этого в кресло встроены выдвигаемые нажатием кнопки гусеницы.

МГУ им.Ломоносова в кооперации с АО НПО Сплав Ангел. Автоматизированный диагностический и лечебный комплекс поддержания жизнедеятельности человека. Существует в модификациях для обычных транспортных средств и для реанимационных отделений. Робот-сиделка. Робот-медсестра.

Моторика, Москва Робопротезы верхних конечностей. Разработка.

Швабе (АО Швабе), Татарстан Холдинг, занимающийся в том числе бионическими технологиями, например, разработкой модуля нейромышечного интерфейса для управления протезами конечностей.

ЭкзоАтлет (ООО ЭкзоАтлет), Россия, Москва Компания занимается разработками медицинского экзоскелета. В 2014 году разработана вторая версия экзоскелета для параплегиков. Идут разработки модификации экзоскелета для больных другими заболеваниями.

Охранные роботы

SMP Robotics, Зеленоград Охранные мобильные системы теленаблюдения, например, Трал Патруль

Ползающие роботы (краулеры)

ГК "Диаконт", С.Петербург. Самоходные роботы, для контроля труднодоступных участков нефтяных и газовых трубопроводов, а также другая робототехническая продукция.

Первичного осмотра

СЕТ-1 (ЗАО СЕТ-1) Скарабей, Сфера - досмотровые роботы

Персональные роботы

Лекси разработка стационарного "социального" персонального робота Lexy с поддержкой голосового взаимодействия

Платформы для создания роботов

ВолгГТУ и ФНПЦ "Титан-Баррикады", Волгоград Совместно разрабатывают шагающиме машины, которые могут служить платформой для создания роботов различного назначения - наземных и подводных, например: Восьминог, Кубань, Ортоног.

Мивар, Москва Создатель роботизированной многоцелевой платформы Муром-ИСП (совместно с компанией Интеллектуальные технологии) на базе программного логического ядра Разуматор.

Сервосила, Москва Разработчик небольшой мобильной гусеничной платформы Сервосила "Инженер", которая может использоваться в том числе вне помещений. Также производит робототехнические манипуляторы типа "Рука", "головы роботов" (комплексные системы управления с элементами ИИ для установки на мобильных роботов различных типов и т.п.

Подводные роботы

The "Whale" лаборатория подводной робототехники, разработчик телеуправляемого необитаемого подводного аппарата "Моби Дик". Есть продажи за рубеж. Планируются испытания на Байкале зимой 2016/2017 c погружениями на глубины до 1 км.

Индэл-Партнер (ООО "Индэл-Партнер) Телеуправляемые подводные аппараты компании Подводная робототехника. Аппараты Гном активно продаются за рубеж, есть более 10 дилеров по всему миру. Также аппараты закупают МЧС и ВМФ России.

Институт проблем морских технологий ДВО РАН Разработка АНПА различных типов (Скат-Гео, Л-2, Клавесин-1Р, Пилигрим, Платформа)

Ровбилдер (ROVbuilder) Реализовано более 100 ROV весом до 50 кг собственного производства. Модели ROV RB-50, ROV RB-150, ROV RB-300, ROV RB-600, ROV RB-MIRAGE.

Тетис ПРО Разработка различных подводных аппаратов легкого класса.

Программное обеспечение роботов

Robot Control Technologies, Россия, Пермь RCML (Robot Control Meta Language) - язык программирования роботов, позволяющий системам различных производителей эффективно взаимодействовать между собой. Считается, что благодаря использованию RCML специалисты, не имеющие специальных технических навыков, могут настроить взаимодействие роботов по заданному алгоритму. Разработчики из Перми участвуют в акселераторе проектов GenerationsS. Обновления RCML выходят с августа 2015 года.

Промышленные роботы

Рекорд Инжиниринг (ООО "Рекорд-Инжиниринг), Россия, Екатеринбург Проектирование и производство промышленных роботов-манипуляторов, производство аналогов импортных промышленных роботов манипуляторов

Торговый дом "АРКОДИМ", Россия, Татарстан Промышленные роботы. Российское серийное производство 3-7 осевых промышленных роботов ARKODIM собственной разработки. Декартовы промышленные роботы-манипуляторы консольного типа линейной архитектуры

Сельскохозяйственные роботы

Agro Robotic Systems Планы использования программно-аппаратных комплексов для замены водителей с/x транспортных средств

Avrora Robotics АгроБот - разработка колесного беспилотного трактора и одноименной комплексной беспилотной системы управления.

Агрополис (Холдинг Агрополис) При поддержке Ростсельмаш и Cognitive Technologies идет разработка беспилотных комбайнов

ИИПРУ КБНЦ РАН (Институт информатики и проблем регионального управления Кабардино-Балкарского научного центра РАН и Северо-Кавказского НИИ горного и предгорного садоводства) Разработка робота-комбайна для сбора сочноплодовой с/х продукции.

ЮРГИ (Технологический институт ЮРГИ), Кемерово Разработка прототипа самоходного агроробота - мотокультиватора с бензиновым ДВС.

Сервисные роботы - складские

Инфобот Системс, Москва. Складобот - роботизированная тележка для склада. В робота загружается список SKU. Автоматическое построение маршрута до стеллажей. Тележка передвигается к полке, сборщик идет за ней. После остановки у полки, сборщик перекладывает SKU в ящик. СкладоБот едет дальше по маршруту. В финале собранный заказ отвозится на финальный пункт.

ТехноСпарк, Зеленоград Робот-тележка Ronavi.

Сервисные роботы - официанты, инфоботы, промоботы и т.п.

ALFA Robotics (бренд российской компании АльфаЛЭД), Россия Специализируется на производстве, продаже и сдаче в аренду коммерческой робототехники. Основной продукт - антропоморфный робот-промоутер KIKI. Также робот AR-D, роботизированная касса ARC 70.

Promobot (ООО "Промобот), Россия, Пермь Разработка и выпуск автономных антропоморфных роботов на колесной платформе с поддержкой речевого общения. Роботы способны к распознаванию лиц, возраста и пола собеседника, его эмоций. Робот может рассказывать о продуктах. В октябре 2016 года продукция компании представлена третьей версией робота Prmobot. Компания располагает контрактами на выпуск более 250 роботов. Есть объемные зарубежные заказы (из Китая на 100 роботов). Продано 156 экземпляров по состоянию на октябрь 2016 года. В ряде регионов России появились официальные дилеры.

Известна прежде всего системами интерактивных телеуправляемых мобильных роботов и роботов промоутеров. R.Bot 100 - самый известный телеуправляемый робот (с некоторой долей автономности) компании R.Bot. Разработан в 2008 году. В Москве можно заметить использование робота в развлекательных целях, на различных мероприятиях, куда робота приглашают с оператором на почасовых условиях оплаты.

Андроидная техника Робот-учитель EVA, программированием которого занимаются в Казанском федеральном университете

ДинСофт (ООО "ДинСофт"), Россия, Москва. Компания ООО "ДинСофт" работает на рынке программного и аппаратного обеспечения. Последние несколько лет компания активно работает на рынке робототехники. Разработан прототип мобильного робота-официанта. Налажено полупромышленное производство собственного робототехнического комплекса "Робот-официант", производит интеллектуальную систему управления для мобильных промо-роботов отечественного и зарубежного производства. Выполняет заказы на разработку программного и аппаратного обеспечения. Аренда и продажа сервисных роботов. Интеграция и внедрение робототехнических систем в бизнес-решения заказчика.

Триобот, Россия, Москва Официальный дилер компании Промобот в Московском регионе. На RoboticsExpo 2016 компания Триобот представляла свои услуги на базе антропоморфного робота Promobot второй версии. Компания продает роботов, а также предоставляет возможность взять их в аренду, обеспечивает сервисное и гарантийное обслуживание, модернизацию и доработку под задачи заказчика.

Спорт и роботы

FootBot, "Спорт Автоматика", Россия Тренировочный комплекс для футболистов. Роботизированный футбольный робот-тренажер, первый в России.

Телеприсутствия роботы

Endurance Telepresense Робот ТракБот

R.Bot, группа компаний, Россия, Москва Разработка роботов телеприсутствия (а также роботов-информеров)

Wicron разработка робота телеприсутствия Webot

Бибитулс, Москва PadBot

Ходящие роботы

Андроидная Техника (НПО "Андроидная техника") AR-600E, AR-601. Разработка двуного ходящего гуманоидного робота, способного ходить на двух ногах. Разработка робота FEDOR - гуманоидного робота, функционирующего по принципу аватара.

Кубанский ГУ и МТИ Разработка робота, способного передвигаться по пересеченной местности на двух опорах, открывать двери, карабкаться по лестницы.

Компоненты для создания роботов

Luka Чат-бот Роман.

Презент (ООО "Презент") . Руки для роботов. Пальцы алюминиевые, полиуритановые. Компоненты.

Компьютерное зрение

VisionLabs LUNA, LUNA Cloud - платформы для распознавания лиц покупателей, подсчета укникальных клиентов

Образовательная робототехника

Роботикум (Группа компаний "Роботикум") Робот "Бабочка" для обучения будущих инженеров-робототехников методом управления движением с учетом динамических ограничений.

Семантика Официальный партнер Lego Education в России. www.semantika.tech . Комплексное образовательное решение по комплектации классов робототехники. Поставка наборов, ПО и учебных материалов. Полностью локализованные методические материалы и ПО. Обучение педагогического состава. Сообщество пользователей "Образовательные решения ЛЕГО". Гарантийное обслуживание 2 года.

Эвольвектор Серия элетронных и робототехнических конструкторов, предназначенных для изучения электроники и принципов создания робототехнических конструкций. Каждый набор серии укомплектован учебным пособием, в котором теоретический материал связан с практическими экспериментами. По сложности и тематической направленности конструкторы подразделяются на несколько групп.

Alma Mater Robotics, Россия, Одинцово Школа робототехники для учащихся средних школ.

В связи с этим особую популярность завоевывают решения по автоматизации производства на базе промышленных роботов, позволяющих обеспечить полный цикл обработки с высокой производительностью и точностью, избежать перерывов и производственных ошибок, свойственных человеку.

История промышленных роботов

История рынка промышленной робототехники насчитывает уже более 50 лет. Первый патент на робота был получен в 1961 году (подан в 1954) изобретателем Джорджем Деволом (George Devol), который основал в 1956 году вместе с инженером Джозефом Энгельбергом (Joseph F. Engelberger) компанию по первому серийному производству роботов Unimation Inc (от Universal Automatic – универсальная автоматизация). Энгельберг привлекал в компанию дополнительное финансирование, распространял идеи роботизации среди потенциальных заказчиков и популяризировал идею промышленной автоматизации. Несмотря на то, что патент был закреплен за Деволом, именно Энгельберга принято считать «отцом робототехники».


Возможностями автоматизации в первую очередь воспользовались автомобилестроители, и уже в 1961 году начались поставки роботов Unimate на завод General Motors, Нью Джерси. Роботы Unimate были сконструированы с использованием гидроусилителей и программировались в обобщенных координатах, воспроизводя последовательность действий, записанных на магнитный барабан.

Позднее компания Unimation передала свою технологию в Kawasaki Heavy Industries и Guest­Nettlefolds, таким образом открыв производство роботов Unimate в Японии и Англии.

Основное развитие промышленных роботов началось в конце 60­х – начале 70­х годов, когда в 1969 году в Стенфордском университете студент факультета машиностроения Виктор Шейнман (Victor Scheinman) разработал прототип современного робота, отдаленно воспроизводящего возможности человеческой руки, ­ Stanford arm с шестью степенями свободы, электрическими приводами и компьютерным управлением.

В 1969 году появляются разработки в области робототехники компании Nachi. В 1973 году немецкая компания KUKA Robotics демонстрирует своего первого робота Famulus, и почти одновременно швейцарская компания ABB Robotics выводит на рынок робота ASEA. Оба робота имеют по шесть управляемых осей с электромеханическим приводом.

В 1974 году промышленные роботы разрабатываются и устанавливаются на собственное производство в компании Fanuc, а в 1977 году первый робот Yaskawa появляется у компании Motoman.

Дальнейший рост промышленной робототехники был обусловлен развитием компьютера, электроники и масштабным расширением компаний на рынке автомобилестроения – основных заказчиков роботов. General Motors в 80­х годах потратила более 40 миллиардов долларов на разработки в области автоматизации. Основным рынком роботов считается внутренний рынок Японии, на котором находится большинство компаний по их производству: Fuji, Denso, Epson, Fanuc, Intelligent Actuator, Kawasaki, Nachi, Yaskawa (Motoman), Nidec, Kawada. В 1995 году из 700 000 роботов, используемых в мире, 500 000 работали в Японии.

В Советском Союзе крупнейшим интегратором робототехники стала компания «Автоваз». Развивая мощности по выпуску автомобилей и перенимая опыт мировых автомобилестроительных предприятий, в 1984 г. она приобрела лицензию фирмы KUKA. На базе отдельного станкостроительного подразделения концерна «Автоваз» началось производство отечественных роботов, применяемых на поточных линиях предприятия. На сегодняшний день ОАО «Автоваз» совместно с МГТУ «Станкин» реализуют программу выпуска линейки роботов для промышленных производств ­ до 1000 единиц ежегодно.

Преимущества использования промышленных роботов в производстве

Современный промышленный робот­манипулятор в большинстве случаев применяется для замены ручного труда. Так, робот может использовать инструментальный захват для фиксации инструмента и осуществления обработки детали либо держать саму заготовку для того, чтобы подавать ее в рабочую зону на дальнейшую обработку.

Робот имеет ряд ограничений, таких как зона досягаемости, грузоподъемность, необходимость избежать столкновения с препятствием, необходимость предварительного программирования каждого движения. Но при его правильном применении и предварительном анализе работы системы робот способен обеспечить производство рядом преимуществ, повысить качество и эффективность рабочего процесса.

Для оценки актуальности внедрения робота в процесс обработки приведем ряд преимуществ и недостатков применения робототехники на предприятии:

1. Производительность

При применении робота производительность обычно повышается. Прежде всего, это связано с более быстрым перемещением и позиционированием в процессе обработки, также играет роль и такой фактор, как возможность автоматической работы 24 часа в сутки без перерывов и простоев. В случае правильно выбранного применения роботизированной системы производительность по сравнению с ручным производством возрастает в разы или даже на порядок.

Следует отметить, что при широкой номенклатуре изделий, постоянных переналадках, необходимости большого количества периферийного оборудования для разных деталей производительность может и снижаться, делая процесс неэффективным и сложным.

2. Улучшение экономических показателей

Заменяя человека, робот эффективно снижает затраты на оплату специалистов. Особенно данный фактор важен в экономически развитых странах с высокими заработными платами рабочих и необходимостью больших надбавок за переработку, ночное время и т.д. В случае применения робота или автоматизированной системы, в цехе необходимо лишь наличие оператора, контролирующего процесс, при этом оператор может контролировать сразу несколько систем.

При первоначальной закупке роботизированная ячейка – достаточно серьезное финансовое вложение, и предприятие заинтересовано в его быстрой окупаемости. Неправильное применение оборудования и ошибки в его комплектации и расстановке могут привести к увеличению времени обработки либо трудоемкости работы, тем самым снизить экономичность производства.

3. Качество обработки

Часто причиной внедрения технологической системы на базе промышленного робота становится необходимость обеспечения заданного в документации на изделие качества обработки.

Высокая точность позиционирования промышленных роботов (0.1 ­ 0.05 мм) и повторяемость обеспечивают надлежащее качество изделия и устраняют возможность производственного брака. Исключение человеческого фактора приводит к минимизации рабочих ошибок и сохранению постоянной повторяемости на всей производственной программе.

4. Безопасность

Применение робота достаточно эффективно на вредном производстве, оказывающем неблагоприятное воздействие на человека, например, в литейной промышленности, при зачистке сварных швов, окрасочных работах, сварочных процессах и т.д. В случаях, когда применение ручного труда ограничивается законодательством, внедрение робота может являться единственным решением.

При работе в цехе периметр рабочей зоны ограждается различными устройствами для предотвращения проникновения человека в зону действия робота. Наличие защитных систем является главным и неотъемлемым условием безопасной работы роботизированных систем по всему миру.

5. Минимизация рабочего пространства

Правильно скомплектованная ячейка на базе промышленного робота более компактна, чем рабочая зона для выполнения ручных работ. Это достигается более эргономичной конструкцией сборочных кондукторов, небольшим размером места, занимаемого роботом, возможностью его размещения в подвешенном состоянии и т.д.

6. Минимальное обслуживание

Современные промышленные роботы, благодаря применению асинхронных двигателей и качественных редукторов, практически не нуждаются в обслуживании. Изготавливаются специальные модели роботов из нержавеющей стали, например, для работы в медицинской и пищевой промышленности, при высоких и низких температурах и в агрессивных средах. Это делает их менее восприимчивыми к окружающей среде и повышает износостойкость оборудования.

Применение роботов в отдельных производственных процессах

Сварка

Сварка считается наиболее типичным процессом для внедрения роботов. Исторически роботизированная сварка начала широко применяться в автомобилестроении, и в настоящее время практически все автомобильные производства в мире оснащены конвейерами, которые могут состоять из нескольких сотен роботизированных комплексов.


По данным исследований, около 20% всех промышленных роботов используются в сварочных процессах (в США около половины). Вторым по значимости применением считается укладка грузов на поддоны, применяемая на предприятиях с высоким объемом продукции, в особенности в пищевых производствах.

Аргонно­дуговая (TIG, MIG, MAG) или точечная сварка (RWS) с использованием робота обеспечивает более высокое качество изделий по сравнению с принятым сварочным процессом ручной или полуавтоматической сварки. Возможности периферийного оборудования позволяют обеспечивать полный контроль процесса, например, реализовать функцию бесконтактного слежения за сварным швом.

В настоящее время активно развивается применение роботизированной лазерной сварки (LBW), позволяющей лазеру сфокусироваться на точке с варьированием от 0,2 мм, с минимизированием теплового воздействия на изделие и высокой точностью и качеством сварки. Возможность выдержать сверхвысокие длины фокусировки (до 2 метров) и тем самым обеспечить дистанционную сварку существенно расширяет границы применимости сварочного процесса и увеличивает производительность изготовления изделия. Лазерная сварка активно применяется в авиастроении, автомобилестроении, приборостроении, медицине и т.д.

Переход на автоматическую сварку с использованием роботов минимизирует время цикла в несколько раз. Это достигается эргономичной конструкцией или модернизацией сварочной оснастки для обеспечения быстрого цикла сбора изделия, высокими скоростями перемещения робота и организацией поточного производства с обеспечением единовременной сборки­сварки изделий. Необходимо отметить тот факт, что роботизированные системы являются единственной возможностью совмещения обрабатывающих операций, к примеру, обеспечения плазменного или лазерного раскроя, и последующей сварки с помощью смены горелки или режимов сварки без переустанова детали.

Также роботизация сварочного процесса позволяет интегрировать программы сварки в применяемые на предприятии CAD/CAM системы для обеспечения процесса цифрового производства.

Автоматизация загрузки и выгрузки изделий – процесс, имеющий значение на любом современном производстве с высокой производительностью или большим весом и габаритами изделий. Так, роботы применяются для загрузки заготовок в металлообрабатывающие станки, выгрузки готовых изделий и укладки на соответствующие паллеты. Причем достаточно часто один робот обслуживает сразу нескольких машин и работает с разными изделиями, что удешевляет инвестиции в подобную автоматизацию и расширяет функционал внедряемого робота.






В Европе прослеживается тенденция к максимальному увеличению производительности за счет безостановочной круглосуточной работы, внедряется философия безлюдного производства, связанная со стремлением минимизировать расходы на персонал.

В СССР задачи сокращать ручной труд не ставили, робототехника применялась для автоматизации технологических машин, где могут существовать ограничения на труд человека, – штампов, прессов, гальванических ванн, нагревательных печей и т.д. Кроме того, человек может быть ограничен весом изделий. Так, для деталей от 20­30 килограмм требуется применение дополнительного грузоподъемного оборудования.

Внедрение автоматизации в литейных и кузнечно­прессовых цехах обусловливается необходимостью устранения тяжелых условий для рабочих и повышения качества производства: выгрузка тяжелых поковок, литейных заготовок, последующее охлаждение, загрузка в штампы для пресса и т.д. Не случайно, третье место применения роботов после загрузки­выгрузки занимает именно совмещение с кузнечно­прессовым и литейным оборудованием. Практически все процессы литья под давлением в Европе сопровождаются автоматизацией с использованием роботов.

Применение технологических систем на базе роботов может стать альтернативой использованию обычного специализированного на каком­либо технологическом процессе оборудования.

В среднем, цена внедрения робота с установкой и необходимым пакетом для взаимодействия с оборудованием обойдется предприятию в 5 млн. рублей, представляя собой действительно гибкое решение, которое может в будущем использоваться и для иных задач или реализовывать вспомогательные операции, к примеру, сортировку различных изделий, удаление заусенцев, сборочные операции и т.д.

Металлообрабатывающие процессы с использованием роботов

Помимо сварочных и вспомогательных операций роботы могут применяться в самих процессах обработки, выступая альтернативой обрабатывающему оборудованию.





Раскрой материала

Промышленные роботы активно используются для операций раскроя металла с помощью плазмы, лазера и гидроабразивной резки. В отличие от традиционной установки плазменного раскроя плазменные горелки с применением робота могут осуществлять трехмерную резку, что актуально для обработки металлоконструкций, металлопроката (тавров, двутавров, уголков и т.д.), а также подготовки поверхностей под углом для дальнейшей сварки, вырезки различных отверстий и т.д.

Раскрой металла с помощью лазерной резки выступает альтернативой для трехмерного лазерного комплекса, позволяя выполнить любой раскрой в трехмерном пространстве. Данная технология широко используется в автомобилестроении, а также достаточно эффективна для обрезки краев изделий после штамповочных и формовочных операций. Роботизированная ячейка для лазерной резки может использоваться и для лазерной сварки, а также в дальнейшем совмещать двух роботов, использующих один источник.

Гидро­ или гидроабразивная резка роботом расширяет возможности раскроя до обработки любых трехмерных деталей, повышает производительность. Гидроабразивная резка отличается отсутствием теплового воздействия и возможностью обработки практически любых материалов. Так, гидроабразивная резка роботом используется для вырезки всех отверстий в стали толщиной 3 мм по корпусу автомобиля Renault Espace на заводе во Франции (Romorantin, France). Полный цикл вырезки отверстий занимает 2 минуты 30 секунд.

Гибка труб

Гибка труб роботом используется в ограниченном виде, представляя собой бездорновую гибку с помощью позиционирования заготовки роботом и использования сопутствующей гибочной головки. Преимуществом такой обработки является высокая скорость изготовления, возможность обработки изделий с уже существующими присоединительными элементами и одновременное совмещение с загрузкой­выгрузкой изделий тем же роботом. Такие системы используются в автомобилестроении, изготовлении металлической мебели и других товаров народного потребления, где применяется бездорновая гибка.

Фрезерование, сверление, удаление заусенцев и сварных швов

Использование роботов для фрезерования, сверления и обработки кромок металлов, пластмасс, древесины и камня – новая, динамично развивающаяся технология. Она стала возможна прежде всего благодаря увеличению жесткости и точности современных манипуляторов. Основные преимущества заключаются в практически неограниченной рабочей зоне робота (систему можно оборудовать линейной осью в несколько десятков метров), высокой скорости обработки и большом количестве управляемых осей. Например, типичная фрезеровальная ячейка на базе промышленного робота имеет 8 – 10 управляемых осей и позволяет получить максимальную гибкость обработки.



Возможно использование самого разного приводного инструмента, пневматического и электрического, с воздушным и жидкостным охлаждением. Для снятия заусенцев с кромок деталей после фрезерования используются пневматический приводной инструмент с частотой вращения 35 000 об/мин, а для фрезерования металлов – электрический шпиндель с водяным охлаждением, мощностью 24 кВт.

Отдельно стоит упомянуть такой тяжелый, трудоемкий процесс для человека, как зачистка сварного шва на изделии. Применение автоматизации позволяет снизить воздействие вредных производственных факторов и существенно уменьшить время на выполнение зачистки.

Полирование и шлифование

Шлифование металлических деталей – сложный и грязный процесс, крайне вредный для человека. В то же время его автоматизация довольно проста и не представляет проблемы для современных промышленных манипуляторов. Робот всегда сможет повторить траекторию движения шлифовальщика, обеспечив при этом неизменную повторяемость и отличное качество обработки.

Процессы абразивной обработки поверхности можно разделить на два основных класса – шлифование и полирование. При шлифовании используют абразивные круги или ленты, съем материала может быть существенным, образуется много пыли. Полирование – более тонкий процесс, для которого применяются войлочные круги с абразивной пастой, съема материала при этом практически не происходит. Как правило, эти процессы комбинируют. Преимущество робота заключается в том, что он может обрабатывать деталь на нескольких абразивных инструментах поочередно, за один установ. Например, сначала снимается поверхностный слой на абразивной ленте, а потом деталь заполировывается на войлочном круге с автоматической подачей пасты.

Перспективы применения роботов

Достоинство робототехники – гибкость применения и возможность использования в практически неограниченном количестве процессов. Так, например, в авиастроительной отрасли в целях повышения качества при снижении ручного труда роботы начинают применяться в процессах клепки, обшивки фюзеляжа, выкладки композитных материалов, при различных работах в условиях ограниченного пространства. Активно распространяется применение роботов в измерительных системах. В США и Европе роботы используются в камерах очистки изделий под высоким давлением.

В России применение роботов пока ограничено. Так, в докризисный 2007 год было внедрено до 200 роботизированных систем с общей численностью около 8000 промышленных роботов по стране. Для примера, за тот же год в США было внедрено около 34 тыс., Европе – 43 тыс., Японии – 59 тыс. роботизированных систем. Причинами отставания являются недостаточная информированность российских технических специалистов и менеджмента предприятий, желание избежать больших затрат на их внедрение, низкая стоимость ручного труда.

Вместе с тем, в отличие от стационарного ЧПУ оборудования, робот ­ более широкофункциональная система, ориентированная на повышение качества и производительности производства и минимизацию ручного труда, приводящих в конечном итоге к положительному экономическому эффекту и повышению конкурентоспособности предприятия. А потому все больше российских интеграторов готовы решать задачи прикладного внедрения роботов в технологические процессы. Мы надеемся, что в течение ближайших лет концепция «безлюдного производства» в России будет интенсивно набирать обороты.

Игорь Проценко, Борис Иванов

ООО «Нью Лайн Инжиниринг»