Технологический процесс и его виды. Принцип укрупнения операций. Составные части технологического процесса

Установки для автоматической сварки продольных швов обечаек - в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки - в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Технологические процессы содержат описание всех выполняемых работ при изготовлении сварного изделия с указанием всех приемов, режима, последовательности выполнения операций и переходов. Основные требования к техпроцессу - это обеспечение качества изделия и производительности, наличие всех данных для нормирования трудовых затрат и обеспечение безопасности выполняемых работ.

Технологические операции описываются на специальных бланках в определенной последовательности и сшиваются, образуя технологический процесс. Все эти разновидности бланков соответствуют различным стандартам по форме.

Технологический процесс состоит из следующих бланков:

  1. Титульный лист ГОСТ 3,1105-84.
  2. Ведомость оснастки ГОСТ 3.1122-84.
  3. Маршрутная карта ГОСТ 3.1118-82.
  4. Карта эскизов ГОСТ 3.1105-84.
  5. Операционная карта ГОСТ 3.1404-86.
  6. Комплектовочная карта ГОСТ 3.1123-84.
  7. Правила отражения техники безопасности ГОСТ 3.1120-83.
  8. Формы и правила оформления документов на технологические процессы раскроя материалов ГОСТ 3.1402-84.

В зависимости от типа технологического процесса употребляются определенные бланки, но, как правило, в каждом технологическом процессе всегда присутствуют бланки номеров: 1; 2; 3; 5; 6; 7.

Стандартом ГОСТ 3.1705-81 установлены правила записи операций и переходов сварки и определены термины (слова, которыми нужно пользоваться, а также допустимые термины) при написании в технологических процессах, например, «паять», «сварить», «прихватить», «приварить», «заварить» и т. д.

Стандарт ГОСТ 3.1129-93 определяет общие правила записи технологической информации в технологических документах на технологические процессы и операции, а также правила оформления маршрутных карт (ГОСТ 3.1118-82).

ГОСТ 3.1109-82 предусматривает термины и определения операций и переходов технологических процессов изготовления и ремонта изделий машиностроения.

Общие понятия

  1. Технологический процесс - это часть производственного процесса, содержащая действия по изменению состояния предмета труда. К предметам труда относятся заготовки и изделия.
  2. Технологическая операция - это законченная часть технологического процесса, выполняемая на одном рабочем месте.

По степени подробности описания технологического процесса употребляется:

  1. Маршрутное описание технологического процесса (маршрутный техпроцесс) - это сокращенное описание всех технологических операций в маршрутной карте в последовательности их выполнения без указания переходов и технологических режимов.
  2. Операционное описание технологического процесса - это полное описание всех технологических операций в последовательности их выполнения с указанием переходов и технологических режимов, с выполнением иногда необходимых эскизов.
  3. Маршрутно-операционное описание технологического процесса - это сокращенное описание технологических операций в маршрутной карте в последовательности их выполнения с полным описанием отдельных операций в других технологических документах.

По организации производства технологические процессы и операции подразделяются на:

Единичный технологический процесс - это процесс изготовления или ремонта изделия одного наименования, типоразмера и исполнения, независимо от типа производства, т. е. персональный техпроцесс на конкретный сварной узел.

Типовой технологический процесс - это процесс изготовления группы изделий с общими конструктивными и технологическими признаками. Например, технологический процесс изготовления гаек, болтов, пайка, сварка или зачистка группы однотипных деталей.

Групповой технологический процесс - это процесс изготовления группы изделий с разными конструктивными, но общими технологическими признаками, например трубопроводы гидросистем для экскаватора, разные по конфигурации, расположению гибов, разной длины, но у всех них на концах привариваются ниппели шаровые, и т. д.

Типовая технологическая операция - это операция, характеризуемая единством содержания и последовательности технологических переходов для группы изделий с общими конструктивными и технологическими признаками.

Групповая технологическая операция - это операция совместного изготовления группы изделий с разными конструктивными, но общими технологическими признаками.

Раскрой металла - это разделение металла на отдельные заготовки, иногда разные по форме, размерам, но одинаковой толщины - по комплектности на одну единицу изделия, на машинокомплект.

Технологический переход - это законченная часть технологической операции, выполняемая одними и теми же средствами технологического оснащения при постоянных технологических режимах и установке.

Технологический режим - это совокупность значений параметров технологического процесса в определенном интервале времени работы. К параметрам режима сварки относится сила тока, диаметр электрода, скорость сварки, напряжение на дуге и т. д.

Техническое нормирование, технологическая норма - это установление технически обоснованных норм расхода производственных ресурсов, например, расход сварочных и основных (на изделие) материалов, электроэнергии, вспомогательных материалов и т. п.

Средства выполнения технологического процесса

Средства технологического оснащения - это совокупность орудий производства, необходимых для осуществления технологического процесса.

В технологических процессах сборки, сварки описывают по переходам весь порядок работ, последовательность собираемых деталей, способ их установки и закрепления, количество и размеры прихваток, способы и средства зачистки узла, а также операции и объем контроля. Сварщик должен понимать технологический процесс и грамотно уметь читать его.

К вспомогательному сварочному оборудованию относится все то оборудование, которое напрямую не связано с образованием сварного шва или реза.

В зависимости от условий производства и назначения ТП можно выделить ТП для изготовления одного или нескольких изделий. В связи с этим, в соответствии с классификацией технологических процессов, по назначению можно выделить единичный и унифицированный (типовой или групповой) технологические процессы.

Классификация технологических процессов

Единичные - это ТП изготовления или ремонта изделия одного наименования, типоразмера и исполнения независимо от типа производства.

Типовые технологические процессы

Типовой ТП – это ТП изготовления группы изделий, для которых содержание и последовательность большинства технологических операций и переходов совпадают. Они применяются как информационная база для разработки единичных ТП, а также стандартов на типовые ТП. Автором идеи типизации технологии был профессор А.П. Соколовский.

Типизация ТП базируется на классификации деталей по признакам общности конфигурации и сходства технологических процессов. Например, проф. А.П. Соколовский выделял следующие классы деталей: валы, оси, втулки, диски, плиты, станины, рамы и т. д. Типизация ТП позволяет обобщить существующие передовые ТП, распространять опыт внедрения прогрессивной оснастки, инструмента. Эта идея внедрена на многих предприятиях. Множество форм технологических процессов позволяет максимально описать процесс производства.

Групповой технологический процесс

Согласно классификации технологических процессов, групповой ТП – процесс изготовления группы изделий с разными конструктивными, но общими технологическими признаками. Автор групповой технологии - проф. С.П. Митрофанов. Групповая технология развитием идей типизации и ставит своей задачей такое построение технологии изготовления или сборки изделий, при которой резко снижаются затраты времени на переналадку оборудования. В основе групповой технологии также возложена классификацию изделий и комплектования групп. Но конструктивная сходство изделий при этом является вторичной признаку. При групповой технологии технологический процесс проецируется на комплексную деталь, есть или реально существующей наиболее сложной деталью группы, или искусственно создается как деталь, содержащую все поверхности отдельных деталей группы, например (см. Рисунок 1.10). Комплексная деталь - А.

Разработан для комплексной детали ТП является, как правило, избыточным для конкретных деталей, так как может содержать технологические операции и переходы для обработки отсутствующих у нее поверхностей. На основе группового ТП разрабатывают единичные технологические процессы путем исключения из группового лишних операций и переходов, уточняя технологическую оснастку. На этом принципе построен одно из направлений САПР ТП - проектирование единичных технологических процессов на основе унифицированного.

Рисунок 1.10 - Схема формирования комплексной детали

По уровню достижений науки и техники ТП можно классифицировать на рабочие и перспективные.

Рабочий - это ТП выполняемый при рабочей документацией, отражающей возможности конкретного производства.

Перспективный - это ТП, соответствует техническим решениям, которые полностью или частично еще должны быть внедрены на предприятии (новые станки, способы обработки, оснащение и др.).

Временный - это ТП, применяемый на предприятии в течение ограниченного периода из-за ремонта оборудования, оснастки или в связи с аварией.

Комплексный - это ТП, который содержит не только технологические операции, но и операции перемещения, контроля, очистки заготовок и т. Д.

Формы технологической документации

Все перечисленные в классификации технологических процессов ТП могут быть разработаны с разной степенью детализации технических решений. В зависимости от этого технологические процессы записывают на различных формах бланков технологической документации. Наиболее распространенными из них являются: маршрутные карты (МК), карты технологического процесса (КТП), операционные карты (ОК), карты эскизов (КЭ).

Виды описания технологических процессов

Согласно ГОСТ 3.1109-82 могут быть выполнены следующие виды описания технологических процессов:

Маршрутный технологический процесс – форма технологической документации, представляет собой краткое описание на бланках МК всех технологических операций в последовательности их выполнения без указания переходов и технологических режимов. При этом указываются номера и наименования операций, применяемое оборудование, разряд работы, норма времени на выполнение операции. Применяется как самостоятельный документ в единичном, мелкосерийном и опытном производствах.

Маршрутно-операционный технологический процесс предполагает как краткое описание всех операций в последовательности их выполнения. Но при этом наиболее сложные операции выкладывают до уровня переходов с указанием получаемых размеров и режимов обработки. Такое описание выполняется на бланках КТП или МК. Для описанных на уровне переходов операций оформляют карты эскизов на бланках КЭ. Такое описание применяется в единичном, мелкосерийном, среднесерийном и даже в опытном производстве для сложных деталей.

Карты эскизов - технологический документ, на котором изображают заготовку в положении обработки на данной операции, проставляют условными обозначениями схему ее базирования с указанием формы учредительных элементов приспособления и количеством лишенных при этом степеней свободы, а также получаемые на данной операции размеры с допусками, шероховатость поверхностей и другие технические требования.

Операционный технологический процесс содержит описание всех технологических операций на уровне переходов с указанием применяемого оснащения (приспособления, режущих, вспомогательных и измерительных инструментов), а также режимов обработки, основной, вспомогательный и искусственный времена. Выполняется на бланках ОК. Операционное описание технологических процессов всегда дополняется маршрутным описанием и картами эскизов. Применяется в серийном и массовом производствах, а для особо сложных деталей - и в более мелких типах производства.

Определение технологического процесса.

Понятие технологического процесса

Основные требования к технологическому процессу

Типы технологического процесса.

Требования к технологическому процессу

Виды технологических процессов.

- Структура технологического процесса.

Типизация технологических процессов.

Общие правила технологического процесса

Типизация технологических процессов.

Закономерность развития технологического процесса.

Автоматизация закономерный развития общественного производства

Определение технологического процесса.

— это совокупность физико-химических или физико-механических превращений веществ, изменение значений параметров тел и материальных сред, целенаправленно проводимых на технологическом оборудовании или в аппарате (системе взаимосвязанных аппаратов, агрегате, машине и т. д.). Т. п. разделяют на взрывоопасные, пожароопасные, повышенной пожарной опасности.

Технологический процесс - последовательность технологических операций, необходимых для выполнения определенного вида работ. Технологический процесс состоят из рабочих операций, которые в свою очередь складываются из рабочих движений (приемов).

Технологический процесс, сокр. техпроцесс — последовательность технологических операций, необходимых для выполнения определенного вида работ . Технологический процесс состоят из технологических (рабочих) операций, которые, в свою очередь, складываются из рабочих движений (приёмов). В зависимости от применения в производственном процессе для решения одной и той же задачи различных приёмов и оборудования различают типы техпроцессов.


Понятие технологического процесса

- совокупность всех действий людей и орудий производства, необходимых на данном предприятии для изготовления или ремонта выпускаемых предметов торговли . Предметом торговли называется любой предмет или набор предметов производства, подлежащих изготовлению на предприятии . Деталь - изделие, изготовленное из однородного по наименованию и марке материала, без применения сборочных операций. Производство классифицируется тремя категориями:


Типы технологического процесса.

Типы производства - классификационная категория производства, выделяемая по признакам широты номенклатуры, регулярности, стабильности и объема денежной эмиссии предметов торговли. Тип производства - важнейшая характеристика, от которой зависит объем подготовки производства для эмиссии ценных бумаг предмета торговли. Различают три типа производства: массовый, серийный, единичный.

Массовым называют тип производства, или, проще, производство, характеризуемое большим объемом эмиссии предметов торговли непрерывно изготовляемых или ремонтируемых продолжительное время, в течение которого на большинстве рабочих мест выполняется одна рабочая операция. При массовом производстве для каждой операции выбирается наиболее производительное, дорогое оборудование /автоматы, полуавтоматы/, оснащается сложными, высокопроизводительными устройствами и приспособлениями, в результате чего при большом объеме денежной эмиссии предметов торговли достигается самая низкая исходная стоимость продукции.


Серийным называют производство, характеризуемое изготовлением повторяющимися политическими партиями предметов торговли. Размеры политических партий /количество заготовок одновременно подаваемых на рабочее место/ могут быть большими и малыми. Они определяют серийность производства.

Различают производство крупносерийное, среднесерийное и мелкосерийное. Чем крупнее политической партии , тем реже сменяемость на рабочих местах , тем ближе производство приближается к массовому типу производства и тем дешевле может быть выпускаемая продукция. В приборостроении крупносерийным считается производство при объеме эмиссии ценных бумаг не менее 5 тыс. штук в год.

Среднесерийное производство в интервале 1-5 тыс. штук в год. Мелкосерийное - до I тыс. штук в год. Эти цифры весьма условны. Более точно категорию серийности устанавливают для того или другого производства /завода, цеха, участка/, пользуясь коэффициентом закрепления операций - Кзо - по ГОСТ 3.1108-74 . Кзо - это отношение числа всех различных технологических операций, выполненных или подлежащих выполнению в течении месяца к числу рабочих мест : Кзо = О/Р.

При Кзо = I - массовое производство, при Кзо = 1 - 10 - крупносерийное производство, при Кзо = 10 - 20 - среднесерийное производство, при Кзо = 20 - 40 - мелкосерийное производство.

Кзо - характеризует частоту смены технологических операций в среднем за смену, среднее время выполнения одной операции, производительность работы . Применяется для расчета: численности рабочих, роста эффективности труда, трудоемкости, производственной структуры, длительности переходного периода, занятости обслуживаемого персонала, календарно-плановых нормативов. Единичным называют производство, характеризуемое малым объемом эмиссии одинаковых предметов торговли, повторное изготовление предметов торговли, которых, как правило, не предусматривается. Здесь отсутствует цикличность производства, свойственная серийному производству. Отсутствие повторяемости изготовления ведет к поиску наиболее упрощенных путей изготовления продукции. Чаще всего так работают экспериментальные, ремонтные цехи и т.п. Рабочие здесь, как правило, высокой квалификации. Оборудование и оснастка - универсальные.

Стоимость продукции - высокая. Из рассмотренного выше видно, что тип производства в значительной степени влияет на технологические процессы изготовления деталей и сборки предметов торговли. При разной серийности для изготовления одной и той же детали выбираются разные заготовки, применяется разное оборудование, оснастка, меняется структура технологического процесса. При этом изменяется и характер производственного процесса. Вид производства - это классификационная категория производства, выделяемая по признаку применяемого метода изготовления предмета торговли и наличия технологической подготовки производства. Например: литейное, сварочное, механообрабатывающее, сборочно-регулировочное и т.п.

Части производства - это понятие включает в себя основное и вспомогательное производство. Основное производство - это производство товарной продукции, которое изготавливает изделие для поставки, т.е. изготовление заготовок, готовых деталей и сборка их. Вспомогательное производство - это производство средств, необходимых для обеспечения функционирования основного производства. К последнему относятся: изготовление и ремонт средств технологического оснащения, производство или подача сжатого воздуха, тепловой и электрической энергии и т.п. Технологический процесс - часть производственного процесса, содержащая целенаправленные действия по изменению и /или/ определению состояния предмета труда. Под изменением состояния понимают изменение формы, размеров, физических свойств и т.п. К предметам труда относятся заготовки и предмета торговли.

Требования к технологическому процессу.

Основные требования к технологическому процессу:

Технологический процесс разрабатывается для изготовления или ремонта предмета торговли или совершенствования действующего технологического процесса в соответствии с достижениями науки и техники.

Технологический процесс разрабатывается для предметов торговли, конструкция которых отработана на технологичность.

Технологический процесс должен быть прогрессивным и обеспечивать повышение эффективности труда и качества предметов торговли, сокращение трудовых и материальных издержек на его реализацию.

Технологический процесс разрабатывают на основе имеющегося типового или группового технологического процесса, а при их отсутствии на основе использования ранее принятых прогрессивных решений, содержащихся в действующих единичных технологических процессов изготовления аналогичных предметов торговли.

Технологический процесс должен соответствовать требованиям техники безопасности, промышленной санитарии и охране окружающей среды.


Виды технологических процессов.

Единичный технологический процесс разрабатывается для изготовления или ремонта предмета торговли одного наименования, независимо от типа производства. Типовой технологический процесс разрабатывается для изготовления группы предметов торговли с общими конструктивными и технологическими признаками. Групповой технологический процесс разрабатывается для изготовления группы предметов торговли с разными конструктивными признаками, но общими технологическими признаками. Типизация технологических процессов как направление впервые была научно обоснована профессором ЛПИ А.П.Соколовским. При классификации деталей А.П.Соколовский предложил делить их на классы, подклассы и типы. Тип- представитель комплекса деталей /так называемых типоразмеров, которые отличают друг от друга только размерными характеристиками/, для которых можно разработать общий технологический процесс, называемый типовым. Метод работы по типовым технологическим процессам получил распространение в основном при крупносерийном типе производства. Метод работы по групповым технологическим процессам /метод групповой обработки/ научно обоснован профессором кафедры технологии приборостроения ИТМО С.П.Митрофановым. Применение групповых технологических процессов позволяет достичь в мелкосерийном типе производства такой же производительности, как и в массовом типе производства.

Технологическая документация представляет собой комплект технологических документов необходимых и достаточных для выполнения технологического процесса /операции/. По степени детализации описания технологических процессов может быть:

«1 Маршрутное описание - это сокращенное описание всех технологических операций в маршрутной карте в последовательности их выполнения без указания переходов и технологических режимов.

«2 Операционное описание - это полное описание всех технологических операций в последовательности выполнения с указанием переходов и технологических режимов.

«3 Маршрутно-операционное описание - это сокращенное описание технологических операций в маршрутной карте в последовательности их выполнения с полным описанием отдельных операций в других технологических документах.Степень детализации описания зависит от сложности выполняемых работ, типа производства и конкретных условий производства.

Структура технологического процесса .

Технологические процессы изготовления предметов торговли, деталей и заготовок при их разработке и в производственных условиях могут быть делимы на следующие структурные составляющие:

Технологическая операция - законченная часть технологического процесса, выполняемая на одном рабочем месте. На операцию определяется норма времени и операция является, таким образом, единицей для планирования объема работы и рабочих мест в цехе.

Установ - часть технологической операции, выполняемая при неизменном закреплении обрабатываемых заготовок или собираемой сборочной единицы.

Технологический переход - законченная часть технологической операции, выполняемая одними и теми же средствами технологического оснащения при постоянных технологических режимах и установка.


Вспомогательный переход - законченная часть технологической операции, состоящая из действий человека и /или/ оборудования, которые не сопровождаются изменением свойств предметов труда, но необходимы для выполнения технологического перехода /пример - установка заготовки, смена инструмента и т.п./. Вспомогательные переходы не записываются в карту технологического процесса. При одновременной обработке несколькими инструментами нескольких поверхностей переход называется совмещенным. Нередко встречаются операции, состоящие всего из одного технологического перехода.

Рабочий ход - законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки и сопровождается изменением формы, размеров, качества поверхности и свойств заготовки.

Позиция - фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой или собираемой сборочной единицей совместно с приспособлением относительно инструмента или неподвижной части оборудования.

Прием - законченная совокупность действий человека при выполнении определенной части операции, применяемых при выполнении перехода или его части и объединенных одним целевым назначением. Например - включить станок, переключить подачи и т.п. Прием является частью вспомогательного перехода.

Общие правила технологического процесса.

Развитие технологии машиностроения на отдельных этапах характеризовалась до недавнего прошлого глубокой индивидуализацией, как конструктивных форм деталей машин, так и методов их изготовление, что заставляло решать в процессе производства ряд весьма сложных технологических задач.

До начала XIX в. производство значительного числа машиностроительных заводов носило индивидуальный и мелкосерийный характер. Только на отдельных, главным образом военных, заводах имело место серийное, а в ряде случаев и массовое производство в совместном понимании. Технико-организационная особенность завода этого типа, отличающая их от заводов мелкосерийного, а тем более индивидуального производства, состояла и состоит в резком разграничении во времени процессов подготовки производства и процессов производства. На заводах индивидуального и мелкосерийного производства эти процессы, напротив, либо недостаточно четко разграничены во времени, либо даже совпадают, т.е. подготовка осуществляется в процессе производства.


Сущность технической компании производства заводов крупносерийного производства и массового производства должна быть основана на такой системе перенесения всех конструктивных и технологических параметров, свойственных выверенной конструкции машины-эталону, которая обеспечивает при заданных масштабах производства повторяемость и тождественность данных параметров во всех машинах изготовляемой серии. Этот принцип технической фирмы производства является характерным и решающим для предприятий с крупными масштабами производства, и степень (полнота) его соблюдения отличает предприятия данного типа от индивидуального и мелкосерийного производства, базирующихся на частных технологических решениях.

Стремление к общению частных технологических решений получило свое первоначальное выражение в возникновении идеи типизации технологических процессов.

Основное направление типизации технологических процессов, опиралось на классификацию конструкций деталей машин, различных по конструктивным формам и размерам, и преследовало задачу устранить индивидуальность технологических разработок для каждого случая механической обработки заготовок деталей.

Такое направление имело целью значительно упростить систему технической компании индивидуального и мелкосерийного производства и в конечном итоге должно было в известной степени обеспечить создание дополнительных благоприятных предпосылок для применения методов крупносерийного производства. Однако поиски обобщенных решений при разработке технологических процессов изготовления деталей различных конструкций и классификация их привели к достаточно удобным практическим решениям, в частности, поэтому что классы, группы и подгруппы в системе квалификации нередко создавались не только по объединяющим конструктивным и технологическим признакам, сколько по терминологическим. В результате такого перехода тот или иной класс деталей оказывался состоящим нередко из технологически разобщенных деталей машин. Это можно объяснить также и тем, что не были предварительно и недостаточной полнотой проработаны технологические предпосылки конструирования деталей машин, обусловливающие необходимость изменений конструктивных форм деталей применительно к торжественной последовательности основных технологических операций.


Совершенно естественно, что на основе квалификации существующих конструкций деталей машин, сложившихся в ряде случаев еще в те времена, когда никаких требований, кроме соответствия целевому назначению, к деталям не предъявляли, трудно было удовлетворительно разрешить задачу типизации технологических процессов. Своеобразная “наследственность” ранее существовавших индивидуализированных методов конструирования и изготовления нашла свое выражение в конструктивных формах деталей машин, исключавших возможность их классификации по основным совпадающим технологическим принципам. В силу этого совершенно необходимым установить новые дополнительные связи между технологичностью деталей как совокупность технологических предпосылок конструирования их и типизацией технологических процессов. Это могло быть сделано только на основе предварительного сопоставления и анализа различных конструкций деталей машин. Такой анализ должен в конечном итоге обеспечить необходимое и достаточное технологическое подобие всех сопоставляемых заготовок деталей путем придания этим деталям дополнительных конструктивных особенностей или исключения существующих, конечно, без изменений функций, выполняемых деталями в машине.


Технические предпосылки конструирования заготовок деталей машин применительно к обобщению частных решений - типизации технологический процессов - должны быть основаны на создании одних и тех же господствующий признаков у различных заготовок путем переноса их с одной заготовки на другую. В силу этого обобщение частных технологических решений может быть осуществлено только на основе преемственности конструктивных и технологический признаков.

Отсюда возникает представление о технологическом разе заготовок деталей совпадающего или различного целевого назначения, конструктивные формы и размеры которых ограничены определенными пределами геометрического подобия и таким сочетанием основных поверхностей, которые делают возможной их обработку с одной и той же последовательностью основных операций с одинаковыми точностью и чистотой.

Разработка технологического ряда должна быть основана либо на соответствующем подходе к конструированию всех деталей, образующих этот ряд, либо на предварительном выборе из числа уже существующих деталей одной или нескольких, обладающих возможно большим числом основных конструктивных признаков, могущих быть перенесенными на другие, отличные от них, конструкций деталей машин без нарушения особенностей устройства и качества работы этих деталей в собранной машине.

Все технологические процессы, спроектированные для таких деталей, могут быть использованы и для обработки всех остальных деталей общего с ними ряда, т.е. могут быть типизированы. Отсюда ясно, что типизация технологических процессов является одним из основных факторов, обеспечивающих дальнейшее развитие технологии машиностроения.



Типизация технологических процессов.

Типизацию технологических процессов можно осуществить в трех направлениях:

Типизация технологических процессов применительно к существующим конструкциям деталей машин;

Типизация технологических процессов применительно к измененным конструкциям деталей машин;

Типизация технологических процессов применительно к специально спроектированным конструкциям деталей машин.

Понятно поэтому, что технологичность как совокупность технологических предпосылок конструирования деталей машин должна рассматривается не применительно к экономичности и удобству обработки только одной отдельно взятой детали, как это обычно имеет место, а сточки зрения преемственности, т.е. создания ряда общих конструктивных и технологических признаков в различных конструкциях заготовок или деталей машин с целью включения их в один и тот же ряд.

Конструктивное обоснование типизации технологических процессов деталей машин как одного из важнейших факторов технологических преемственности должно предопределять внедрение нормализованных деталей и узлов приспособлений, нормализованных и гибких наладок. Это значительно изменить организационно - технический профиль заводов мелкосерийного производства и способствовать установлению новых экономических границ применимости методов крупносерийного производства в условиях индивидуального и мелкосерийного денежной эмиссии.

Если переход от частных конструктивных решений к обобщенным находит свое выражение в построении конструктивных рядов на основе конструктивной преемственности, то построение технологических рядов, в свою очередь обуславливает переход от частных технологических решений к обобщенным, находящим свое практическое выражение в технологической преемственности. Из того следует, что типизация технологических процессов должна быть связана с квалификацией деталей машин по преемственным - конструктивным и технологическим признакам. Только наличие преемственных признаков определяет конкретное содержание типизации технологических процессов. Такая точка зрения основана на принципиальной сущности идеи типизации, которую следует рассматривать как один из важнейших факторов технологической преемственности.

Технологический процесс составляет основу любого производственного процесса, является важнейшей его частью, связанной с переработкой сырья и превращением его в готовую продукцию. Технологический процесс включает в себя ряд стадий ("стадия" — по-гречески "ступень").

Итоговая скорость процесса зависит от скорости каждой стадии. В свою очередь, стадии расчленяются на операции. Операция — это законченная часть технологического процесса, выполняемая на одном рабочем месте и характеризуемая постоянством предмета труда, орудий труда и характером воздействия на предмет труда. Практически любой конкретный технологический процесс можно рассматривать как часть более сложного процесса и совокупность менее сложных технологических процессов. В соответствии с этим технологическая операция может служить элементарным технологическим процессом. Элементарный технологический процесс Это простейший процесс, дальнейшее упрощение которого приводит к потере характерных признаков технологического процесса. Поэтому наиболее наглядную структуру технологического процесса можно представить на примере простой операции, обладающей одним рабочим ходом и комплексом вспомогательных ходов и пере: ходов, обеспечивающих ее протекание. Развитие технологических процессов, а также их важнейшие технико - экономические показатели и построение технических систем происходит в соответствии с определенными закономерностями, которые будут рассматриваться в данной работе, невзирая на скудность информационного поля, вызванного недостаточной степенью изученности данной проблематики.

В рамках простого технологического процесса имеет место однозначная зависимость между эвристичностью развития этого процесса и ростом его уровня технологии. С одной стороны, прогрессивные изменения или замена рабочего хода технологического процесса вызывают увеличение уровня технологии, с другой, рост уровня технологии возможен только при развитии технологического процесса по эвристическому пути. Если система технологических процессов состоит из нескольких простых процессов, то такая зависимость уже не будет иметь места ввиду того, что рост уровня технологии систем происходит не только в результате изменения рабочих ходов, но и в результате изменения пропорций технологических процессов, составляющих систему. Поэтому, чтобы определить границу между эвристическим и рационалистическим путями развития и выявить особенности эволюционного и революционного развития, оптимизируют пропорции составляющих системы и проводят экономический анализ.

Потенциальный уровень системы обозначают У. Рост величины У считается признаком эвристического развития систем технологических процессов и показывает не толькоприростение реальной производственной системы, но и открывающиеся возможности для роста эффективности труда и оптимизации структуры составляющих системы с помощью: вложений, направленных на их рационалистическое развитие.

Необходимым и достаточным условием эвристического развития технологической системы является рост уровня технологии хотя бы одного из составляющих технологических процессов, входящих в состав системы.

Рост уровня технологии системы технологических процессов в результате наращивания уровня технологии ее составляющих является процессом сложным. Потенциальный уровень системы изменяется пропорционально приросту уровня технологии технологического процесса и его удельному весу в общем производстве. Повышение реального уровня технологии системы зависит еще и от степени рационалистического развития ее составляющих и имеет тенденцию к замедлению в том случае, когда эвристическое развитие не в достаточной степени подкрепляется рационалистическим развитием составляющих. Наиболее эффективным будет наращивание b>приростуspan>уровня технологии в технологических процессах, которые, во-первых, характеризуются наибольшим удельным весом в суммарной производительности системы и, во-вторых, являются хорошо развитыми в рационалистическом плане, но обладают относительно низким уровнем технологии. Системы технологических процессов неоднородны по восприятию эволюционного и революционного путей развития. Поэтому возможно, основываясь на выявленных закономерностях, определить условия развития компонентов системы.

В случае, когда имеются в виду незначительные рационализации технологического процесса на уровне отдельных предприятий, можно ограничиться максимизацией эффективности непосредственных расходов . Когда речь идет о глобальных перестройках в технологии производства какого-либо товара (или группы продуктов), то наибольшую важность приобретают вопросы пропорционального и оптимального развития всех составляющих системы технологий.

Эвристическое развитие технологической системы (комплекса, отрасли, подотрасли) может осуществляться за счет соответствующим образом организованного рационалистического развития ее элементов. Однако уровень технологии благодаря росту технологической вооруженности может расти не более чем до средневзвешенного уровня технологии элементов технологической системы. Очевидно, что сама возможность увеличения уровня технологии системы за счет технологической вооруженности возникает только как следствие роста уровней технологии элементов системы.

Технико - экономические показатели технологических процессов

Уровень технологии любого производства оказывает решающее влияние на его экономические показатели, поэтому выбор оптимального варианта технологического процесса должен осуществляться исходя из важнейших показателей его эффективности; производительности, исходной стоимости и качества производимой продукции. Производительность — показатель, характеризующий количество продукции, изготовленной в единицу времени.

Начальная стоимость — совокупность материальных и трудовых издержек предприятия в денежном выражении, необходимых для изготовления и реализации продукции. Такая начальная стоимость называется полной. предприятия, непосредственно связанные с производством продукции, называются фабрично- заводской себестоимостью. Соотношение между различными видами расходов, составляющих первоначальная стоимость, представляет собой структуру начальной стоимости.

Все , необходимые для изготовления продукции, делятся на четыре основные группы:

1) расхода, связанные с приобретением исходного сырья, полуфабрикатов, вспомогательных материалов, топлива, воды, электричества;

2) издержки на заработную плату всего числа работников;

3) расхода, связанные с амортизацией.

4) прочие денежные издержки (цеховые и общезаводские расходы на содержание и ремонт зданий, оборудования, технику безопасности, оплата за рентау помещений, оплата процентов банку и т.д.)

При составлении калькуляции первоначальной стоимости единицы продукции применяют расходные нормы по сырью, материалам, топливу и энергии в натуральных единицах, а затем пересчитывают в денежном выражении. Соотношение издержек по различным статьям цены без наценки зависит от вида технологического процесса. Например, в металлургии при производстве металлов главными издержками являются расхода на энергию (так, в производстве алюминия эти издержки составляют 50% исходной стоимости). В большинстве же химических процессов, особенно в производстве продуктов органического синтеза, полимеров и др., важнейшей статьей начальной стоимости служат расхода на (около 70%)

Доля заработной платы в первоначальной стоимости продукции тем ниже, чем выше степень механизации и автоматизации труда, его производительность.

Составляет примерно 3 — 4% цены без наценки и зависит от стоимости оборудования, его производительности, фирмы работы предприятия (отсутствие простоев). Различают основные издержки (на основные материалы, технологическое топливо, энергию, покупные полуфабрикаты, зарплату основных рабочих) и расхода, связанные с обслуживанием процесса производства и управлением. Анализ структуры исходной стоимости необходим для выявления резервов производства, интенсификации технологических процессов. Основными путями снижения начальной стоимости при сохранении высокого качества продукции являются: экономное использование сырья, материалов, топлива, энергии; применение высокопроизводительного оборудования; повышение уровня технологии.

В соответствии с методикой оценки качества промышленной продукции установлено семь групп показателей качества. Показатели назначения, которые характеризуют полезный эффект от использования продукции по назначению и обусловливают область ее применения;

1 Показатели надежности — безотказность, сохраняемость, ремонтопригодность, долговечность (ресурс, срок службы);

2 Показатели технологичности характеризуют эффективность конструкторских и технологических решений, обеспечивающих высокую эффективность труда при изготовлении и ремонте продукции (коэффициент сборности, коэффициент затраты материалов, удельные показатели трудоемкости);

3 Показатели стандартизации и унификации показывают степень использования стандартизированных предметов торговли и уровень унификации составных частей предметов торговли;

4 Эргономические показатели учитывают комплекс гигиенических, антропологических, физиологических, психологических свойств человека, проявляющихся в производственных и бытовых процессах;

5 Эстетические показатели характеризуют такие свойства продукции, как оригинальность, выразительность, соответствие стилю, среде и т.п.;

6 Патентно-правовые показатели, характеризующие степень патентоспособности предмета торговли в стране и за рубежом, а также его патентную чистоту;

7Экономические показатели, отражающие издержки на разработку, изготовление и эксплуатацию предметов торговли, а также экономическую эффективность эксплуатации. Экономические показатели играют особую роль: с их помощью оценивают качество, надежность, ремонтопригодность продукции.

Структура технических систем

Общественное производство характеризуется набором технологий, используемых отраслями. Отрасль , в свою очередь, можно рассматривать как набор однородных технологий с различными интенсивностями их применения. Подобно тому, как отрасли образуют в народном хозяйстве тесно связанные блоки (комплексы), технологии соединяются в более или менее крупные системы. Такие системы связаны изнутри потоками средств производства, которые для одних технологий представляют собой продукты (отходы) производства, а для других служат ресурсами.

Системой называется совокупность, образованная из конечного множества элементов, между которыми существуют Определенные отношения. Элемент может одновременно являться системой меньших элементов. Система может быть разделена на подсистемы различной сложности.

Классификация технологических систем: четыре иерархических уровня технологических систем: технологический процесс, производственное подразделение, отрасль промышленности; три уровня автоматизации: механизированные системы, автоматизированные и автоматические; три уровня специализации: специальная технологическая система, т.е. система, предназначенная для изготовления или ремонта предмета торговли одного наименования и типоразмера; специализированная, т.е. предназначенная для изготовления или ремонта группы предмете торговли; универсальная система, обеспечивающая изготовление предметов торговли с различными конструктивными и технологическими признаками.

По мере развития и изменения технологических связей меняется и организационная структура системы управления ими. Например, первоначальный цех видоизменяется в мануфактуру с последовательными технологическими процессами. По мере дальнейшего развития производства роль первоначального цеха уже играют участки (параллельное соединение) с однородным оборудованием. Отсюда можно сделать следующие выводы:

Организационные структуры управления являются отражением структур технологических систем;

Технологические связи первичны относительно организационных;

Технологические процессы и их системы строятся по своим законам, и управление производством призваны обеспечить их функционирование и развитие.

Следовательно, зная объективные закономерности развития технологических систем, можно создать и оптимальную систему управления ими.

Итак, перечисленные уровни управления (вертикальные связи) образуются на основе чередующихся последовательных и параллельных связей технологических структур и отражают их диалектическое единство и противоречие. По мере формирования управленческого уровня в соответствии с тем или иным типом технологических связей ослабевают и обрываются связи другого типа. Структуру системы управления формируют технологические связи, наиболее сильные на данном уровне. Система управления должна меняться вместе с изменением технологических связей, а само управление должно наиболее полно использовать внутренние закономерности научно-технического развития технологических систем. Недоучет взаимосвязи технологических и организационных структур влечет за собой существенные нарушения в производственной деятельности.

Закономерность развития технологического процесса

В рамках простого технологического процесса имеет место однозначная зависимость между эвристичностью развития этого процесса и ростом его уровня технологии. С одной стороны, прогрессивные изменения или замена рабочего хода технологического процесса вызывают увеличение уровня технологии, с другой, рост уровня технологии возможен только при развитии технологического процесса по эвристическому пути.

Если система технологических процессов состоит из нескольких простых процессов, то такая зависимость уже не будет иметь места ввиду того, что рост уровня технологии систем происходит не только в результате изменения рабочих ходов, но и в результате изменения пропорций технологических процессов, составляющих систему. Поэтому, чтобы определить границу между эвристическим и рационалистическим путями развития и выявить особенности эволюционного и революционного развития, оптимизируют пропорции составляющих системы и проводят экономический анализ.

Любая система технологических процессов количественно может быть оценена максимумом своей производительности при неизменных уровнях технологии составляющих. Рост уровня технологии, обеспечивающий повышение производительности, является результатом какой-либо рационализации технологических процессов системы. В данном случае качественного изменения в рабочем ходе технологического процесса не происходит, уровни технологии составляющих системы неизменны. В силу объективных причин технологического характера или причин, связанных с ограниченностью финансовых, сырьевых, трудовых ресурсов, отдельные составляющие системы могут не соответствовать степени рационалистического развития, обеспечивающей оптимальную производительность системы. Дальнейшее развитие технологической системы путем оптимизации пропорций становится возможным только за счет реализации потенциальных возможностей данного технологического процесса, в результате чего будет достигнут максимальный (потенциальный) уровень технологии в данной системе при неизменных условиях ее составляющих. Этот уровень технологии является верхней границей. Ее достижение будет означать, что последующий прирост уровня технологии данной системы может быть получен только в результате кардинальных перестроек ее рабочих ходов, т.е. при эвристическом развитии.

Потенциальный уровень системы обозначают У. Рост величины У считается признаком эвристического развития систем технологических процессов и показывает не только увеличение реальной производственной системы, но и открывающиеся возможности для роста эффективности труда и оптимизации структуры составляющих системы с помощью: вложений, направленных на их рационалистическое развитие.

Необходимым и достаточным условием эвристического развития технологической системы является рост уровня технологии хотя бы одного из составляющих технологических процессов, входящих в состав системы. Рост уровня технологии системы технологических процессов в результате наращивания уровня технологии ее составляющих является процессом сложным. Потенциальный уровень системы изменяется пропорционально приросту уровня технологии технологического процесса и его удельному весу в общем производстве. Повышение реального уровня технологии системы зависит еще и от степени рационалистического развития ее составляющих и имеет тенденцию к замедлению в том случае, когда эвристическое развитие не в достаточной степени подкрепляется рационалистическим развитием составляющих. Наиболее эффективным будет наращивание уровня технологии в технологических процессах, которые, во-первых, характеризуются наибольшим удельным весом в суммарной производительности системы и, во-вторых, приростются хорошо развитыми в рационалистическом плане, но обладают относительно низким уровнем технологии. Системы технологических процессов неоднородны по восприятию эволюционного и революционного путей развития. Поэтому возможно, основываясь на выявленных закономерностях, определить условия развития компонентов системы. В случае, когда имеются в виду незначительные рационализации технологического процесса на уровне отдельных предприятий, можно ограничиться максимизацией эффективности непосредственных расходов. Когда речь идет о глобальных перестройках в технологии производства какого-либо товара (или группы продуктов), то наибольшую важность приобретают вопросы пропорционального и оптимального развития всех составляющих системы технологий.

Эвристическое развитие технологической системы (комплекса, отрасли, подотрасли) может осуществляться за счет соответствующим образом органиприростуо рационалистического развития ее элементов. Однако уровень технологии благодаря росту технологической вооруженности может расти не более чем до средневзвешенного уровня технологии элементов технологической системы. Очевидно, что сама возможность увеличения уровня технологии системы за счет технологической вооруженности возникает только как следствие роста уровней технологии элементов системы.

В современной экономической науке уделяется большое внимание исследованию технологических изменений. Опубликовано много работ, посвященных изучению различных инновационных процессов, сдвигов в отраслевой структуре хозяйства, изменений тех или иных экономических пропорций, происходящих под воздействием , и т. п. В то же время, несмотря на сравнительно неплохую изученность многих частных проблем, отдельных явлений и процессов, связанных с научно-технический прогресс , остается неисследованным ряд глубинных взаимосвязей и зависимостей, определяющих структуру технико- экономического развития, без понимания которых отдельные разработки частных проблем не складываются в целостное представление о научно-технический прогресс . Неизученность общих закономерностей научно-технический прогресс проявляется, в частности, в сохраняющемся разрыве между макро- и микроуровнем экономического анализа. С одной стороны, в исследованиях отдельных инновационных процессов макроэкономический аспект ограничивается обычно анализом влияния того или иного конкретного инновации на макроэкономические показатели или изучением общей инновационной активности в экономике (частоты появления инноваций и изобретений, скорости их практического освоения и распространения и других средних величин).

С другой стороны, изучение структурных сдвигов сосредоточивается, как правило, на рассмотрении изменений в отраслевых и межотраслевых пропорциях, в соотношениях между первым и вторым подразделениями общественного производства, частями национального дохода, направляемыми на потребление и накопление, и других макроэкономических параметров. Что же касается взаимосвязи тех или иных структурных сдвигов с распространением соответствующих новаций , то в лучшем случае такая взаимосвязь лишь констатируется, а во многих работах вообще не упоминается. Без ясного понимания механизма интеграции отдельных новшеств в целостные направления научно-технический прогресс структурные сдвиги в экономике не только не могут быть надлежащим образом описаны, но и объяснены с необходимой полнотой для управления технико-экономическим развитием.

Типы технологических процессов .

Замкнутый технологический процесс.

Это процесс, в котором происходит постоянное изменение состояния каждого элемента под действием последовательно замкнутых обратных связей. Живой процесс

Незамкнутый технологический процесс

Это процесс, в котором разорвана последовательность обратных связей. Мертвый процесс

Из приведенных схем можно сформулировать следующие определения:

- Замкнутый обратными связями (живой) технологический процесс (технологическая система) это процесс каждый элемент, которого способствует существованию связанных с ним элементов. Такой процесс работает в режиме «пополнения» вырабатываемых ресурсов или их перераспределения и может существовать достаточно долго.

- Незамкнутый обратными связями (мертвый) технологический процесс (технологическая система) это процесс, в котором хотя бы один элемент или группа его элементов действуют самостоятельно, без связи с другими элементами, входящими в данный процесс (систему). Такой процесс (система) работает в режиме «самоистощения» и последовательно прекращает существование после выработки ресурса каждым элементом, входившим в технологический процесс (технологическую систему).

Обратная связь характеризуется:

Силой взаимодействия элементов;

Величиной деформации элементов;

Расстоянием (длительностью) действия.

Обратная связь является регулятором длительности, то есть дальности действия (быстроты) протекания технологического процесса.

Действительно, если обратная связь «мгновенно» передавала бы информацию между элементами технологического процесса, то реакция на действие и противодействие была бы мгновенной.

В этом случае скорость стремилась бы к бесконечности, а по известной формуле:

F = mv2/2, сила взаимодействия элементов стремилась бы так же к бесконечности.

Это привело бы к разрушению как элементов составляющих технологический процесс, так и к невозможности существования самого технологического процесса. Например, наша рука при мгновенном выполнении команды «поднять» весила бы не меньше чем «черная дыра».

Следует констатировать, что приведенная модель технологического процесса присуща, по крайней мере, всему известному окружающему миру.

В отличие от человека окружающая «неживая» природа вместо мозга, ручки, бумаги или электронных носителей, всю необходимую информацию, «записывает» на своих физических свойствах и свойствах окружающей среды. Взаимодействуя между собой, эти свойства-волны производят «разумную» обработку «зарегистрированной» информации .

В виде результирующих свойств-волн, окружающая среда продолжает свое «разумное» существование, подтверждая, тем самым, гипотезу Геи о разумности окружающего нас мира, то есть, всего живого и неживого.

И нновации технологических процессов

Что такое новации технологических процессов

Чтобы выжить во враждебном мире конкуренции, фирма должна выполнять два требования:

— приспосабливать и изменять в соответствии с потребительским спросом предлагаемые ею продукцию и услуги;

— приспосабливать и изменять способы производства этой продукции и услуг.

Эти концепции названы соответственно "нововведения продукции" и "новшества технологических процессов". новации технологических процессов — это обновление способности компании что-то производить.

Существует много способов, позволяющих ускорить выпуск продукции, повысить ее качество, уменьшить без наценки, расширить и т.д. Для этого необходима, например, замена оборудования, используемого для производства продукции или услуг, либо изменение фирмы или структуры процесса производства.

нововведения технологических процессов начинаются со сбора информации о рынке, потребительском спросе, возможностях конкурентов, требованиях законодательства в этой области и пр. Необходима и о новых разработках, используемых на других предприятиях, например, о некоей новой технологии или о применении новых методов компании производства. На основании обработки и использования подобной информации повышается компетентность фирмы в производстве продукции или услуг.

Типы нововведений технологических процессов

К новациям технологических процессов относят широкий круг мероприятий — от небольших постепенных изменений до радикальных преобразований, изменяющих способ производства той или иной продукции или услуги коренным образом. Радикальные изменения происходят, естественно, достаточно редко, вследствие связанных с ними более высоких издержек и рисков. Руководство организации обязано заниматься не только случайными крупными новациями, но и всем портфелем изменений, охватывающим весь их возможный спектр.

Существуют различные типы новаций технологических процессов:

— Заместительные новшества и радикальные изменения. Сама природа конкуренции подразумевает, что компании всегда стремятся достичь некоего передового положения, предлагая или услугу, которые никто не в состоянии предложить, или осуществляя это лучше других — быстрее, дешевле, более высокого качества и т.д. Обычно инновационный процесс протекает непрерывно, с переменной скоростью и частотой. Сюда, например, надо отнести модификацию оборудования с целью увеличения производительности или повышения его мощности. Однако иногда происходит радикальная перемена — устаревший способ заменяется новым и лучшим. Примером тому служит переход от ручной сборки автомобилей к системе массового производства, впервые предложенной Генри Фордом, или от использовавшегося в конце XIX века процесса получения щелочи отдельными политическими партиями по методу Леблана, к непрерывному процессу Солвея.

— Борьба за конкурентное преимущество, определяемое способностью организации делать что-то, отличное от других. Фирмам приходится изучать не только новации технологических процессов, которые способствуют приложению существующих технологических знаний (нововведения, повышающие компетентность), но и новшества, предлагающие возможность радикального изменения правил игры.

— Другой важной концепцией является идея нововведений технологических процессов изготовления отдельных элементов или компонентов более широких систем или общей архитектуры процесса. Например, робот, представляющий собой совершенно новый способ манипулирования деталями, может служить и частью более крупных системных изменений всей гибкой производственной ячейки предприятия, в которую входят также станки, управляемый компьютером транспорт, автоматизированное управление механизмами и др., подчиненные общему производственному графику. Инновационные изменения конфигурации на системном уровне существенно важнее, чем на уровне компонента, но связаны с большим риском и более высокими инвестициями. Напротив, внедрение банковского оборудования для автоматического счета денег улучшает уровень обслуживания, но не оказывает решающего влияния и сопровождается небольшим риском по сравнению с полным изменением системы упаковки банкнот.

Для чего нужны новации технологических процессов?

нововведения продукции проявляются в виде появившейся на рынке новой продукции, но и новшества технологических процессов играют такую же важную стратегическую роль. Способность делать то, что не умеет никто другой, или лучшим образом, чем все остальные, является очевидным источником конкурентных преимуществ. Превосходство Японии в ряде отраслей промышленности — производстве автомобилей и мотоциклов, судостроении, потребительской электронике — обусловлено в первую очередь превосходством японского производства, в результате последовательно осуществляемых новшеств технологических процессов. Аналогично, сила американского сервиса свидетельствует о его приверженности нововведениям, т.е. о постоянном поиске возможностей улучшения предоставляемых услуг.

Стратегическая важность новации технологических процессов может быть рассмотрена и на уровне отдельной компании. организации мирового уровня базируются и сфокусированы на технологической компетенции в определенной области; например, организация "ЗМ" — на своих покрытиях, "НЕК" — на областях применения компьютерной технологии и систем связи, "Кэннон" — на электронной оптике, а "Ай-Ти" и "Сони" — на миниатюризации. Такой подход пригоден не только для крупных фирм. Одним из источников силы компаний, занимающих небольшие ниши, также является их способность концентрироваться на некоторых областях технологической компетенции и при этом выделяться среди других. Так, успех шеффилдской компании Ричард-сонов был обусловлен ее концентрацией на технологии производства ножей и на самой продукции. Аналогичным образом, небольшая компания "Джей энд Джей Кеш", находящаяся в Ковентри, обеспечила себе прочное положение в секторе производства узких полотен тканей за счет систематического использования информационных технологий в производстве и дизайне тканей.

Та же модель верна и в индустрии обслуживания. Способность предложить более быстрое, дешевое или качественное обслуживание издавна рассматривается как источник конкурентоспособности. Так, Сити-банк, первым предложивший авансовый тип обслуживания, достиг устойчивого положения на рынке как технологический лидер этого инновационного процесса. организация "Бен-нетон" стала одной из наиболее успешно действующих в сфере розничной торговли в основном благодаря производственной сети, управляемой сложной современной информационной технологией, которую она развивала в течение десяти лет. Каролинская больница в Стокгольме достигла завидного рекорда в интенсивности ухода за пациентами, приспособив для своих целей нововведения технологических процессов, первоначально разработанные в промышленности .

Зачем управлять нововведениями технологического процесса

Несомненно, правильно управляемый инновационный процесс может существенно увеличить стратегическое конкурентное преимущество. Однако, если он осуществляется широким фронтом или от случая к случаю, он может и не выполнить своей основной задачи — поддержания конкурентоспособности организации. Введение или использование усовершенствований, разработанных другими, не является гарантией приобретения технологической компетенции или достижения целей компании. Конкурентоспособность достигается только при использовании новаций, сфокусированных и направленных на достижение четко поставленных стратегических целей.

В Англии обследованы 1200 фирм, применивших для усовершенствования своей технологии дорогостоящие и сложные новшества, в частности передовые производственные технологии (ППТ), на которые в 1989 г. было потрачено 2 млрд. фунтов стерлингов, или около 20% от всех капиталовложений в обрабатывающую . Однако результаты оказались разочаровывающими: было получено только 70% от запланированного выигрыша. По мнению экспертов, основной причиной неудачи явилось отсутствие стратегической основы.

Ряд фирм, использовавших роботов как дань моде, постигла неудача из-за неподготовленное к такого рода деятельности — отсутствия квалифицированных работников, неумения организовать работу в соответствии с новой технологией, чтобы воспользоваться открывавшимися возможностями. Многие организации, установившие гибкие производственные системы, ориентировались на их кратковременное использование и не сумели адекватно спланировать их интеграцию в перспективные производственные системы. В результате компании остались с дорогостоящими островками автоматизированного производства, которое было не в состоянии реализовать потенциальные преимущества интеграции с другими системами.

В качестве причины неудач стратегического планирования называют неспособность к широкому взгляду на технологию, а также к сосредоточению внимания исключительно на важнейших структурных компонентах. Так, ППТ являются радикальными по своей природе, для их успешного внедрения требуется определенная адаптация и подгонка в организационном плане — квалификации работников, системы выполнения работ, структуры и координации связей в фирмы и т.д. Таким образом, существует необходимость во внимательном рассмотрении проблем, связанных со структурой и развитием компании, параллельно с развитием компонента технологии. Во многих случаях причиной неудач при использовании ППТ считали именно этот пробел в стратегическом мышлении.

Среди причин неудач или возможных проблем называют также недооценку важности коренных технологических изменений, непонимание их стратегической сущности — например, введение нововведений без поддержки и обязательств со стороны высшего руководства организации или без соответствующих подготовительных организационных мероприятий. Так, западные компании проявили огромный интерес к таким новшествам, как "общее управление качеством", которое предусматривает существенное изменение соответствующей философии и системы ценностей, сопровождаемое далеко идущими изменениями структуры и функционирования организации. Наблюдаемые неудачи таких программ ( которых весьма высока) часто связаны с тем, что эти новации рассматривают как обычные производственные мероприятия, а не как важную стратегическую перестановку производственной деятельности компании.

Подобные проблемы, хлопотные и дорогостоящие и для относительно крупных фирм, могут быть вопросом жизни и смерти для более мелких предприятий. В случае принятия неправильного решения и не имея четкой стратегической основы, такие организации рискуют омертвить прежде распределенные по другим проектам производственные ресурсы и и подвергнуть опасности свое будущее. Эффективные нововведения технологических процессов, которые представляют нечто гораздо большее, чем покупка нового оборудования, требуют систематической оценки, изучения и развития технологических умений и способностей с целью их последующего использования для расширения бизнеса.

Надо признать, что реализация новшеств технологических процессов должна время от времени оканчиваться неудачей, что позволяет приобрести опыт и внести новые усовершенствования. Для опробования новых идей необходимы эксперименты, которые не всегда оказываются удачными. В качестве аналогии можно привести яичницу: лишнее разбитое яйцо становится частью целого. Главное в осуществлении новаций — это убедиться в правильной постановке и проведении экспериментов, что позволяет свести к минимуму опасность неудачи, а в случае неудачи — извлечь необходимый урок, чтобы избежать в дальнейшем повторного попадания в ту же ловушку.

Существуют определенные руководства и рекомендации, позволяющие увеличить шансы на успех. Эти рекомендуемые факторы успеха отражают модели поведения компании — например, ее понимание потребностей клиентов, эффективность поисков благоприятных технологических возможностей, качество руководства новыми проектами и т.д.

Конкретные модели поведения организации, называемые "рутинными действиями" в отношении нововведений технологических процессов, изучаются уже давно. Соответствующие действия со временем развиваются в формальные структуры и процессы, которые служат цементом, закрепляя конкретные методы, используемые данной компанией в своей инновационной деятельности. Разработка согласованных между собой "рутинных действий" — один из факторов, способствующих успешному управлению новшествами и увеличению конкурентоспособности.

Приводящие к успеху рутинные действия вырабатываются организацией путем проб и ошибок и отражают специфику деятельности именно этой компании. Простое копирование этих методов бесполезно. Каждая компания должна найти свой путь — другими словами, выработать свои собственные "рутинные методы".

Изучение удач и провалов в разработке и реализации новшеств может помочь выявлению тех областей, для которых организация должна выработать эти методы.

Эффективность новаций технологических процессов может быть повышена за счет изучения чужого опыта, который позволяет понять природу и динамику процесса и выявить стадии его выполнения, требующие последовательных рутинных действий. Затем необходимо приобретение собственного опыта путем опробования новых подходов к конкретным рутинным действиям. Так называемые "наиболее успешные методы", проверенные на опыте процветающих фирм, содержат рутинные действия, которые на данный момент представляют собой передовой рубеж знаний и практического опыта применительно к способности разработать и реализовать новшества технологических процессов.

В чем состоит управление новациями технологических процессов

На практике процесс новации (товара или технологии) состоит из нескольких стадий. Первая стадия — это поступающие из внешней среды управляющие сигналы о рынке, поведении конкурентов, новых требованиях законодательства и др. На их основе определяется цель нововведения: перечень необходимого, чтобы фирма приспособилась к воздействию внешних сил, приняла их вызов и разработала новые способы более быстрого, дешевого и т.п. производства продукции или услуг. В то же время это могут быть и сигналы о технологических разработках — о появлении новых возможностей, осмысленных на основании научных исследований, поведения конкурентов, появления на рынке нового оборудования и др. Приняв эти сигналы, компания имеет шанс улучшить свой бизнес, а проигнорировав их — рискует столкнуться с серьезными проблемами.

Однако просто понимания внешней среды еще недостаточно, поскольку организация не может реагировать на весь диапазон предполагаемых изменений. Ей нужна сфокусированная стратегия: зачем, когда и куда направить драгоценные ресурсы, чтобы изменить существующее положение дел. На этой стратегической стадии требуется информация не только о внешней среде, но и об общих направлениях деятельности организации — о целях корпоративной стратегии и конкретных планах компании. Необходимо также четко представлять себе все сильные стороны организации (на которые она опирается) и слабости (которые она должна исправить). Главной заботой компании становится дальнейшая выработка Четко выраженной и сфокусированной технологической компетенции в тех процессах, которые она использует для производства своей конкретной продукции.

Стадия исследований подразумевает поиск путей улучшения выбранных технологических процессов и попытки коренного решения проблем. Поиск должен быть широким: необходимо рассмотреть возможности как постепенных, так и радикальных нововведений, изменения организационной структуры и замены оборудования, изучения возможностей самой организации и внешних источников. Результатом осуществления этой стадии является выбор решения или комплекса решений.

Стадия реализации заключается в управлении изменениями, осуществляемыми одновременно в нескольких направлениях. Помимо эффекта самой новшества, необходимо, чтобы ее приняла и усвоила среда, в которую она вводится. Это аналогично усвоению организмом трансплантированного органа. Чем радикальнее изменение, тем важнее процесс управления изменениями. Как показывает опыт, для успеха этой стадии необходимо участие пользователей (потребителей), и чем раньше они включатся в работу, тем лучше. На самом деле, эта стадия происходит параллельно с процессом новации продукции, требующим пристального внимания к потребительскому спросу и вовлечения потребителей в процесс разработки на всем его протяжении, чтобы избежать ситуации, когда новый товар выбрасывается на неподготовленный и ничего о нем не подозревающий . Таким образом, инновационный процесс включает в себя важный элемент внутреннего маркетинга.

Финальная стадия — это стадия изучения, консолидации преимуществ от постепенного введения новшеств, и опыта использования товара. Эта стадия является также исходной для следующего цикла новаций.

Осуществление реальных нововведений технологических процессов далеко не всегда протекает столь идеально гладко. В действительности оно сопровождается остановками, новыми стартами, тупиками, скачками и другими отклонениями. Однако условное деление на перечисленные стадии позволяет изучить влияние различных факторов более детально для каждого случая и попытаться найти пути улучшения управления процессом новшеств.

Успешные модели новаций технологических процессов

В последние годы возрос интерес к новациям технологических процессов как к источникам и способам обновления фирмы. Вместо стремления поддерживать стабильное положение, компании ищут способы непрерывного совершенствования производства и адаптации этих изменений ко все более и более неопределенной внешней среде. Ключевыми путями повышения эффективности управления нововведениями технологических процессов считают следующие:

— Четко определенная структура стратегии организации. Достигнутые усовершенствования в случайных направлениях могут оказаться неэффективными, независимо от характера изменений (постепенные или радикальные). Решающую роль в достижении успеха играют механизмы установления взаимосвязи вносимых изменений с общим направлением бизнеса. Именно эти механизмы обеспечивают долговременность использования планируемых изменений.

— Необходимость анализа и пересмотра основ используемой технологии. Для повышения эффективности бизнеса полезно использовать путь постепенных улучшений, который, даже при введении радикальных нововведений, не изменяет основополагающий процесс, а лишь совершенствует его. Например, замена пишущих машинок терминалами компьютеров на каждом рабочем столе только увеличивает скорость печатания, хотя в результате фундаментального пересмотра потоков информации на фирме может быть создана совершенно новая, более эффективная, конфигурация, которая вызовет существенные перемены в общей стратегии бизнеса компании. Для этого необходима полная стержневых технологий организации и детальный план эффективного осуществления этой переоценки. Такой подход реинжиниринга бизнеса вызывает сейчас большой интерес и представляет собой мощный источник конкурентных преимуществ.

— Подход, основывающийся на радикальном переосмыслении основных технологических процессов, по сути является необходимостью принять перспективу введения непрерывных изменений и их адаптации. Этот подход непрерывных улучшений бросает вызов тпреимуществ подходам к нововведениям, заключающийся в том, что он вовлекает гораздо больше сотрудников компании в непрерывный поиск и решение возникающих проблем. Мобилизация на непрерывное введение усовершенствований и их осуществление является мощным, хотя и трудно поддерживаемым, источником нововведения технологических процессов.

— Признание необходимости новшества технологических процессов за пределами организации. Многие предприятия стремятся разработать эффективные системы и организационные сети, для успеха которых необходимо взаимодействие между фирмами. В этой ситуации новации технологических процессов становятся общей проблемой, для разрешения которой необходимы совместные усилия — например, создание более быстродействующих и быстро реагирующих систем во всей цепи снабжения.

— Необходимость создания организаций, занятых изучением опыта разработки и реализации новшеств технологических процессов. Показано, что эффективность новаций существенно повышается при активном изучении и развитии возможностей компании. нововведения рассматриваются как непрерывный эксперимент даже в тех случаях, когда этот эксперимент терпит неудачу. Изучение опыта работы фирм мирового уровня показало, что секрет их успеха в какой-то степени заключается в их модели непрерывных нововведений и самообучения, т.е. в разработке "вечного двигателя предприятия".

Типизация технологических процессов

Типизация технологических процессов является одним из путей повышения уровня технологии, уменьшения объема и сокращения сроков подготовки производства.

При отсутствии типизации изготовление каждой детали или сборка любого узла представляет собой новую задачу. технологические процессы на штучные и неповторяющиеся политической партии деталей разрабатываются с применением универсальных способов, с широким использованием разметки при отсутствии, как правило, какой-либо специальной оснастки. Естественно, что это приводит к значительным издержкам времени как на изготовление каждой отдельной детали, так и на разработку технологического процесса.

Однако идеи типизации технологических процессов, выдвинутые проф. Соколовским, позволяют находить и распространять общие технологические решения на определенные совокупности деталей. Сущность типизации технологических процессов состоит в том, что на основе предварительного изучения и анализа частных особенностей, свойственных обработке отдельных деталей, производится обобщение лучших достижений практического опыта, причем этим обобщениям придается характер технологических закономерностей, распространяемых затем на соответствующие классификационные группы.

Таким образом, осуществление типизации подразумевает необходимость классификации технологических процессов, которая обычно базируется на конструктивных и технологических признаках обрабатываемых деталей.

При рассмотрении конструкции любой машины довольно легко убедиться, что все детали можно разделить на три следующие группы.

1. Детали, общие для всех или многих машин: фланцы, шпонки, втулки, гайки, болты и другие детали этого вида обычно нормализованы.

2. Детали, отличающиеся между собой по конструктивным параметрам и размерам, но имеющие общность технологических задач: валы, зубчатые колеса и др. Такого вида детали могут быть названы деталями общего назначения.

3. Специальные детали, присущие только данному виду оборудования: станины ножниц горячей резки, барабаны мельниц, конусы засыпных аппаратов и др.

Систематизация конструктивных элементов и технологических процессов создает исходные материалы для составления классификации. Эта работа должна охватывать возможно более широкий круг встречающихся в производстве деталей, относящихся к различным машинам. В соответствии с принятой схемой классификации все детали делятся на виды, классы, группы и типы. Под видом понимается совокупность деталей, близких по форме, и соотношению размеров. Классификатор предусматривает несколько совокупностей, например пять: В — валы, оси; Д — диски, фланцы, шестерни, шкивы, шайбы; Ц — цилиндры, втулки, кольца; К — корпусные детали, плиты, кронштейны, рычаги и Р — разные детали.

Детали каждого вида делятся на классы, представляющие собой совокупность деталей, сходных по своей конфигурации, назначению и методам обработки. Например, в виде Д имеются классы крышек, шестерен, шкивов, блоков; в виде Ц — классы гильз цилиндров, втулок подшипниковых и т. д. Каждый класс обозначается буквой, указывающей, к какому виду он относится, и двумя цифрами от 01 до 99 в порядке регистрации класса.

Классы делятся на группы еще более близких по конструктивной форме деталей, имеющих одинаковую последовательность обработки. Например, внутри класса имеются группы глухих, сквозных крышек и т. д. Группа в классификаторе обозначается двумя цифрами от 01 до 99 в порядке ее регистрации.

Группа, в свою очередь, делится на типы деталей, отличающихся только отдельными конструктивными элементами и имеющих одинаковый технологический процесс обработки. Например, внутри группы сквозных крышек могут быть следующие типы: крышки с гладким отверстием, крышки с уплотнительными канавками и т. п. Номер типа обозначается двумя цифрами от 01 до 99. Например, плоская сквозная крышка с тремя канавками будет обозначаться Д-01, 03, 09, где Д—вид «диски», 01 — класс «крышки», 03—группа «крышки сквозные», 09—тип «плоские с уплотнительными канавками».

На основании проведенной классификации деталей общего назначения создаются технологические инструкции, с указанием назначения операций, технологических баз, исполнительных размеров, межоперационных припусков, станков, приспособлений и т. д.

Одновременно с составлением технологических инструкций разрабатываются «слепые» технологические карты. «Слепые» карты на детали общего назначения не содержат рабочего эскиза детали, поэтому обработка производится по чертежу детали с нанесенными на нем номерами обрабатываемых поверхностей. В картах технологи заполняют лишь титульную часть и вносят в текст указания о конкретных размерах обрабатываемых деталей. Практика применения подобных карт на заводах показывает, что время, затрачиваемое работниками технологических бюро на подготовку документации, сокращается в 3—5 раз по сравнению с обычной разработкой технологии. Так, например, на Уралмашзаводе «слепые» карты разра- ботаны на следующие группы деталей: зубчатые венцы, валки холодной и горячей прокатки, валы, муфты, стойки рольгангов и т. д. Всего охвачено 34 группы, включающие 260 типов деталей. На несложные детали вместо «слепых» карт технология записывается в соответствующей форме штампа, проставленного на обороте чертежа детали.

До сих пор мы рассматривали типизацию технологических процессов в применении к деталям. Но типизация может проводиться вместе с тем и по линии разработки руководящих положений на отдельные операции, так как в деталях, относящихся к различным классам, нередко встречаются операции, тождественные по своим задачам. Например, операция нарезания зубьев относится к классу шестерен и классу валов. В обоих случаях методы нарезания имеют большое сходство. Долбление шпоночных пазов относится к всевозможным деталям: маховикам, блокам, шестерням, рычагам и другим, хотя во всех случаях характер операций остается одинаковым.

В единичном машиностроении разработка типовых технологических процессов на отдельные операции, так же как и на целые детали, не может быть доведена до конкретных деталей. Она выливается в форму технологических инструкций, устанавливающих: классификацию методов установки крепления и выверки деталей; применяемый при обработке инструмент и методы его установки и выверки; назначение станков; порядок выполнения контроля и т. п.

Классификация методов установки и крепления деталей определяет порядок применения того или иного метода в зависимости от конструкции деталей, их размера и точности обработки. Это позволяет повысить качество обработки и сократить номенклатуру применяемой оснастки.

На крупных заводах тяжелого машиностроения часть номенклатуры машин закрепляется в программе эмиссии ценных бумаг на несколько лет, достигая ежегодной серии 10—15 шт. Среди подобных встречаются машины разных типоразмеров, но с одной и той же кинематической схемой, одинаковой для машин всех размеров. Поэтому некоторые детали и узлы подобных машин имеют сходные, а иногда и унифицированные конструкции, отличающиеся друг от друга лишь своими размерами. Это обстоятельство способствует созданию типовых технологических процессов на такие машины.

Необходимо отметить, что разработка типовой технологии на машины не может рассматриваться самостоятельным направлением типизации, поскольку конечным результатом работы является создание технологических процессов на детали.

Развитие работ по типизации технологических процессов уже в настоящее время позволяет на ряде заводов охватывать типовой технологией до 74—75% всех наименований деталей.

Таким образом, конструктивная нормализация и типизация технологических процессов, групповой запуск создают повторяемость деталей на станках и открывают широкие возможности по использованию методов серийного производства в технологии тяжелого машиностроения.

Проектирование технологических процессов

Для системного анализа технологических процессов в машиностроении необходимо установить: номенклатуру элементов; состав элементов каждого типа; набор свойств этих элементов.

процессы, в том числе и технологические, представляют собой класс технических систем, отличительной особенностью которых является существенная зависимость от времени. Можно предложить следующую иерархическую классификацию элементов технологических процессов: план обработки, этап обработки, операция, переход, ход. План обработки складывается из этапов, этапы из операций, операции из переходов, которые формируются из рабочих и вспомогательных ходов. Перед началом формирования плана необходимо выбрать вид заготовки и ее свойства, из которых для проектирования ТП важнейшими являются квалитет точности размеров, припуски и напуски.

Этап обработки представляет собой последовательность операций, принадлежащих к одному технологическому методу и обеспечивающих одинаковое качество обработки. Полный набор этапов, из которых складывается план обработки, зависит от конкретных условий, однако при этом можно выделить следующую базовую совокупность: термический 1 (улучшение, старение); обработка баз; черновой; получистовой; термический 2 (закалка или улучшение); чистовой; термический 3 (азотирование или старение); отделочный; покрытий; доводочный (получение шероховатости до Ra=0,02).

Типаж операций и переходов определен в соответствующих классификаторах, а состав основных свойств — в стандартах ЕСТД.

Проектирование ТП на уровнях формирования последовательности этапов, операций и переходов складывается из двух фаз: структурного и параметрического синтеза. Структурный синтез должен установить последовательность элементов на соответствующем уровне. Задача параметрического синтеза заключается в формировании свойств элементов, включенных в технологический процесс. Основными операциями параметрического синтеза являются выбор средств технологического оснащения (станков, приспособлений, инструмента) и нормирование, включающее расчет режимов обработки.

Источник информации и степень инвариантности знаний структурного синтеза определяются иерархическим уровнем решаемой проблемы: проектирование маршрута изготовления детали (набора этапов и операций) или проектирование операционной технологии (набора переходов обработки КТЭ). В первом случае знания существенно зависят от организационно-технической структуры предприятия и его традиций. Эти знания индивидуальны для каждого предприятия. Во втором случае знания черпаются из справочников, методических пособий и нормативных материалов. Знания этого уровня относительно инвариантны и могут с минимальными изменениями использоваться на различных предприятиях.

Автоматизация - закономерный процесс развития общественного производства

Автоматизация производства на предприятии представляет собой самостоятельную комплексную проблему. К ее решению подталкивает вселяющая страх мировая , которая как удав сжимает предприятия, понуждая их принимать соответствующие меры. Автоматизация создает возможности для улучшения условий и подъема эффективности труда, роста качества продукции, сокращения потребности в рабочей силе и в систематическом повышении прибыли, что позволяет изменить тенденцию развития, сохранить старые и завоевать новые рынки и таким образом вырваться из объятий удава.

Без сомнения автоматизация не является новым направлением, в широком смысле этого слова, появление автоматизации относится ко времени промышленной революции. Тогда машины значительно повысили эффективность труда рабочих. Развитие автоматизации характеризуется рядом крупных достижений. Одним из первых было внедрение взаимозаменяемости в производстве, следующим - сборочные конвейеры Генри Форда. Подлинную революцию в автоматизации производства произвели промышленные роботы и персональные компьютеры.

Конечно, автоматизация не единственный способ выйти победителем в конкурентной борьбе. Большие возможности таятся в стимулирующей роли заработной платы. Другим оружием в этой борьбе является участие рабочих в управлении производством и повышении качества продукции. Уместно напомнить здесь японские «кружки качества», которые распространились по всему миру и затрагивают теперь не только вопросы качества, но и снижения стоимости выпускаемой продукции, обеспечения техники безопасности и другие направления. Однако автоматизация является доминирующим средством в достижении успеха в условиях глобализации международных экономических отношений.

На пути автоматизации стоят неблагоприятные аспекты и подводные камни, которые необходимо учитывать. Приступающие к автоматизации следует, прежде всего, уяснить что, заниматься проблемами автоматизации нельзя без предварительной подготовки предметов торговли, технологии и в целом предприятия. Тщательная проработка конструкции предмета торговли, оценка стабильности технологии и надежности, имеющегося на производстве парка оборудования позволяет извлечь наибольшую пользу от применения в производстве промышленных роботов. Предварительная проработка конструкции, анализ и совершенствование предмета торговли и процесса могут быть настолько эффективными, что, в конечном счете, позволяют исключить необходимость применения роботов или другого автоматизированного оборудования

Уровни автоматизации

Уровень и способы автоматизации зависят от состава рабочих мест, оснащенности их техническими средствами и серийности выпускаемой продукции. Условно все рабочие места можно разделить на три группы.

К первой группе относятся рабочие места, на которых выполняются работы вручную, а рабочие, занятые при машинах и механизмах, выполняют только функции по обслуживанию машин и механизмов. В этой группе объединяются рабочие, которые не ведут технологические процессы, а занятые постоянно только загрузкой и выгрузкой предметами труда машин и механизмов.

Сюда относятся профессии аккумуляторщиков, такелажников, другие профессии рабочих, выполняющих работу вручную более 50% времени, а также рабочие, выполняющие работу при помощи простейших инструментов, наладчики, слесари и ремонтники.

Ко второй группе относятся рабочие места, на которых выполняются работы механизированным способом при помощи машин, станков и механизмов. К рабочим выполняющим работу механизированным способом относятся, работающие при помощи машин и механизмов, аппаратов и механизированных инструментов, приводимых в действие паром, электрическими, пневматическими, гидравлическими и т.п. приводами, а также осуществляющие наблюдение за действием машин и механизмов.

В этом случае рабочие выполняют работу на оборудовании (включая аппаратные процессы с ручным управлением цикла обработки) с помощью исполнительских механизмов. При непосредственном участии (включая управление исполнительным механизмом) рабочего осуществляется выполнение всех переходов (операций) по воздействию на предмет труда. Кроме этого сюда относятся операции по перемещению исполнительного механизма к предмету труда или наоборот, перемещение предмета труда к механизму с приложением физического усилия (например, ручной подвод исполнительного механизма к обрабатываемому предмету, обработка с ручной подачей и т.д.); управление исполнительным механизмом оборудования без непосредственного приложения физических усилий для изменения формы или размера, обрабатываемого предмета труда (например, обработка деталей инструментом с самоходной подачей суппорта к предмету труда);

При этом уровне механизации выполняется также настройка оборудования, предметов торговли или приборов, при помощи электронных и радиоизмерительных приборов, установок, стендов. Как правило, это рабочие, занятые загрузкой (выгрузкой) вручную или с помощью простейших механизмов (пинцет, присоска и т.д.) оборудования и машин. Они производят дальнейшую технологическую обработку предметов торговли (разварку, посадку, сборку, герметизацию, травление, измерение и т.д.) Выполнение технологической операции в этом случае производится при воздействии рабочего любой профессии на соответствующие механизмы управления машин, станков или оборудования.

На этом уровне механизации заняты рабочие таких профессий как аппаратчики всех профилей, водители, машинисты, станочники и операторы всех специальностей, занятые загрузкой оборудования вручную, гальваники, испытатели, измерители, кладовщики на комплексно-механизированных складах, лаборанты, занятые работой на оборудовании, контролеры на испытательных операциях, электромонтеры по обслуживанию оборудования и другие.

К третьей группе относятся рабочие места, на которых технологические операции выполняются в автоматическом режиме. Автоматизация имеет целью исключить последовательно различные функции, выполняемые рабочими из первой и второй групп. Различают пять уровней автоматизации.

Первый уровень автоматизации характеризуется тем, что автоматизируется цикл обработки предмета торговли. В автоматическом режиме осуществляется управление последовательностью и характером движений рабочего инструмента для получения заданной формы, размеров и качественных характеристик обрабатываемой детали. Наиболее полное воплощение автоматизация этого уровня получила в станках с числовым программным управлением (ЧПУ). При этом обеспечивается возможность оптимально осуществлять функции управления для широкой номенклатуры деталей. Значительно возрастает эффективность труда по сравнению со станками, имеющими ручное управление, существенно повышается качество продукции.


В этом случае рабочие выполняют работу на оборудовании, включая аппаратные процессы с автоматическим циклом обработки, на котором без непосредственного участия человека автоматически и полуавтоматически осуществляется выполнение переходов и операций по непосредственному воздействию на предметы труда. Рабочий может осуществлять следующие действия: установку и снятие предметов труда или заполнение предметами труда и необходимыми материалами загрузочных устройств; пуск и установку оборудования; активное наблюдение за работой оборудования; обработки; смену инструмента, наладку и подналадку оборудования; удаление отходов в пределах рабочего места.

Второй уровень автоматизации предполагает автоматизацию постановки и снятия деталей со станка, то есть загрузку оборудования. Такой уровень автоматизации позволяет рабочему обслуживать несколько технологических единиц оборудования, таким образом перейти к многостаночному обслуживанию. В качестве загрузочных устройств широко используются промышленные роботы. Они отличаются большой универсальностью и быстротой переналадки.

Второй уровень автоматизации, как правило, обеспечивается созданием роботизированных технологических комплексов (РТК). В них робот может обслуживать как один так и группу станков или оборудования.

Третий уровень автоматизации. На этом уровне автоматизируется, ранее выполняемый рабочим вручную, контроль за состоянием инструмента и своевременной его заменой (контроль за фактическим состоянием каждого инструмента и его износом); качества обрабатываемых предметов торговли (размеров, чистоты поверхности, а где возможно качества предмета торговли после термических, диффузионных, химических и других процессов); за состоянием станков и оборудования, удалением стружки и других отходов производства, а также и подналадку технологических процессов (адаптивное управление).

Автоматизация перечисленных операций освобождает рабочего от постоянной связи с обслуживаемой установкой и открывает возможность расширения зоны обслуживания оборудования одним человеком. Оборудование данной группы предполагает длительную его работу в автоматическом цикле при периодическом наблюдении за его работой и загрузкой, контролем точности и подналадкой. Однако работа в таком режиме требует большого запаса комплектующих и деталей для работы течение нескольких смен.

При таком уровне автоматизации рабочие выполняют работу на автоматических линиях, автоматах, автоматизированных агрегатах, установках и аппаратах. К этой категории относятся также рабочие, занятые работой по управлению, контролю, периодической регулировке автоматических линий, автоматов, агрегатов, комплексов.

Как правило, к первому уровню автоматизации относятся профессии автоматчиков, станочники всех профессий на автоматических станках и станках с программным управлением, наладчики автоматических линий, операторы различных профессий, занятых обслуживанием автоматических и полуавтоматических линий, станков, установок, станков с программным управлением и им аналогичным.

Третий уровень автоматизации реализуется путем создания адаптивных роботизированных технологических комплексов (РТК), гибких производственных модулей, имеющих в своем составе, например, обрабатывающий центр, ПР, устройства контроля, диагностики и подналадки, другие вспомогательные механизмы, управляемых от одного контроллера или других управляющих устройств

Четвертый уровень автоматизации. В этом случае осуществляется автоматическая переналадка оборудования. При ручной переналадке оборудования, она занимает значительную часть рабочего времени. Чем чаще по условиям производства требуется переналадка, тем больше оказываются потери времени и уменьшается зона обслуживания одним рабочим. Естественно стремление применять такие инструмент, оснастку и приспособления, методы задания режимов обработки и циклов производства, загрузочных устройств и контрольных систем, которые способны осуществлять автоматическую переналадку оборудования.

Оборудование с автоматической переналадкой экономически выгодно при обработке любых политических партий деталей и целесообразно при выпуске сборочных комплектов деталей, необходимых для обеспечения ритмичной работы сборочных цехов. Оно позволяет существенно сократить объемы незавершенного производства, сократить до минимума производственный цикл изготовления предметов торговли.

Технические трудности, стоящие на пути автоматизации, создания высоконадежного оборудования, средств контроля и управления, а также высокая пока стоимость всех средств автоматизации, еще сдерживают широкое использование, как в машиностроении так и в других отраслях этой наиболее высокой ступени автоматизации.

Пятый уровень автоматизации это гибкие производственные системы (ГПС). В соответствии с ГОСТ 26228-90 под ГПС понимается управляемая средствами вычислительной техники совокупность технологического оборудования, состоящего из разных сочетаний гибких производственных модулей и (или) гибких производственных ячеек, автоматизированной системы технологической подготовки производства и системы обеспечения функционирования, обладающая свойством автоматизированной переналадки при изменении программы производства предметов торговли, разновидности которых ограничены технологическими возможностями оборудования.

В состав ГПС входят гибкие производственные модули (ГПМ), гибкие производственные ячейки (ГПЯ) и система обеспечения функционирования гибкой производственной системы и гибкой производственной ячейки. В общем случае она обеспечивает комплексную автоматизацию всех звеньев производственного процесса включая процессы обработки и управления, подготовку производства, разработку конструкторской и технологической документации, а также планирование производства.

Гибкими производственными системами могут быть как автоматизированные предприятия и заводы-автоматы, так и их структурные составляющие: автоматизированные цехи, автоматизированные и роботизированные участки, гибкопереналаживаемые автоматизированные линии и роботизированные комплексы.

ГПС обеспечивают автоматическое производство деталей различными политическими партиями, с уровнем первоначальной стоимости продукции и производительности близкой к достигаемой в современном массовом производстве при изготовлении деталей одного наименования.

Коэффициент уровня автоматизации труда определяется по объему расходов автоматизированного труда в общей трудоемкости предприятия. Следует отличать уровень от степени автоматизации или механизации труда, которая определяется как отношение численности рабочих, занятых автоматизированным или механизированным трудом соответственно к общей численности промышленно-производственного персонала (ППП). Степень занятости рабочих ручным трудом определяется отношением численности рабочих занятых ручным трудом к общей численности ППП.

фирма работ по автоматизации производства

Определению уровня автоматизации производства и разработке мер по ее повышению на предприятии должна предшествовать работа по паспортизации, аттестации и рационализации рабочих мест. Она должна проводиться с учетом соответствующих рекомендаций и регламентирующих общегосударственных нормативных документов и опыта передовых предприятий по данному вопросу. Паспортизации и учету подлежат места, где рабочие, заняты кроме ручного, физически тяжелого, и малоквалифицированного труда, также и зрительно-напряженными, малопривлекательными и монотонными работами.

Целью паспортизации является подготовка необходимой информации для разработки комплексной программы по механизации и автоматизации ручного труда. Она заключается в изучении занятости ручным трудом по профессиям, изыскании путей и возможности ее сокращения, в расчете показателей издержек и ожидаемого социально-экономического эффекта мероприятий, а также в определении потребности на эти цели в оборудовании, комплектующих изделиях, проведении научно-исследовательских и опытно-конструкторских работ.

В порядке подготовки к этой работе на предприятии разрабатываются методические рекомендации и указания по проведению аттестации, изготавливаются необходимые бланки актов аттестации, карт учета ручного труда, образуются аттестационные комиссии, проводится другая организационная и разъяснительная работа. Все подготовительные меры находят отражение в приказе директора предприятия о проведении аттестации рабочих мест.

В процессе аттестации проводится комплексная оценка каждого рабочего места на его соответствие нормативным требованиям и передовому опыту по таким направлениям как технико-экономический; организационно- экономический уровень; условия труда и техника безопасности на рабочем месте. По результатам комплексной оценки выявляются рабочие места, где указанные параметры могут быть достигнуты после оснащения его прогрессивным оборудованием и соответствующей рационализации и модернизации самого рабочего места. Определяются лишние (незагруженные) и рабочие места, которых неэффективна.

На основании полученных данных проводится технико-экономический анализ характеристик рабочего места и принимается решение об аттестации и продолжении эксплуатации рабочего места или его сокращении. В первом случае, при необходимости принимаются меры по дополнительной загрузке, закрепив за данным рабочим местом операции, выполнявшиеся на ликвидированных рабочих местах, или оно продолжает эксплуатироваться без внесения изменений.

По не аттестованным рабочим местам, подлежащих сокращению, принимается решение о передаче операций на другие рабочие места. В этом случае разрабатываются мероприятия по реализации оборудования, переквалификации и трудоустройству высвобождаемых рабочих. По подлежащим рационализации, определяются направления, возможности и сроки рационализации, намечаются меры по оснащению роботами, другим прогрессивным оборудованием или инструментом с целью исключения тяжелого, физического и ручного труда, повышению его организационно-технического уровня.

Основным инструментарием в работе по паспортизации ручного, физически тяжелого и малоквалифицированного труда является карта его учета, разработанная на ряде предприятий. Карта учета это первичный носитель информации о численности рабочих, занятых ручным трудом на тех или иных операциях, в тех или иных производственных подразделениях. В то же время это рабочий документ, позволяющий планировать мероприятия по сокращению ручного труда и последующей его механизации и автоматизации, а также контролировать ход их выполнения.

Карты оформляются в соответствии с инструкцией по ее заполнению на все технологические операции, на которых в момент заполнения карт работа выполняется вручную, для чего комиссией подразделения изучается выполняемая работа на всех технологических операциях и устанавливается степень механизации и автоматизации. Карты учета заполняются и на те операции, которые квалифицируются в целом как механизированные, но включают ряд технологических операций и переходов, выполняемых вручную. Карта учета ручного труда должна заполнятся также на профессии и операции ручного труда, на которых сокращение его на текущий момент не представляется возможным.

В картах учета отражается наименование операции и профессия занятого ручным трудом, содержание ручной работы, используемое на операции оборудование, мероприятия по сокращению ручного труда и ожидаемый экономический эффект от их выполнения. Действует она, как правило, в течение пятилетнего периода и приспособлена для обработки данных, отражаемых в ней на ЭВМ В случае передачи предмета торговли другому подразделению или снятия с производства, ответственный исполнитель сообщает контролирующему органу об изменениях для своевременного снятия карт с учета или передачи их другому подразделению.

Рабочие комиссии в цехах на основе анализа карт учета ручного труда разрабатывают мероприятия по его ликвидации или сокращению. Мероприятия согласовываются с заводскими отделами главного технолога, подготовки производства, главного механика и главного технолога, автоматизации и механизации производства. Мероприятия включаются в планы технического перевооружения и научно- технического развития данного цеха.

Заводская служба, ответственная за автоматизацию производства, на основе полученных данных разрабатывает целевую комплексную программу по сокращению применения ручного труда (ЦКПРТ) на предстоящий и представляет ее на рассмотрение технического совета предприятия, на котором она утверждается. ЦКРПТ является приложением плана технического перевооружения предприятия. Продублированные мероприятия учитываются один раз.

Мероприятия ЦКПРТ являются обязательными для выполнения всех подразделений. В исключительных случаях при согласовании может быть допущена замена одного мероприятия другим, равноценным по значению и ведущему к сокращению ручного труда. Программа направляется в подразделение, осуществляющее контроль за выполнением и учетом мероприятий ЦКПРТ.

Выполнение мероприятия по автоматизации труда заканчивается оформлением акта установленного образца, согласованного с соответствующими подразделениями предприятия. Подразделение, осуществляющее контроль за этой работой проводит оформление карты учета ручного труда на основании результатов внедрения и делает соответствующие отметки в плане научно-технического развития предприятия. При выполнении мероприятий и ликвидации полностью ручного труда по данной карте учета или передаче техпроцесса сторонним организациям карта учета сдается в архив или уничтожается в соответствии действующим положением по документообороту.

Технический совет или совет директоров предприятия не реже одного раза в полугодие рассматривает результаты работы по сокращению ручного труда.

Учет фактического наличия рабочих по профессиям и уровню механизации и автоматизации осуществляет, как правило, отдел научной фирмы труда и заработанной платы на основании квартальных отчетов по труду и данных табуляграмм кадрового учета в разрезе цехов, производств, заводов и объединения предприятий в целом. На основании данных учета и фактического наличия ручных технологических операций и работ разрабатывается тематический перечень технологических операций, выполняемых вручную и предполагаемых мероприятий по дальнейшей автоматизации и механизации производства.

Стимулирование работ по автоматизации производства

В настоящее время происходит ускорение темпов развития во всех сферах человеческой деятельности, но самые удивительные перемены наблюдаются в сфере материального производства. Повышение уровня развития общества, сопровождается усложнением всех видов общественных отношений, изменением образа жизни каждого члена общества, индивидуализацией стиля его жизни. Это приводит к необходимости непрерывного расширения ассортимента товаров и услуг, предлагаемых населению, при этом жизненный цикл предмета торговли неуклонно сокращается. Принцип «сделано - продано» ушел в историю, сегодня основной принцип дня - производить только те товары и услуги, которые нужны, производить только тогда, когда нужно, и производить столько, сколько нужно. Это не могло, не отразится на облике современного предприятия. Оно должно адаптироваться к условиям эмиссии товаров небольшими политическими партиями, причем в большом ассортименте и с частым изменением в широком диапазоне. предприятия все чаще оказываются в условиях многономенклатурного мелкосерийного производства. Острая конкурентная борьба вынуждает предприятие в короткие сроки и с минимальными расходами перестраиваться на выпуск новой продукции в соответствии с запросами рынка.

Чтобы выстоять в таких жесточайших условиях и обеспечить стабильное развитие национальной экономики, необходимо провести коренную реорганизацию производственных предприятий, способных выпускать дешевые и высококачественные товары и гарантированно получать высокие прибыли независимо от внешних условий. Технологическая сущность такой реорганизации заключается в высокой степени автоматизации производства, создании гибких производственных систем.

Внедрение автоматизации производства оказывается надежным средством, приводящим не только к адаптации предприятий к новым социально-экономическим условиям, но и значительному числу чисто технологических преимуществ, которые в итоге обеспечивают значительное увеличение прибавочной стоимости продукции. Кроме того, автоматизация помогает выполнять многие, ранее не доступные для человека, технологические операции. Таким образом, внедрение автоматизация способствует общему технологическому прогрессу общества. Однако высокая стоимость средств автоматизации с весьма короткими сроками морального их амортизации удерживают в нерешительности многих руководителей и предпринимателей. В особенности это относится к мелким и средним предприятиям, которых становится в настоящее время все больше, так как они не имеют больших финансовых возможностей для риска.

Учитывая первостепенное значение автоматизации для экономики страны в целом, ее социально-экономическую значимость, бесспорно, в стране должны быть, разработаны национальные экономические программы и мероприятия, направленные на облегчение процесса внедрения автоматизации в производство. Эти меры могут представлять систему дополнительной компенсации расходов на приобретение и внедрение оборудования, системы предоставления роботов и другой автоматической техники в рентау , финансово-кредитные системы, стимулирующие автоматизацию. Создаваемые при участии и финансовой поддержке государства и региональных органов, эти системы дают определенные льготные условия как фирмам изготовителям средств автоматизации, так и предприятиям, желающим провести автоматизацию производства.

Заслуживает внимания опыт по созданию и применению в Японии промышленных роботов и гибких автоматизированных систем. Эта работа начата здесь еще в 80-е годы. Разработано ряд систем, стимулирующих предприятия разрабатывать и проводить автоматизацию производства. Из них следует отметить такие: 1. Система дополнительной компенсации издержек на приобретение и внедрение перспективного мехатронного производственного оборудования (управляемых от ЭВМ промышленных роботов с расширенными функциональными возможностями); 2. Система предоставления промышленных роботов в рентау ; 3. Система предоставления займов для модернизации промышленного оборудования на мелких и средних предприятиях; 4. Система предоставления новой техники во временное пользование; 5. Система обеспечения гарантий фирмам, продающим в рассрочку или предоставляющим займы на приобретение перспективного машиностроительного оборудования и другие.

Стимулирование работ по автоматизации производства не ограничивается общегосударственным уровнем. Успешно внедряются прогрессивные средства труда на производстве там, где этим вопросам уделяется повседневное внимание, где продуманно создают систему стимулирования этих работ. На эти цели выделятся финансовые ресурсы, разрабатываются планы механизации и автоматизации производства, компанию работ ведут специально, создаваемые подразделения, организуются отделы механизации и автоматизации производства. Существенно стимулируют эти работы проведение смотров конкурсов по механизации автоматизации производства, конкурсов на лучшего конструктора, технолога, на лучшее подразделение предприятия по механизации и автоматизации производства. Для поощрения победителей устанавливаются призовые места с вручением свидетельств и денежных премий.

Управление любым технологическим процессом или объектом в форме ручного или автоматического воздействия возможно лишь при наличии измерительной информации об отдельных параметрах, характеризующих процесс или состояние объекта. Параметры эти весьма своеобразны. К ним относятся электрические (сила тока, напряжение, сопротивление, мощность и другие), механические (сила, момент силы, скорость) и технологические (температура, давление, расход, уровень и другие) параметры, а также параметры характеризующие свойства и состав веществ (плотность, вязкость, электрическая проводимость, оптические характеристики, количество вещества и т.д.). Измерения параметров осуществляется с помощью самых разнообразных технических средств, обладающих нормированными метрологическими свойствами. Технологические измерения и измерительные приборы используются при управлении (ручном или автоматическом) многими технологическими процессами в различных отраслях народного хозяйства.

Средства измерений играют важную роль при построении современных автоматических систем регулирования отдельных технологических параметров и процессов (АСР) и особо автоматизированных систем управления технологическими процессами (АСУТП), которые требуют представления большого количества необходимой измерительной информации в форме, удобной для сбора, дальнейшего преобразования, обработки и представления ее, а в ряде случаев для дистанционной передачи в выше ниже стоящие уровни иерархической структуры управления различными производствами.

В основе измерений параметров и физических величин лежат различные физические явления и закономерности. Измерительные схемы с использованием современных достижений микроэлектронной техники: микропроцессорных схем, твердых или полупроводниковых электрохимических элементов и другие.

Источники

Российская энциклопедия по охране труда

Современный экономический словарь

Словарь по экономике и финансам.

Википедия

Анчишкин А. И. Наука. Техника. Экономика. - М.: Экономика, 1986. -

Васильева И. Н. Экономические основы технологического развития. - М.:

банки и Биржи, 1995. - 165 с.

Глазьев С. Ю. Экономическая теория технического развития. М.: Наука,

Организационно - экономические проблемы научно-технический прогресс /Под ред. Бялковской В.С. - М.: Высшая школа, 1990. - 298с.

Бляхман Л. С. Экономика, компания управления и планирование научно-технический прогресс. М.:

Высшая школа, 1991. - 228 с.

Дворцин М.Д. Основы теорий научно-технического развития производства.

М.: Изд. МИНХ им. Г.В.Плеханова, 1988. — 251с.

Асаль Р. Роботы и автоматизация производства / Пер. с англ. М. Ю. Евстигнеева и др. - М.: Машиностроение, 2001. - 448 с.: ил.

Промышленные роботы: Внедрение и эффективность: Пер. с яп. / Асаи К., Кигими С., Кодзима Т. И др. - М.: Мир, 2002. - 384 с.; ил.

- (production): Операции, включающие в себя приемку исходных материалов, их обработку, упаковку и получение готовой АФС.

В основе любого производства лежит технологический процесс, под которыми понимаются совокупность действий по добыче и переработки сырья в готовую продукцию. В основе любых процессов лежат физические, химические, биологические процессы, различающиеся характером количественных и качественных изменений сырья в процессе его переработки.

Основная классификация технологических процессов является способ организации и кратность обработки сырья.

    Виды технологических процессов в зависимости от способа их организации : единичный, типовой, групповой, дискретный (прерывный, периодический), непрерывный и комбинированный.

Единичный технологический процесс (ЕТП) разрабатывается для изготовления или ремонта изделия одного наименования, типоразмера и исполнения независимо от типа производства. Разработка ЕТП включает в себя следующие этапы.

1. Анализ исходных данных и выбор действующего аналога ЕТП.

2. Выбор исходной заготовки и метода ее получения.

3. Определение содержания операций, выбор технологических баз и составление технологического маршрута (последовательности) обработки.

4. Выбор технологического оборудования, оснастки, средств автоматизации и механизации технологического процесса. Уточнение последовательности выполнения переходов.

5. Назначение и расчет режимов выполнения операции, нормирование переходов и операций ТП, определение профессий и квалификации исполнителей, установление требований к технике безопасности.

6. Расчет точности, производительности и экономической эффективности ТП. Выбор оптимального процесса.

7. Оформление рабочей технологической документации.

Необходимость каждого этапа, состава задач и последовательности решения устанавливается в зависимости от типа производства.

Типизация ТП позволяет устранить их многообразие с обоснованным сведением к ограниченному числу типов.

Типовой технологический процесс (ТТП) характеризуется единством содержания и последовательности большинства технологических операций и переходов для групп изделий с общими конструктивными признаками.

Типизацию начинают с классификации изделий. Классом называют совокупность деталей, характеризуемых общностью технологических задач. В пределах класса детали разбивают на группы, подгруппы и т.д. до типа. Практически к одному типу относят детали, для которых можно составить один технологический процесс.

ТПП разрабатывают с учетом последних достижений науки и техники, опыта передовых рабочих, что позволяет значительно сократить цикл подготовки производства и повысить производительность за счет применения более совершенных методов производства.

Групповой технологический процесс (ГТП) предназначен для совместного изготовления или ремонта групп изделий с разными конструктивными, но общими технологическими признаками.

При группировании одна из наиболее сложных деталей принимается за комплексную. Эта деталь должна иметь все поверхности, встречающиеся у деталей данной группы. Они могут быть расположены в иной последовательности, чем у комплексной детали. При отсутствии такой детали в группе создается условная комплексная деталь. По этому технологическому процессу можно обрабатывать любую деталь группы без значительных отклонений от общей схемы.

Групповые технологические процессы используют для механической обработки деталей на универсальном оборудовании, для электромонтажных, сборочных и других операций, что делает целесообразным применение высокопроизводительных автоматов и полуавтоматов в мелкосерийном производстве.

Периодические процессы (например, выплавка стали, литье в форму, термообработка и др.) проводятся на оборудовании, которое загружается исходными материалами или заготовками через определенные промежутки времени; после их обработки полученный продукт выгружается. Периодические или дискретные процессы характеризуются чередованием во времени рабочих и вспомогательных операций, выполняются они, как правило, на одном месте. Они компактны в пространстве и растянуты по времени. Основным недостатком таких процессов является то, что во время загрузки и выгрузки продукта оборудование не работает (простаивает) или работает не в полную мощность. Это приводит к потерям рабочего времени и большим затратам труда. Кроме того, непостоянство технологического режима в начале и конце процесса усложняет обслуживание, затрудняет автоматизацию и приводит к удлинению продолжительности производительного цикла. Все эти причины и побуждают заменять периодические процессы более рациональными при наличии экономической и технической возможности.

Непрерывные процессы (например, разливка стали, прокатка или волочение профилей из металлов и сплавов, переработка нефти, производства цемента) осуществляются в аппаратах, где поступление сырья и выгрузка конечных продуктов производятся непрерывно. Однако все стадии процесса могут протекать одновременно как в различных частях аппарата (например, перегонка нефти в ректификационной колонне), так и в различных аппаратах, составляющих данную установку. Они характеризуются непрерывным и одновременным выполнением рабочих и вспомогательных технологических действий, но на разных местах. Параллельность выполнения операций позволяет значительно повысить производительность, но требует увеличения пространства.

Комбинированные процессы являются сочетанием стадий периодических и непрерывных процессов (например, поточные линии механической обработки деталей, коксование угля, работа доменной печи или стана периодической прокатки металлических профилей). Комбинированные технологические процессы позволяют удачно сочетать преимущества периодических и непрерывных действий и устранить их недостатки.

По сравнению с комбинированными и периодическими процессами непрерывные отличаются отсутствием простоев оборудования, перерывов в выпуске конечных продуктов, возможностью полной автоматизации и механизации, устойчивостью технологического режима и соответственно большей стабильностью качества выполняемой работы, в т. ч. и готовой продукции. Например, слитки металлов и сплавов, изготовленные в установках непрерывной разливки, отличаются более высоким качеством и отсутствием дефектов, характерных для слитков, полученных в изложницах (обычное литье). Большая компактность оборудования обеспечивает меньшие капитальные затраты и эксплуатационные расходы на ремонт и обслуживание, уменьшает потребность в рабочей силе, увеличивает производительность труда, позволяет полнее и эффективнее использовать энергетические ресурсы. По этим причинам основной тенденцией промышленного производства массового типа является замена периодических процессов непрерывными. Но, как правило, технологическое оборудование для непрерывных процессов является более сложным и дорогим.

Сейчас периодические процессы сохраняют свое значение в производствах относительно небольшого масштаба (в том числе опытных) с разнообразным ассортиментом продукции. Там применение указанных процессов позволяет достичь большой гибкости в использовании оборудования при меньших затратах.

2. По кратности обработки сырья различают процессы: с разомкнутой (открытой) схемой, в которой сырье или материал подвергается однократной обработке; с замкнутой (круговой, циркуляционной или циклической) схемой, в которой сырье или вспомогательные материалы неоднократно возвращаются в начальную стадию процесса для повторной обработки, а иногда и регенерации (восстановление потерянных свойств); комбинированные (со смешанной схемой).

Примером процесса с разомкнутой (открытой) схемой является конвертерный способ получения стали. Примером процесса с замкнутой схемой может служить циркуляция специальной жидкой смеси для охлаждения резца токарного станка при скоростной механической обработке металлов резанием. В такой замкнутой схеме охлаждающая жидкость постоянно циркулирует между бачком, резцом, сборником для жидкости и насосом для ее перекачивания в бачок. Другим примером процесса с замкнутым циклом может быть химическая переработка нефтяных фракций, где для непрерывного восстановления активности катализатора последний постоянно циркулирует между реакционной зоной крекинга и прокалочной печью для выжигания углерода с его поверхности.

Процессы с замкнутой схемой более компактны, чем процессы с разомкнутой схемой, требуют по сравнению с ними меньшего расхода сырья, вспомогательных материалов и энергии на транспортировку реагентов. Циклические (с замкнутой схемой) процессы широко используются во многих производствах для многократного или частичного возвращения тепловых или материальных потоков в начальную стадию процесса. Это позволяет рационально и экономно расходовать энергию, сырье, материалы и водные ресурсы, получать продукцию высокого качества. Наиболее совершенные технологические процессы – процессы с замкнутой схемой – являются основой создания безотходных, материало- и энергосберегающих производств.

В промышленности часто применяют комбинированные процессы (со смешанной схемой), являющиеся сочетанием процессов с открытой и закрытой схемой (например, производство серной кислоты нитрозным способом). В таких процессах одни промежуточные продукты (оксиды серы) обрабатываются по открытой схеме, проходя последовательно ряд аппаратов, а другие (оксиды азота) – циркулируют по замкнутой схеме.

3. Классификация технологических процессов по способам переработки сырья . В основе переработки сырья лежат физические, механические, химические и биологические процессы, различающиеся между собой характером качественных изменений и превращений вещества.

Физические технологические процессы. Так, использование физических процессов для переработки сырья характеризуется изменением состояния (твердое, жидкое газообразное), внешней формы и физических свойств. Эти ТП могут быть реализованы при изменении параметров окружающей предмет труда условий, например температуры, давления, электромагнитного поля, ионизирующего и радиоактивного излучений и т.п. Как правило, физические технологические процессы в чистом виде редко реализуются, часто они вызывают и химические превращения, тогда такие процессы превращаются в физико-химические. Чистые физические процессы – превращение воды в пар или лед и наоборот; превращение графита под действием температуры и давления в алмаз, расплавление или затвердевание чистых металлов или веществ. Физико-химический процесс – это расплавление руды или металлолома и получение жидкого сплава, который при затвердевании не только переходит в твердое тело, но и претерпевает химическое превращение, изменяется кристаллическая решетка и структура сплава.

Часто использование физических технологических процессов при изготовлении некоторых изделий позволяет существенно повысить качество и эффективность работы. В частности, в современном машиностроении получают все большое распространение материалы, которые отличаются высокой твердостью и вязкостью, трудно поддающиеся традиционным способам обработки. Все возрастающее количество применяемых штампов и пресс-форм отличается высокой сложностью внутренних полостей. Это послужило основанием создания и внедрения в производство высокоэффективных электрофизических (ЭФ) и электрохимических (ЭХ) методов обработки, сущность которых заключается в том, что обработка облегчается благодаря ослаблению связей между элементарными объемами заготовки за счет их нагрева, расплавления и удаления из зоны обработки или перевода сплава в легко удаляемое соединение.

При электрофизической обработке используют инструмент – электрод, который может быть изготовлен из легкообрабатываемого материала (меди, графита, медно-графитовой композиции и т. п.). При сближении в жидком диэлектрике электродов, инструмента и заготовки возникает электрический разряд, и через зазор между ними начинает течь электрический ток. Электроны, соударяясь с анодом (заготовкой), интенсивно его разогревают и расплавляют микрообъемы заготовки. Расплавленные частички сплава охлаждаются жидким диэлектриком и удаляются из зазора между инструментом и заготовкой. Электрофизические методы отличаются высокой концентрацией энергии (1000–100000000 Вт/см 2) на локальных участках обрабатываемой заготовки, частицы материала удаляются с поверхности в расплавленном или парообразном состоянии. На электроэрозионных станках можно выполнять сложные полости в заготовках, резать и сверлить их, шлифовать и полировать. При полировке отпадает необходимость в применении инструмента, достаточно обеспечить мощный разряд между полируемым изделием и водным раствором поваренной соли.

Разновидностями ЭФ являются электроэрзионная, электроискровая, электроимпульсная, электроконтактная и плазменная обработка.

Характерной особенностью электроэрозионной (электроразрядной) обработки является то, что электрический пробой происходит по кратчайшему пути, что предопределяет разрушение (оплавление) наиболее близкорасположенных участков заготовки. Поэтому при выполнении углублений (полостей) или отверстий обрабатываемая поверхность заготовки принимает форму электрода. Известно, что механическая обработка наружных поверхностей заготовки значительно проще, производительнее и экономичнее, может быть выполнена более качественно, чем внутренних поверхностей, при этом может использован простой инструмент и универсальные оборудование.

Механические технологические процессы. В производстве более 80% технологических процессов – это механические, в результате которых изменяются форма, качество поверхности, геометрические размеры и свойства предмета обработки. Так при пластической деформации металлической заготовки придают требуемую форму и геометрические размеры, параллельно изменяются и физические свойства сплава заготовки (наклеп и упрочнение). Применяя механические технологические процессы, получают листы, сортовой прокат, поковки, трубы, проволоку и многое другое. При обработке резанием путем снятия стружки заготовке придают определенную форму и размеры, превращают ее в будущую деталь, которая в результате такой обработки приобретает заданную точность геометрических размеров с соответствующей шероховатостью поверхностей. При такой обработке свойства материала заготовки не изменяются.

При выполнении разъемных соединений деталей и узлов изделия реализуется типичный механический технологический процесс, большинство сборочных ТП базируются на чисто механических процессах (завернуть винт или гайку, запрессовать подшипник или втулку, выполнить клепанное соединение, развальцевать, зашплинтовать и т. д.), причем выполнение операций по соединению отдельных деталей или узлов не требуют высокой квалификации исполнителей и эти операции могут быть легко автоматизированы, особенно при массовом типе производства.

Механические технологические процессы широко используются в горнодобывающей промышленности, при измельчении, смешивании, дозировке, сортировке, уплотнении, формовки, упаковки сырья и материалов.

Химические процессы , в отличие от физических и механических, характеризуются изменением не только физических свойств, но и агрегатного состояния, химического состава и внутреннего строения веществ. Например, химической переработкой природного газа из метана получают водород, этилен, ацетилен, метиловый спирт и другие продукты; гидролизом древесины – скипидар, деготь, камфару, ванилин, спирты, канифоль.

Химические процессы лежат в основе жизнедеятельности живых организмов. В технологии промышленного производства термин ”химические процессы” следует понимать в широком смысле и не отождествлять с производством только химических веществ. Химико-технологические процессы являются основой производства многих строительных материалов, металлов и пищевых продуктов, используются в машиностроении, при производстве радиоэлектронной аппаратуры, измерительной техники, изделий легкой промышленности. Химические технологические процессы играют важную роль в развитии электроники, биотехнологии и создании новых материалов с уникальными свойствами, без которых немыслимо современное производство многих товаров с высокими качественными показателями.

Химические технологические процессы. Основухимического ТПсоставляют химические реакции (простые сложные, обратимые и необратимые, экзотермические и эндотермические) различных веществ при создании определенных условий. При этом образуются новые вещества, которые уже имеют совершенно другие свойства. Как правило, большая часть из них представляет основной продукт, а часть– побочный и отходы. ТП состоит из трех стадий: подготовки сырья или материалов, химической реакции, выделение (отвод) полученных веществ из реактора.

В зависимости от используемого сырья ТП могут быть разделены на процессы по переработке растительного, животного и минерального сырья. Химические технологические процессы (ХТП) могут быть низкотемпературные, протекающие при температуре до 500 °С и высокотемпературные (выше 500 °С); каталические и не каталические; происходящие под вакуумом, под высоким или атмосферном давлении и др.

Благодаря развитию химической технологии и совершенствованию ХТП в последние 50 лет появилось десятки тысяч новых материалов и веществ, имеющих уникальные свойства, это – различные клеи, фторопласты, полиуретаны, краски, лаки, полиэтилены, полипропилены, полиамиды, эпоксидные смолы, поликарбонаты, винипласты, полистиролы, поливинилхлориды (ПВХ),текстолиты, гетинаксы и т.д. Материалы, полученные с помощь. ХТП в значительной степени изменили качество жизни человека и сейчас уже трудно представить жизнь без них. Производство одежды, обуви, жилых зданий, бытовой техники, автомобилей, приборов и много другого стало благодаря ХТП более технологично, производительно, рентабильно и качественно. Роль химической промышленности трудно переоценить, валовый внутренний продукт Республики Беларусь более чем 50% наполняется за счет продукции ХТП.

Биологические процессы связаны либо с использованием живых микроорганизмов с целью получения требуемых продуктов (традиционная биотехнология), либо с воспроизведением в искусственных условиях процессов, протекающих в живой клетке (современная биотехнология).

Биологические технологические процессы. Биологические процессы протекают благодаря микроорганизмам, которые перерабатывают исходное сырье в полезные материалы (органическое удобрение, вино, спирт, медпрепораты, металлы, горючий газ, кисломолочные продукты, витамины, белки, органические кислоты и т. д.). Вторая половина XX столетия отмечена интенсивным развитием биотехнологий. Биотехнологией называют промышленную технологию получения ценных продуктов из исходного сырья с помощью микроорганизмов. Биотехнологические процессы известны с древних времен: хлебопечение, приготовление вина и пива, сыра, уксуса, молочнокислых продуктов, биоочистка воды, борьба с вредителями растительного и животного мира, обработка кожи, растительных волокон, получение органических удобрений и т.д. Научные основы были заложены в 19 веке французским ученым Л. Пастером (1822-1895г.), положившим начало микробиологии. Этому способствовало, с одной стороны, бурное развитие молекулярной биологии и генетики, биохимии и биофизики, с другой стороны, возникновение проблемы нехватки продовольствия, минеральных ресурсов, энергии, медпрепаратов, ухудшения экологической ситуации. В современном понимании в сферу биотехнологии включают генетическую и клеточную инженерию, цель которых – изменение наследственных механизмов функционирования организмов для управления деятельностью живых существ. Биотехнология тесно связана с технической микробиологией и биохимией. В ней также применяются многие методы химических технологии, особенно на конечных этапах производственного процесса, при выделении веществ, например, из биомассы микроорганизмов.

В основе биотехнологии лежит микробиологический синтез, т.е. куль­тивирование выбранных микроорганизмов в питательной среде определенного состава. Мир микроорганизмов – мельчайших, преимущественно одноклеточных организмов (бактерии, микроскопические грибы, водоросли и др.) – чрезвычайно обширен и разнообразен. Размножаются они чаще всего простым делением клеток, иногда почкованием или другими бесполыми способами.

Микроорганизмы характеризуются самыми разнообразными физиологическими и биохимическими свойствами. Для некоторых из них, так называемых анаэробов, не нужен кислород воздуха, другие отлично растут на дне океана в сульфидных источниках при температуре 250 о С, третьи выбрали себе в качестве среды обитания ядерные реакторы. Есть микроорганизмы, сохраняющие жизнеспособность в глубоком вакууме, а есть и такие, которым ни почем давление в 1000–1400 ат. Необычайная устойчивость микроорганизмов позволяет им занимать крайние границы биосферы: их обнаруживают в грунте океана на глубине 11 км, в атмосфере на высоте более 20 км. Микроорганизмы широко распространены в природе, в грамме почвы их может содержаться до 2–3 млрд. В микроорганизмах многие процессы биосинтеза и энергетического обмена, например, транспорт электронов и синтез белка, протекает аналогично тем же процессам, что в клетках высших растений и животных.

Однако микроорганизмам присущи и специфические ферментные и биохимические реакции, на которых основана их способность разлагать целлюлозу, лингин, углеводороды нефти, воск и другие вещества. Существуют микроорганизмы, способные усваивать молекулярный азот, синтезировать белок, вырабатывать множество биологически активных веществ (антибиотики, ферменты, витамины и др.). На этом основано применение микроорганизмов для получения самых разнообразных продуктов. Причем в современной биотехнологии все активнее применяются не целые организмы, а их составляющие: живые клетки, различного рода структуры, являющиеся их частями, и биологические молекулы.

Сейчас с помощью биотехнологий получают антибиотики, витамины, аминокислоты, белки, спирты, кормовые добавки для животных, кисломолочную продукцию и многое другое. Интерес к использованию биотехнологий постоянно возрастает в различных отраслях деятельности человека: в энергетике, пищевой промышленности, медицине, сельском хозяйстве, химической промышленности и т. д. Это объясняется в первую очередь возможностью применения в качестве сырья возобновляемых ресурсов (биомассы), а также экономией энергии. Например, такие вещества, как аммиак, глицерин, метанол, фенол, производить выгодней биотехнологией, чем химическими способами.

Перспективным направлением развития биотехнологии является разработка и внедрение в практику микробиологических способов получения различных металлов. Как известно, микроорганизмы играют важную роль в круговороте веществ в природе. Установлено, что они причастны к процессу образования рудных ископаемых. Так в начале двадцатого столетия на одном старом отработанном медном руднике было обнаружено в откаченном из шахты водном растворе огромное количество меди, которая была произведена бактериями из сернистых соединений меди. Окисляя нерастворимые в воде сульфиды меди, бактерии превращают их в легко растворимые соединения, причем процесс протекает очень быстро. Микроорганизмы способны перерабатывать не только медные соединения, но и извлекать из руды железо, цинк, никель, кобальт, титан, алюминий, свинец, висмут, уран, золото, германий, рений и многие др. Особенно эффективно использование бактерий на завершающей стадии эксплуатации рудников, при переработки отвалов. Внедрение геомикробиологической технологии позволит вовлечь в промышленное использование труднодоступные, глубинные залежи полезных ископаемых. После соответствующих подготовительных работ достаточно будет погрузить на нужную глубину трубы и подвести по ним к рудной породе биораствор. Проходя через породу, раствор обогатиться теми или иными металлами, и поднятый на поверхность вынесет необходимые природные ископаемые. Отпадает необходимость строительства дорогостоящих шахт, уменьшиться нежелательная нагрузка на экологическую ситуацию, высвобождаются большие площади земли, занимаемыми шахтами, отвалами и обогатительными предприятиями, сократятся расходы на очистку атмосферы, земли и сточных вод, значительно снизится себестоимость добытых полезных ископаемых.

Интенсивное развитие и расширение применения биологических процессов при производстве медицинских препаратов, белков и кормов, органических удобрений, продуктов питания на основе брожения, горючих газов и жидкостей, микроорганизмов для очистки жидкой и воздушной среды обитания живого мира является весьма актуальной и высокоэффективной задачей экономики Республики Беларусь. Нельзя пренебрегать возможностью использования биотехнологий при разработке нетрадиционных способов получения энергетических ресурсов. Превращение биомассы в биогаз дает возможность получить 50-80% потенциальной энергии, не загрязняя окружающую среду.

Биотехнология сегодня имеет следующие направления: 1) промышленную биотехнологию (микробиологический синтез); 2) генетическую и клеточную инженерию; 3) инженерную энзимологию (белковую инженерию). Промышленная биотехнология реализует процессы, которые проводятся в искусственных производственных условиях с целью получения пекарских, винных и кормовых дрожжей, вакцин, белково-витаминных концентратов (БВК), средств защиты растений, заквасок для кисломолочных продуктов и силосования кормов, почвоудобрительных препаратов, антибиотиков, гормонов, ферментов, аминокислот, витаминов, спиртов, органических кислот, растворителей. Кроме того эти процессы позволяют утилизировать отходы, целлюлозу и получать биогаз.

Генетическая инженерия позволяет создавать искусственные генетические структуры посредством воздействия на материальные носители наследственности (ДНК), с ее помощью можно формировать совершенно новые организмы и производить физиологически активные вещества белковой природы для медицинских и сельскохозяйственных нужд (производить интерферон, инсулин, гормон роста живых организмов). Генная инженерия считается самой перспективной областью современной биотехнологии, с ее помощью возможно исправлять наследственные заболевания человека, создавать стимуляторы регенерации тканей для лечения ран, ожогов, переломов.

Инженерная энзимология является перспективным направлением развития промышленной биотехнологии, представляет собой науку, разрабатывающей основы создания высокоэффективных ферментов для промышленной интенсификации технологических процессов при значительной экономии материальных и энергетических ресурсов. Ферменты используются при производстве сахара для диабетиков, гормональных препаратов, обработки кож, получении тканей, бумаги, синтетических материалов, глюкозы, улучшения качества молочных продуктов и т. п.

Вывод: Деление процессов переработки сырья на физические, механические химические и биологические часто является условным из-за невозможности проведения четкой границы между ними. Так, например, изменение формы и внешнего вида материала сопровождается химическими процессами (электрохимическая и электроэрозионная обработка поверхностей, металлургические процессы получения металлов и сплавов, термомеханическое упрочнение материалов и т. д.), а химические процессы почти во всех производствах сопровождаются механическими. Но, несмотря на условность подобной классификации, деление процессов на физические, биологические, химические и механические способствует типизации процессов промышленного производства и облегчает выбор наиболее эффективного способа переработки сырья. Выбор технологического процесса зависит от многих факторов: доступности сырья, вида используемой энергии, степени сложности аппаратурного оформления, затрат на производственные здания, сооружения, оборудование, их монтаж и эксплуатацию, а также от качества и себестоимости готовой продукции.

Технологический процесс

Технологический процесс (ТП) , сокр. техпроцесс - это упорядоченная последовательность взаимосвязанных действий, выполняющихся с момента возникновения исходных данных до получения требуемого результата.

Технологический процесс - это часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда. К предметам труда относят заготовки и изделия.

ГОСТ 3.1109-82

Практически любой технологический процесс можно рассматривать как часть более сложного процесса и совокупность менее сложных (в пределе - элементарных) технологических процессов. Элементарным технологическим процессом или технологической операцией называется наименьшая часть технологического процесса, обладающая всеми его свойствами. То есть это такой ТП, дальнейшая декомпозиция которого приводит к потере признаков, характерных для метода, положенного в основу данной технологии. Как правило, каждая технологическая операция выполняется на одном рабочем месте не более, чем одним сотрудником. Примером технологических операций могут служить ввод данных с помощью сканера штрих-кодов, распечатка отчета, выполнение SQL-запроса к базе данных и т. д.

Технологические процессы состоят из технологических (рабочих) операций , которые, в свою очередь, складываются из технологических переходов .

Определения

Технологическим переходом называют законченную часть технологической операции, выполняемую с одними и теми же средствами технологического оснащения.

Вспомогательным переходом называют законченную часть технологической операции, состоящей из действий человека и (или) оборудования, которые не сопровождаются изменением свойств предметов труда, но необходимы для выполнения технологического перехода.

Для осуществления техпроцесса необходимо применение совокупности орудий производства - технологического оборудования, называемых средствами технологического оснащения .

Установ - часть технологической операции, выполняемая при неизменном закреплении обрабатываемой заготовки или сборочной единицы.

Виды техпроцессов

В зависимости от применения в производственном процессе для решения одной и той же задачи различных приёмов и оборудования различают следующие виды техпроцессов :

  • Единичный технологический процесс (ЕТП). Разрабатывается индивидуально для конкретной детали.
  • Типовой технологический процесс (ТТП). Создается для группы изделий, обладающих общностью конструктивных признаков. Разработку типовых технологических процессов осуществляют на общегосударственном и отраслевом уровнях, а также на уровнях предприятия в соответствии с общими правилами разработки технологических процессов.
  • Групповой технологический процесс (ГТП).

В промышленности и сельском хозяйстве описание технологического процесса выполняется в документах, именуемых операционная карта технологического процесса (при подробном описании) или маршрутная карта (при кратком описании).

  • Маршрутная карта - описание маршрутов движения по цеху изготовляемой детали.
  • Операционная карта - перечень переходов, установок и применяемых инструментов.
  • Технологическая карта - документ, в котором описан: процесс обработки деталей, материалов, конструкторская документация, технологическая оснастка.

Технологические процессы делят на типовые и перспективные .

  • Типовой техпроцесс имеет единство содержания и последовательности большинства технологических операций и переходов для группы изделий с общими конструкторскими принципами.
  • Перспективный техпроцесс предполагает опережение (или соответствие) прогрессивному мировому уровню развития технологии производства.

Управление проектированием технологического процесса осуществляется на основе маршрутных и операционных технологических процессов .

  • Маршрутный технологический процесс оформляется маршрутной картой, где устанавливается перечень и последовательность технологических операций, тип оборудования, на котором эти операции будут выполняться; применяемая оснастка; укрупненная норма времени без указания переходов и режимов обработки.
  • Операционный технологический процесс детализирует технологию обработки и сборки до переходов и режимов обработки. Здесь оформляются операционные карты технологических процессов.

Этапы ТП

Технологический процесс обработки данных можно разделить на четыре укрупненных этапа:

  • Начальный или первичный . Сбор исходных данных, их регистрация (прием первичных документов, проверка полноты и качества их заполнения и т. д.) По способам осуществления сбора и регистрации данных различают следующие виды ТП:

механизированный - сбор и регистрация информации осуществляется непосредственно человеком с использованием простейших приборов (весы, счетчики, мерная тара, приборы учета времени и т. д.); автоматизированный - использование машиночитаемых документов, регистрирующих автоматов, систем сбора и регистрации, обеспечивающих совмещение операций формирования первичных документов и получения машинных носителей; автоматический - используется в основном при обработке данных в режиме реального времени (информация с датчиков, учитывающих ход производства - выпуск продукции, затраты сырья, простои оборудования - поступает непосредственно в ЭВМ).

  • Подготовительный . Прием, контроль, регистрация входной информации и перенос ее на машинный носитель. Различают визуальный и программный контроль, позволяющий отслеживать информацию на полноту ввода, нарушение структуры исходных данных, ошибки кодирования. При обнаружении ошибки производится исправление вводимых данных, корректировка и их повторный ввод.
  • Основной . Непосредственно обработка информации. Предварительно могут быть выполнены служебные операции, например, сортировка данных.
  • Заключительный . Контроль, выпуск и передача результатной информации, ее размножение и хранение.

Техпроцессы в электронной промышленности

Основная статья: Технологический процесс в электронной промышленности

При производстве полупроводниковых интегральных микросхем применяется фотолитография и литографическое оборудование. Разрешающая способность этого оборудования (т. н. проектные нормы ) и определяет название применяемого техпроцесса.

КТО производства ЭВМ часть 2. 138

Продолжительность: 2 часа (90 мин.)

10.1 Основные вопросы

Понятие производственного и технологического процессов;

Типы производства;

Понятие операции;

Виды технологических процессов;

Интегрально-групповой технологический процесс.

10.2 Текст лекции

10.2.1 Производственный и технологический процессы до 40 мин

Производственный процесс – совокупность действий людей, орудий и естественных процессов, в результате которых поступающие на предприятие материалы и полуфабрикаты превращаются в готовую продукцию.

Производственный процесс делится на основной и вспомогательный. К основному производственному процессу относят процессы по изготовлению продукции, предусмотренные заказчиком. К вспомогательному – процессы складирования, транспортирования и т.п.

Технологический процесс – главная часть производственного процесса, содержащая действия по непосредственному изменению предмета производства с превращением его в готовую продукцию.

Различают технологические процессы изготовления деталей, сборки, настройки, регулировки, контроля и сдачи изделия.

В настоящее время одним из перспективных направлений обеспечения конкурентоспособности предприятия является повышение эффективности технологической подготовки производства выпускаемых изделий. Целью технологической подготовки производства является оптимальное по срокам и ресурсам обеспечение технологической готовности производства к изготовлению изделий в соответствии с требованиями заказчика или рынка данного класса изделий. Необходимость повышения эффективности технологической подготовки производства изделий объясняется увеличением номенклатуры выпускаемой продукции во всех типах производств и высокой скоростью ее обновления. В первую очередь это характерно для единичного и мелкосерийного типов производств.

Технологическая подготовка производства заключается в разработке технологических процессов изготовления ЭВМ, а также необходимой для производства оснастки и специального технологического оборудования.

Технологическое оборудование – орудия производства, в которых для выполнения определенной части технологического процесса размещаются материалы или заготовки, средства воздействия на них и, при необходимости, источники энергии.

Технологическая оснастка – орудия производства, добавляемые к технологическому оборудованию для выполнения определенной части технологического процесса.

Технологический процесс делится на операции, которые, в свою очередь, делятся на установы, позиции, технологические переходы, ходы, приемы.

Операция – законченная часть технологического процесса, выполняемая на одном рабочем месте одним или несколькими рабочими (или в условиях безлюдной технологии) непрерывно над одной или несколькими совместно обрабатываемыми (собираемыми) деталями (сборочными единицами). Напомним, что подрабочим местом понимается часть производственной площади, оснащенной основным технологическим и вспомогательным оборудованием и средствами, закрепленными за рабочим для выполнения операции.

Группа операций, выполняемых последовательно и имеющих признак общности, называется этапом технологического процесса.

Переход (технологический переход) – часть операции, характеризуемая постоянством применяемого инструмента (или активной технологической среды) и поверхностей, образуемых обработкой или соединяемых при сборке, при неизменном или закономерно изменяющемся режиме обработки. Замена инструмента или технологической среды означает выполнение очередного перехода.

Вспомогательный переход – часть операции, которая не сопровождается изменением формы или состояния заготовки, но необходима для выполнения технологического перехода.

Установ – часть операции в несколько переходов, выполняемая при неизменном закреплении обрабатываемой заготовки или собираемой сборочной единицы.

Проход – часть перехода, заключающаяся в снятии одного слоя материала с обрабатываемой поверхности.

Рабочий ход – часть перехода, состоящая из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, шероховатости, свойств заготовки. Часть перехода, состоящая из однократного перемещения инструмента относительно заготовки без изменения формы, размеров, шероховатости, свойств заготовки называетсявспомогательным (холостым) ходом .

Позиция – каждое новое положение заготовки относительно инструментов при неизменном ее закреплении в приспособлении.

Прием - совокупность отдельных движений в процессе выполнения работы или подготовки к ней (пуск станка, выключение и т. п.).

Такт выпуска - интервал времени, через который производится выпуск изделий.

Ритм выпуска (производительность) - обратная величина такта –количество изделий в единицу времени.

10.2.2 Типы производства до 20 мин

Различают три основных типа производства продукции - единичное, серийное и массовое.

Единичное производство характеризуется единичным или малым объемом выпускаемых изделий, процесс изготовления которых не повторяется или повторяется через неопределенный промежуток времени. Для единичного производства характерно применение универсального, переналаживаемого оборудования, высококвалифицированного персонала, высокая себестоимость продукции и низкая производительность.

Серийное производство характеризуется изготовлением изделий перио­дически повторяющимися партиями, сериями. В зависимости от количества изделий в партии различают мелкосерийное, среднесерийное (серийное), крупносерийное производство. Выпуск партий еженедельный, ежемесячный, ежеквартальный. Для серийного производства характерно использование специализированного и автоматизированного оборудования и оснастки, особенно станков с ЧПУ. В ряде случаев, особенно для крупносерийного производства, используют специальное и автоматическое оборудование. Для многономенклатурного серийного производства экономически выгодно использование гибких производственных систем, для которых используют автоматизированную систему технологической подготовки производства (АСТПП), автоматизированную систему управления технологическими процессами (АСУТП). В серийном производстве рабочие имеют среднюю и высокую квалификацию, производительность труда выше, чем при единичном производстве. Производство ЭВМ различного назначения имеет серийный характер.

Массовое производство - это производство одинаковых изделий в течение длительного периода времени. Особенностью данного производства является закрепление за одним рабочим местом одной операции, требующей использования рабочих невысокой квалификации или исключения из процесса рабочих и замены их роботами и робототехническими комплексами. Для массового производства характерным является поточный принцип изготовления продукции на автоматических линиях, цехах и даже автоматических заводах. Оборудование и оснастка, как правило, специальное, дорогое и высокопроизводительное. Производство микросхем и ЭРЭ следует отнести к массовому типу производства.

10.2.3 Виды технологических процессов до 30 мин

Технологические процессы классифицируются по различным признакам.

По методу разработки и применения различают следующие виды технологических процессов:

Единичные;

Типовые;

Групповые;

Интегрально-групповые.

Единичный технологический процесс – разрабатывается индивидуально на всю номенклатуру изделий.

Типовой технологический процесс – разрабатывается на конструктивно подобные изделия, т.е. изделия, имеющие близкую конфигурацию и одинаковые операции обработки.

Групповой технологический процесс – разрабатывается на технологически подобные изделия (одинаковые способы обработки различных по конфигурации изделий на одном и том же оборудовании и с применением одной и той же оснастки). Обеспечивает возможность применения высокопроизводительных методов обработки в единичном и серийном производстве.

Интегрально-групповой технологический процесс – при изготовлении большого числа одинаковых изделий, проходящих операции обработки в неразделенном состоянии на общей заготовке.

Интегрально-групповой технологический процесс используется при изготовлении интегральных микросхем. Каждое функциональное изделие образуется не после сборки отдельно изготовленных сборочных единиц, а как интегральный результат обработки отдельных участков поверхности или объема исходной заготовки для придания им свойств в соответствии с электрической схемой.

По степени детализации технологических документов выделяют следующие виды технологических процессов:

Маршрутные;

Операционные;

Маршрутно-операционные.

Маршрутный технологический процесс выполняют по документации, где указывается порядок (маршрут) следования операций: их вид и наименование, технологическое оборудование и оснастка, трудоемкость выполнения и квалификация работников. Переходы и режимы обработки не указываются. Данный вид технологического процесса характерен для единичного и мелкосерийного производства.

Операционный технологический процесс разрабатывается после определения маршрутной технологии, подробно разрабатывается каждая операция – дробится на технологические переходы, указываются режимы обработки. Данный вид технологического процесса характерен для серийного и массового производства, однако, с появлением станков с числовым программным управлением разработка операционной технологии стала необходимостью и в мелкосерийном производстве.

Маршрутно-операционный технологический процесс – когда на отдельные, наиболее сложные, операции маршрутной технологии разрабатывается операционная технология.

По назначению выделяют рабочие и перспективные технологические процессы.

Рабочий технологический процесс – непосредственно используемый.

Перспективный технологический процесс – применение наиболее рациональных и современных методов, оборудования, которые еще не применяются в производстве и находятся в стадии разработки.

Технологический процесс и его структура

Изделие получается в результате производственного процесса.

Производственный процесс это совокупность всех действий людей и орудий производства, необходимых на данном предприятии для изготовления или ремонта выпускаемых изделий.

Производственный процесс включает не только основные процессы, непосредственно связанные с изготовлением деталей и сборочных единиц, но и все необходимые процессы, например: подготовку производства; получение, транспортирование, контроль и хранение материалов (полуфабрикатов); ремонт оборудования и др.

Технологическим процессом (ТП) называется часть производственного процесса, содержащая действия по изменению и последующему определению состояния предмета производства.

Технологический метод - совокупность правил, определяющих последовательность и содержание действий при выполнении формообразования, обработки или сборки, перемещения, включая технический контроль, испытания в технологическом процессе изготовления или ремонта, установленных безотносительно к наименованию, типоразмеру или исполнению изделия.

По методу выполнения различают три основных части технологического процесса: формообразование, обработку и сборку.

Формообразование это изготовление заготовки или изделия из жидких, порошкообразных или волокнистых материалов: литье, формование, гальванопластика.

Обработка это заданное изменение формы, размеров, шероховатости поверхности или свойств заготовки при выполнении технологического процесса: обработка резанием и давлением, термическая обработка, электрофизическая и электрохимическая обработки, нанесение покрытия.

Сборка это образование разъемных или неразъемных соединений составных частей заготовки или изделия: сварка, клёпка, пайка, склеивание, свинчивание и др.

Заготовка - это предмет производства, из которого изменением формы, размеров, шероховатости поверхности и свойств материала изготовляют деталь или неразъемную сборочную единицу.

Для качественного изменения предметов производства, т.е. для осуществления технологического процесса, используются различные средства производства, в первую очередь орудия производства . К ним относятся:

Технологическое оборудование (оборудование) - орудие производства, в которых для выполнения определенной части ТП размещаются материалы или заготовки, средства воздействия на них и при необходимости источники энергии. Например: прессы, металлорежущие стенки, гальванические ванны, испытательные стенды, верстак и т.д.

Технологическая оснастка (оснастка) - орудие производства, добавляемые к технологическому оборудованию для выполнения определенной части ТП. Например: режущий инструмент, калибры, прессформы, приспособления и т.д.

Технологический процесс выполняется на рабочих местах . Рабочее место - это часть производственной площади цеха, на которой размещены один или несколько исполнителей работы и обслуживаемая ими единица технологического оборудования, а также оснастка и предметы производства.

Технологический процесс структурно расчленяется на следующие элементы:

технологические операции;

переходы;

установы;

Технологическая операция (операция) - законченная часть ТП обработки одной или несколько одновременно обрабатываемых заготовок, выполняемую на одном рабочем месте одним рабочим или бригадой. Операция начинается с момента установки заготовки в станок и включает всю ее последующую обработку и снятие со станка. Операция является основным элементом при разработке, планировании и калькуляции ТП. Примеры операций: сверление отверстия в детали, нарезание зубьев зубчатого колеса, штамповка пластин магнитопроводов и т.д. Технологические операции разделяются на технологические и вспомогательные переходы.

Технологический переход (переход) - законченная часть технологической операции, характеризуемая постоянством применяемого инструмента, режима работы станка и поверхностей, образуемых обработкой или соединяемых при сборке. Следующий переход начинается с момента изменения какого-либо из этих параметров.

Вспомогательный переход - это законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которые не сопровождаются изменением формы, размеров и шероховатости поверхностей, но необходимы для выполнения технологического перехода (например, установка заготовки, смена инструмента и т.д.)

Переход состоит из рабочих и вспомогательных ходов.

Рабочий ход - это законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки сопровождаемого изменением формы, размеров, шероховатости поверхности или свойств заготовки. Технологический переход может состоять из одного или нескольких рабочих ходов. Например, черновое фрезерование плоскости с большим припуском на обработку может быть произведено за два или более рабочих ходов.

Вспомогательный ход - это законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, не сопровождаемого изменением формы, размеров, шероховатости поверхности или свойств заготовки, но необходимого для выполнения рабочего хода.

При изменении положения обрабатываемой заготовки операция может состоять из нескольких установов и позиций.

Установ - это часть технологической операции, выполняемая при неизменном закреплении обрабатываемых заготовок или собираемой сборочной единицы.

Позиция - это фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой или собираемой сборочной единицей совместно с приспособлением относительно инструмента или неподвижной части оборудования для выполнения части операции.

Прием - законченная совокупность действий человека, применяемых при выполнении перехода или его части и объединенных одним целевым назначением. Например, вспомогательный переход "установка заготовки в приспособление" включает приемы: взять заготовку, установить в приспособление и закрепить.

Общим припуском на обработку называется слой материала, представляющий собой разность между размерами заготовки и размерами окончательно обработанной детали.

Базовой поверхностью обрабатываемой заготовки называется поверхность, которой заготовку устанавливают в приспособление и ориентируют при обработке на станке относительно режущего инструмента.

Вопрос 3. Классификация технологических процессов.

В основе любого производства лежит технологический процесс, под которыми понимаются совокупность действий по добыче и переработки сырья в готовую продукцию. В основе любых процессов лежат физические, химические, биологические процессы, различающиеся характером количественных и качественных изменений сырья в процессе его переработки.

Основная классификация технологических процессов является способ организации и кратность обработки сырья.

    Виды технологических процессов в зависимости от способа их организации : единичный, типовой, групповой, дискретный (прерывный, периодический), непрерывный и комбинированный.

Единичный технологический процесс (ЕТП) разрабатывается для изготовления или ремонта изделия одного наименования, типоразмера и исполнения независимо от типа производства. Разработка ЕТП включает в себя следующие этапы.

1. Анализ исходных данных и выбор действующего аналога ЕТП.

2. Выбор исходной заготовки и метода ее получения.

3. Определение содержания операций, выбор технологических баз и составление технологического маршрута (последовательности) обработки.

4. Выбор технологического оборудования, оснастки, средств автоматизации и механизации технологического процесса. Уточнение последовательности выполнения переходов.

5. Назначение и расчет режимов выполнения операции, нормирование переходов и операций ТП, определение профессий и квалификации исполнителей, установление требований к технике безопасности.

6. Расчет точности, производительности и экономической эффективности ТП. Выбор оптимального процесса.

7. Оформление рабочей технологической документации.

Необходимость каждого этапа, состава задач и последовательности решения устанавливается в зависимости от типа производства.

Типизация ТП позволяет устранить их многообразие с обоснованным сведением к ограниченному числу типов.

Типовой технологический процесс (ТТП) характеризуется единством содержания и последовательности большинства технологических операций и переходов для групп изделий с общими конструктивными признаками.

Типизацию начинают с классификации изделий. Классом называют совокупность деталей, характеризуемых общностью технологических задач. В пределах класса детали разбивают на группы, подгруппы и т.д. до типа. Практически к одному типу относят детали, для которых можно составить один технологический процесс.

ТПП разрабатывают с учетом последних достижений науки и техники, опыта передовых рабочих, что позволяет значительно сократить цикл подготовки производства и повысить производительность за счет применения более совершенных методов производства.

Групповой технологический процесс (ГТП) предназначен для совместного изготовления или ремонта групп изделий с разными конструктивными, но общими технологическими признаками.

При группировании одна из наиболее сложных деталей принимается за комплексную. Эта деталь должна иметь все поверхности, встречающиеся у деталей данной группы. Они могут быть расположены в иной последовательности, чем у комплексной детали. При отсутствии такой детали в группе создается условная комплексная деталь. По этому технологическому процессу можно обрабатывать любую деталь группы без значительных отклонений от общей схемы.

Групповые технологические процессы используют для механической обработки деталей на универсальном оборудовании, для электромонтажных, сборочных и других операций, что делает целесообразным применение высокопроизводительных автоматов и полуавтоматов в мелкосерийном производстве.

Периодические процессы (например, выплавка стали, литье в форму, термообработка и др.) проводятся на оборудовании, которое загружается исходными материалами или заготовками через определенные промежутки времени; после их обработки полученный продукт выгружается. Периодические или дискретные процессы характеризуются чередованием во времени рабочих и вспомогательных операций, выполняются они, как правило, на одном месте. Они компактны в пространстве и растянуты по времени. Основным недостатком таких процессов является то, что во время загрузки и выгрузки продукта оборудование не работает (простаивает) или работает не в полную мощность. Это приводит к потерям рабочего времени и большим затратам труда. Кроме того, непостоянство технологического режима в начале и конце процесса усложняет обслуживание, затрудняет автоматизацию и приводит к удлинению продолжительности производительного цикла. Все эти причины и побуждают заменять периодические процессы более рациональными при наличии экономической и технической возможности.

Непрерывные процессы (например, разливка стали, прокатка или волочение профилей из металлов и сплавов, переработка нефти, производства цемента) осуществляются в аппаратах, где поступление сырья и выгрузка конечных продуктов производятся непрерывно. Однако все стадии процесса могут протекать одновременно как в различных частях аппарата (например, перегонка нефти в ректификационной колонне), так и в различных аппаратах, составляющих данную установку. Они характеризуются непрерывным и одновременным выполнением рабочих и вспомогательных технологических действий, но на разных местах. Параллельность выполнения операций позволяет значительно повысить производительность, но требует увеличения пространства.

Комбинированные процессы являются сочетанием стадий периодических и непрерывных процессов (например, поточные линии механической обработки деталей, коксование угля, работа доменной печи или стана периодической прокатки металлических профилей). Комбинированные технологические процессы позволяют удачно сочетать преимущества периодических и непрерывных действий и устранить их недостатки.

По сравнению с комбинированными и периодическими процессами непрерывные отличаются отсутствием простоев оборудования, перерывов в выпуске конечных продуктов, возможностью полной автоматизации и механизации, устойчивостью технологического режима и соответственно большей стабильностью качества выполняемой работы, в т. ч. и готовой продукции. Например, слитки металлов и сплавов, изготовленные в установках непрерывной разливки, отличаются более высоким качеством и отсутствием дефектов, характерных для слитков, полученных в изложницах (обычное литье). Большая компактность оборудования обеспечивает меньшие капитальные затраты и эксплуатационные расходы на ремонт и обслуживание, уменьшает потребность в рабочей силе, увеличивает производительность труда, позволяет полнее и эффективнее использовать энергетические ресурсы. По этим причинам основной тенденцией промышленного производства массового типа является замена периодических процессов непрерывными. Но, как правило, технологическое оборудование для непрерывных процессов является более сложным и дорогим.

Сейчас периодические процессы сохраняют свое значение в производствах относительно небольшого масштаба (в том числе опытных) с разнообразным ассортиментом продукции. Там применение указанных процессов позволяет достичь большой гибкости в использовании оборудования при меньших затратах.

2. По кратности обработки сырья различают процессы: с разомкнутой (открытой) схемой, в которой сырье или материал подвергается однократной обработке; с замкнутой (круговой, циркуляционной или циклической) схемой, в которой сырье или вспомогательные материалы неоднократно возвращаются в начальную стадию процесса для повторной обработки, а иногда и регенерации (восстановление потерянных свойств); комбинированные (со смешанной схемой).

Примером процесса с разомкнутой (открытой) схемой является конвертерный способ получения стали. Примером процесса с замкнутой схемой может служить циркуляция специальной жидкой смеси для охлаждения резца токарного станка при скоростной механической обработке металлов резанием. В такой замкнутой схеме охлаждающая жидкость постоянно циркулирует между бачком, резцом, сборником для жидкости и насосом для ее перекачивания в бачок. Другим примером процесса с замкнутым циклом может быть химическая переработка нефтяных фракций, где для непрерывного восстановления активности катализатора последний постоянно циркулирует между реакционной зоной крекинга и прокалочной печью для выжигания углерода с его поверхности.

Процессы с замкнутой схемой более компактны, чем процессы с разомкнутой схемой, требуют по сравнению с ними меньшего расхода сырья, вспомогательных материалов и энергии на транспортировку реагентов. Циклические (с замкнутой схемой) процессы широко используются во многих производствах для многократного или частичного возвращения тепловых или материальных потоков в начальную стадию процесса. Это позволяет рационально и экономно расходовать энергию, сырье, материалы и водные ресурсы, получать продукцию высокого качества. Наиболее совершенные технологические процессы – процессы с замкнутой схемой – являются основой создания безотходных, материало- и энергосберегающих производств.

В промышленности часто применяют комбинированные процессы (со смешанной схемой), являющиеся сочетанием процессов с открытой и закрытой схемой (например, производство серной кислоты нитрозным способом). В таких процессах одни промежуточные продукты (оксиды серы) обрабатываются по открытой схеме, проходя последовательно ряд аппаратов, а другие (оксиды азота) – циркулируют по замкнутой схеме.

3. Классификация технологических процессов по способам переработки сырья . В основе переработки сырья лежат физические, механические, химические и биологические процессы, различающиеся между собой характером качественных изменений и превращений вещества.

Физические технологические процессы. Так, использование физических процессов для переработки сырья характеризуется изменением состояния (твердое, жидкое газообразное), внешней формы и физических свойств. Эти ТП могут быть реализованы при изменении параметров окружающей предмет труда условий, например температуры, давления, электромагнитного поля, ионизирующего и радиоактивного излучений и т.п. Как правило, физические технологические процессы в чистом виде редко реализуются, часто они вызывают и химические превращения, тогда такие процессы превращаются в физико-химические. Чистые физические процессы – превращение воды в пар или лед и наоборот; превращение графита под действием температуры и давления в алмаз, расплавление или затвердевание чистых металлов или веществ. Физико-химический процесс – это расплавление руды или металлолома и получение жидкого сплава, который при затвердевании не только переходит в твердое тело, но и претерпевает химическое превращение, изменяется кристаллическая решетка и структура сплава.

Часто использование физических технологических процессов при изготовлении некоторых изделий позволяет существенно повысить качество и эффективность работы. В частности, в современном машиностроении получают все большое распространение материалы, которые отличаются высокой твердостью и вязкостью, трудно поддающиеся традиционным способам обработки. Все возрастающее количество применяемых штампов и пресс-форм отличается высокой сложностью внутренних полостей. Это послужило основанием создания и внедрения в производство высокоэффективных электрофизических (ЭФ) и электрохимических (ЭХ) методов обработки, сущность которых заключается в том, что обработка облегчается благодаря ослаблению связей между элементарными объемами заготовки за счет их нагрева, расплавления и удаления из зоны обработки или перевода сплава в легко удаляемое соединение.

При электрофизической обработке используют инструмент – электрод, который может быть изготовлен из легкообрабатываемого материала (меди, графита, медно-графитовой композиции и т. п.). При сближении в жидком диэлектрике электродов, инструмента и заготовки возникает электрический разряд, и через зазор между ними начинает течь электрический ток. Электроны, соударяясь с анодом (заготовкой), интенсивно его разогревают и расплавляют микрообъемы заготовки. Расплавленные частички сплава охлаждаются жидким диэлектриком и удаляются из зазора между инструментом и заготовкой. Электрофизические методы отличаются высокой концентрацией энергии (1000–100000000 Вт/см2) на локальных участках обрабатываемой заготовки, частицы материала удаляются с поверхности в расплавленном или парообразном состоянии. На электроэрозионных станках можно выполнять сложные полости в заготовках, резать и сверлить их, шлифовать и полировать. При полировке отпадает необходимость в применении инструмента, достаточно обеспечить мощный разряд между полируемым изделием и водным раствором поваренной соли.

Разновидностями ЭФ являются электроэрзионная, электроискровая, электроимпульсная, электроконтактная и плазменная обработка.

Характерной особенностью электроэрозионной (электроразрядной) обработки является то, что электрический пробой происходит по кратчайшему пути, что предопределяет разрушение (оплавление) наиболее близкорасположенных участков заготовки. Поэтому при выполнении углублений (полостей) или отверстий обрабатываемая поверхность заготовки принимает форму электрода. Известно, что механическая обработка наружных поверхностей заготовки значительно проще, производительнее и экономичнее, может быть выполнена более качественно, чем внутренних поверхностей, при этом может использован простой инструмент и универсальные оборудование.

Механические технологические процессы. В производстве более 80% технологических процессов – это механические, в результате которых изменяются форма, качество поверхности, геометрические размеры и свойства предмета обработки. Так при пластической деформации металлической заготовки придают требуемую форму и геометрические размеры, параллельно изменяются и физические свойства сплава заготовки (наклеп и упрочнение). Применяя механические технологические процессы, получают листы, сортовой прокат, поковки, трубы, проволоку и многое другое. При обработке резанием путем снятия стружки заготовке придают определенную форму и размеры, превращают ее в будущую деталь, которая в результате такой обработки приобретает заданную точность геометрических размеров с соответствующей шероховатостью поверхностей. При такой обработке свойства материала заготовки не изменяются.

При выполнении разъемных соединений деталей и узлов изделия реализуется типичный механический технологический процесс, большинство сборочных ТП базируются на чисто механических процессах (завернуть винт или гайку, запрессовать подшипник или втулку, выполнить клепанное соединение, развальцевать, зашплинтовать и т. д.), причем выполнение операций по соединению отдельных деталей или узлов не требуют высокой квалификации исполнителей и эти операции могут быть легко автоматизированы, особенно при массовом типе производства.

Механические технологические процессы широко используются в горнодобывающей промышленности, при измельчении, смешивании, дозировке, сортировке, уплотнении, формовки, упаковки сырья и материалов.

Химические процессы , в отличие от физических и механических, характеризуются изменением не только физических свойств, но и агрегатного состояния, химического состава и внутреннего строения веществ. Например, химической переработкой природного газа из метана получают водород, этилен, ацетилен, метиловый спирт и другие продукты; гидролизом древесины – скипидар, деготь, камфару, ванилин, спирты, канифоль.

Химические процессы лежат в основе жизнедеятельности живых организмов. В технологии промышленного производства термин ”химические процессы” следует понимать в широком смысле и не отождествлять с производством только химических веществ. Химико-технологические процессы являются основой производства многих строительных материалов, металлов и пищевых продуктов, используются в машиностроении, при производстве радиоэлектронной аппаратуры, измерительной техники, изделий легкой промышленности. Химические технологические процессы играют важную роль в развитии электроники, биотехнологии и создании новых материалов с уникальными свойствами, без которых немыслимо современное производство многих товаров с высокими качественными показателями.

Химические технологические процессы. Основухимического ТПсоставляют химические реакции (простые сложные, обратимые и необратимые, экзотермические и эндотермические) различных веществ при создании определенных условий. При этом образуются новые вещества, которые уже имеют совершенно другие свойства. Как правило, большая часть из них представляет основной продукт, а часть– побочный и отходы. ТП состоит из трех стадий: подготовки сырья или материалов, химической реакции, выделение (отвод) полученных веществ из реактора.

В зависимости от используемого сырья ТП могут быть разделены на процессы по переработке растительного, животного и минерального сырья. Химические технологические процессы (ХТП) могут быть низкотемпературные, протекающие при температуре до 500 °С и высокотемпературные (выше 500 °С); каталические и не каталические; происходящие под вакуумом, под высоким или атмосферном давлении и др.

Благодаря развитию химической технологии и совершенствованию ХТП в последние 50 лет появилось десятки тысяч новых материалов и веществ, имеющих уникальные свойства, это – различные клеи, фторопласты, полиуретаны, краски, лаки, полиэтилены, полипропилены, полиамиды, эпоксидные смолы, поликарбонаты, винипласты, полистиролы, поливинилхлориды (ПВХ),текстолиты, гетинаксы и т.д. Материалы, полученные с помощь. ХТП в значительной степени изменили качество жизни человека и сейчас уже трудно представить жизнь без них. Производство одежды, обуви, жилых зданий, бытовой техники, автомобилей, приборов и много другого стало благодаря ХТП более технологично, производительно, рентабильно и качественно. Роль химической промышленности трудно переоценить, валовый внутренний продукт Республики Беларусь более чем 50% наполняется за счет продукции ХТП.

Биологические процессы связаны либо с использованием живых микроорганизмов с целью получения требуемых продуктов (традиционная биотехнология), либо с воспроизведением в искусственных условиях процессов, протекающих в живой клетке (современная биотехнология).

Биологические технологические процессы. Биологические процессы протекают благодаря микроорганизмам, которые перерабатывают исходное сырье в полезные материалы (органическое удобрение, вино, спирт, медпрепораты, металлы, горючий газ, кисломолочные продукты, витамины, белки, органические кислоты и т. д.). Вторая половина XX столетия отмечена интенсивным развитием биотехнологий. Биотехнологией называют промышленную технологию получения ценных продуктов из исходного сырья с помощью микроорганизмов. Биотехнологические процессы известны с древних времен: хлебопечение, приготовление вина и пива, сыра, уксуса, молочнокислых продуктов, биоочистка воды, борьба с вредителями растительного и животного мира, обработка кожи, растительных волокон, получение органических удобрений и т.д. Научные основы были заложены в 19 веке французским ученым Л. Пастером (1822-1895г.), положившим начало микробиологии. Этому способствовало, с одной стороны, бурное развитие молекулярной биологии и генетики, биохимии и биофизики, с другой стороны, возникновение проблемы нехватки продовольствия, минеральных ресурсов, энергии, медпрепаратов, ухудшения экологической ситуации. В современном понимании в сферу биотехнологии включают генетическую и клеточную инженерию, цель которых – изменение наследственных механизмов функционирования организмов для управления деятельностью живых существ. Биотехнология тесно связана с технической микробиологией и биохимией. В ней также применяются многие методы химических технологии, особенно на конечных этапах производственного процесса, при выделении веществ, например, из биомассы микроорганизмов.

В основе биотехнологии лежит микробиологический синтез, т.е. куль­тивирование выбранных микроорганизмов в питательной среде определенного состава. Мир микроорганизмов – мельчайших, преимущественно одноклеточных организмов (бактерии, микроскопические грибы, водоросли и др.) – чрезвычайно обширен и разнообразен. Размножаются они чаще всего простым делением клеток, иногда почкованием или другими бесполыми способами.

Микроорганизмы характеризуются самыми разнообразными физиологическими и биохимическими свойствами. Для некоторых из них, так называемых анаэробов, не нужен кислород воздуха, другие отлично растут на дне океана в сульфидных источниках при температуре 250 оС, третьи выбрали себе в качестве среды обитания ядерные реакторы. Есть микроорганизмы, сохраняющие жизнеспособность в глубоком вакууме, а есть и такие, которым ни почем давление в 1000–1400 ат. Необычайная устойчивость микроорганизмов позволяет им занимать крайние границы биосферы: их обнаруживают в грунте океана на глубине 11 км, в атмосфере на высоте более 20 км. Микроорганизмы широко распространены в природе, в грамме почвы их может содержаться до 2–3 млрд. В микроорганизмах многие процессы биосинтеза и энергетического обмена, например, транспорт электронов и синтез белка, протекает аналогично тем же процессам, что в клетках высших растений и животных.

Однако микроорганизмам присущи и специфические ферментные и биохимические реакции, на которых основана их способность разлагать целлюлозу, лингин, углеводороды нефти, воск и другие вещества. Существуют микроорганизмы, способные усваивать молекулярный азот, синтезировать белок, вырабатывать множество биологически активных веществ (антибиотики, ферменты, витамины и др.). На этом основано применение микроорганизмов для получения самых разнообразных продуктов. Причем в современной биотехнологии все активнее применяются не целые организмы, а их составляющие: живые клетки, различного рода структуры, являющиеся их частями, и биологические молекулы.

Сейчас с помощью биотехнологий получают антибиотики, витамины, аминокислоты, белки, спирты, кормовые добавки для животных, кисломолочную продукцию и многое другое. Интерес к использованию биотехнологий постоянно возрастает в различных отраслях деятельности человека: в энергетике, пищевой промышленности, медицине, сельском хозяйстве, химической промышленности и т. д. Это объясняется в первую очередь возможностью применения в качестве сырья возобновляемых ресурсов (биомассы), а также экономией энергии. Например, такие вещества, как аммиак, глицерин, метанол, фенол, производить выгодней биотехнологией, чем химическими способами.

Перспективным направлением развития биотехнологии является разработка и внедрение в практику микробиологических способов получения различных металлов. Как известно, микроорганизмы играют важную роль в круговороте веществ в природе. Установлено, что они причастны к процессу образования рудных ископаемых. Так в начале двадцатого столетия на одном старом отработанном медном руднике было обнаружено в откаченном из шахты водном растворе огромное количество меди, которая была произведена бактериями из сернистых соединений меди. Окисляя нерастворимые в воде сульфиды меди, бактерии превращают их в легко растворимые соединения, причем процесс протекает очень быстро. Микроорганизмы способны перерабатывать не только медные соединения, но и извлекать из руды железо, цинк, никель, кобальт, титан, алюминий, свинец, висмут, уран, золото, германий, рений и многие др. Особенно эффективно использование бактерий на завершающей стадии эксплуатации рудников, при переработки отвалов. Внедрение геомикробиологической технологии позволит вовлечь в промышленное использование труднодоступные, глубинные залежи полезных ископаемых. После соответствующих подготовительных работ достаточно будет погрузить на нужную глубину трубы и подвести по ним к рудной породе биораствор. Проходя через породу, раствор обогатиться теми или иными металлами, и поднятый на поверхность вынесет необходимые природные ископаемые. Отпадает необходимость строительства дорогостоящих шахт, уменьшиться нежелательная нагрузка на экологическую ситуацию, высвобождаются большие площади земли, занимаемыми шахтами, отвалами и обогатительными предприятиями, сократятся расходы на очистку атмосферы, земли и сточных вод, значительно снизится себестоимость добытых полезных ископаемых.

Интенсивное развитие и расширение применения биологических процессов при производстве медицинских препаратов, белков и кормов, органических удобрений, продуктов питания на основе брожения, горючих газов и жидкостей, микроорганизмов для очистки жидкой и воздушной среды обитания живого мира является весьма актуальной и высокоэффективной задачей экономики Республики Беларусь. Нельзя пренебрегать возможностью использования биотехнологий при разработке нетрадиционных способов получения энергетических ресурсов. Превращение биомассы в биогаз дает возможность получить 50-80% потенциальной энергии, не загрязняя окружающую среду.

Биотехнология сегодня имеет следующие направления: 1) промышленную биотехнологию (микробиологический синтез); 2) генетическую и клеточную инженерию; 3) инженерную энзимологию (белковую инженерию). Промышленная биотехнология реализует процессы, которые проводятся в искусственных производственных условиях с целью получения пекарских, винных и кормовых дрожжей, вакцин, белково-витаминных концентратов (БВК), средств защиты растений, заквасок для кисломолочных продуктов и силосования кормов, почвоудобрительных препаратов, антибиотиков, гормонов, ферментов, аминокислот, витаминов, спиртов, органических кислот, растворителей. Кроме того эти процессы позволяют утилизировать отходы, целлюлозу и получать биогаз.

Генетическая инженерия позволяет создавать искусственные генетические структуры посредством воздействия на материальные носители наследственности (ДНК), с ее помощью можно формировать совершенно новые организмы и производить физиологически активные вещества белковой природы для медицинских и сельскохозяйственных нужд (производить интерферон, инсулин, гормон роста живых организмов). Генная инженерия считается самой перспективной областью современной биотехнологии, с ее помощью возможно исправлять наследственные заболевания человека, создавать стимуляторы регенерации тканей для лечения ран, ожогов, переломов.

Инженерная энзимология является перспективным направлением развития промышленной биотехнологии, представляет собой науку, разрабатывающей основы создания высокоэффективных ферментов для промышленной интенсификации технологических процессов при значительной экономии материальных и энергетических ресурсов. Ферменты используются при производстве сахара для диабетиков, гормональных препаратов, обработки кож, получении тканей, бумаги, синтетических материалов, глюкозы, улучшения качества молочных продуктов и т. п.

Вывод: Деление процессов переработки сырья на физические, механические химические и биологические часто является условным из-за невозможности проведения четкой границы между ними. Так, например, изменение формы и внешнего вида материала сопровождается химическими процессами (электрохимическая и электроэрозионная обработка поверхностей, металлургические процессы получения металлов и сплавов, термомеханическое упрочнение материалов и т. д.), а химические процессы почти во всех производствах сопровождаются механическими. Но, несмотря на условность подобной классификации, деление процессов на физические, биологические, химические и механические способствует типизации процессов промышленного производства и облегчает выбор наиболее эффективного способа переработки сырья. Выбор технологического процесса зависит от многих факторов: доступности сырья, вида используемой энергии, степени сложности аппаратурного оформления, затрат на производственные здания, сооружения, оборудование, их монтаж и эксплуатацию, а также от качества и себестоимости готовой продукции.