Современные инструментальные материалы в машиностроении. Инструментальные материалы. Быстрорежущие инструментальные стали

Износ металлорежущего инструмента увеличивает погрешность на размер, влияет на качество обрабатываемой поверхности, увеличивает силы резания приводит к искажению поверхностного слоя детали.Износ и технологический период стойкости инструмента можно уменьшить за счет применения прогрессивных материалов и сборных инструментов оснащенных сменными многогранными пластинами.

Процесс резания сопровождается большим давлением на режущий инструмент, трением и тепловыделением. Такие условия работы выдвигают ряд требований, которым должны удовлетворять материалы, предназначенные для изготовления режущего инструмента.

Инструментальные материалы должны иметь высокую твердость, превышающую твердость обрабатываемого материала. Высокая твердость материала режущей части может быть обеспечена физико-механическими свойствами материала (алмазы, карбиды кремния, карбиды вольфрама и др.) или

его термической обработкой (закалка и отпуск).

В процессе резания срезаемый слой давит на переднюю поверхность инструмента, создавая в пределах площади контакта нормальное напряжение. При резании конструкционных материалов с установленными режимами резания нормальные контактные напряжения могут достигать значительных величин. Режущий инструмент должен выдерживать такие давления без хрупкого разрушения и пластического деформирования. Так как режущий инструмент может работать в условиях переменных значений сил, например из-за неравномерно снимаемого слоя металла заготовки, важно, чтобы инструментальный материал сочетал в себе высокую твердость с сопротивляемостью на сжатие и изгиб, обладал высоким пределом выносливости и ударной вязкостью. Таким образом, инструментальный материал должен отличаться высокой механической прочностью.

При резании со стороны заготовки на инструмент действует мощный тепловой поток, в результате чего на передней поверхности инструмента устанавливается высокая температура. При этом режущие элементы инструмента теряют свою твердость и изнашиваются из-за интенсивного разогревания. Поэтому важнейшим требованием, предъявляемым к инструментальному материалу, является его высокая теплостойкость – способность сохранять при нагреве твердость, необходимую для осуществления процесса резания.

Перемещение стружки по передней и задней поверхностям резания инструмента при высоких контактных напряжениях и температурах приводят к изнашиванию рабочих поверхностей. Таким образом, высокая износостойкость – важнейшее требование, предъявляемое к характеристике инструментального материала. Износостойкость – это способность инструментального материала сопротивляться при резании удалению его частиц с контактных поверхностей инструмента. Она зависит от твердости, прочности и теплостойкости инструментального материала.

Инструментальный материал должен обладать высокой теплопроводностью. Чем она выше, тем меньше опасность возникновения шлифовочных ожогов и трещин.

В промышленности используется большое количество инструмента, что требует соответствующего расхода инструментального материала. Инструментальный материал должен быть по возможности дешевым, не содержать дефицитных элементов, что не будет увеличивать стоимость инструмента и, соответственно, стоимость изготовления деталей.

В соответствии с химическим составом и физико-механическими свойствами инструментальные материалы делят на :

углеродистые инструментальные стали;

легированные инструментальные стали;

быстрорежущие стали и сплавы (высоколегированные);

твердые сплавы;

минералокерамику;

абразивные материалы;

алмазные материалы.

Наиболее распространенными из углеродистых инструментальных материалов являются марки: У9А, У10А, У12А, У13А.

Маркировка углеродистых инструментальных сталей расшифровывается так: буква «У» означает, что сталь углеродистая; цифра указывает на содержание в ней углерода в десятых долях процента; буква «А» говорит о том, что сталь высококачественная.

Углеродистые стали из-за отсутствия легирующих химических элементов хорошо шлифуются и являются дешевым инструментальным материалом. Вместе с тем инструмент, изготовляемый из углеродистой стали, сравнительно быстро изнашивается и теряет твердость, полученную при закалке.

Из этих сталей изготовляют инструменты малых габаритных размеров для работы по мягким материалам с малой скоростью резания. Из сталей марок У7А, У7, У8А, У8, У8ГА, У9А и У9 производят различные слесарные и кузнечные инструменты, инструменты для обработки дерева, кожи и др. Из этих же марок сталей изготовляют державки и корпуса инструментов, оснащенных пластинками из твердого сплава.

Легированные инструментальные стали получаются путем добавления в углеродистые стали небольшого количества легирующих элементов: хрома (Х), вольфрама (В), ванадия (Ф), кремния (С), марганца (Г). Наибольшее применение при изготовлении инструментов нашли стали марок ХВ5, ХВГ, 9ХС.

Сталь ХВ5 после термообработки приобретает весьма высокую твердость (HRC 67…67), плохо прокаливается, но по прочности не уступает стали У12А, но из-за большой твердости обладает высоким сопротивлением малым пластическим деформациям. Для изготовленных из нее инструментов характерна высокая формоустойчивость лезвий. Эта сталь применяется для изготовления инструментов, работающих при небольших скоростях резания.

Сталь ХВГ после закалки и отпуска приобретает твердость HRC 63…65 и достаточно высокую вязкость, отличается малыми объемными изменениями при закалке, хорошо прокаливается, но имеет пониженное сопротивление малым пластическим деформациям. Инструмент, изготовленный из этой стали, мало деформируется и хорошо поддается правке.

Сталь 9ХС после термообработки приобретает твердость HRC 63…64. Она обладает хорошей закаливаемостью. Инструмент из этой стали малодеформируется. Сталь также малочувствительна к перегреву. Сталь 9ХС особо пригодна для изготовления инструментов с тонкими режущими элементами.

Высоколегированные инструментальные (быстрорежущие) стали и сплавы получаются при добавлении в углеродистую сталь большого количества легирующих элементов: вольфрама, ванадия, молибдена, хрома. Введением в сталь вольфрама, ванадия, молибдена и хрома в значительных количествах получают сложные карбиды, связывающие почти весь углерод, что обеспечивает возрастание теплостойкости быстрорежущей стали.

В отличие от углеродистых и легированных инструментальных сталей быстрорежущие стали обладают более высокими твердостью, прочностью, тепло- и износостойкостью, сопротивлением малым пластическим деформациям, хорошей прокаливаемостью. Благодаря высокой теплостойкости быстрорежущих сталей инструменты, изготовленные из этих сталей, работают со скоростями резания, в 2,5…3 раза более высокими, чем те, которые при равной стойкости допускают углеродистые инструменты. По уровню теплостойкости быстрорежущие стали разделяют на:

стали нормальной теплостойкости (Р18, Р9, Р12, Р6М3 и Р6М5);

стали повышенной теплостойкости, легированные ванадием (ванадиевые стали Р18Ф2, Р14Ф4, Р9Ф5) и кобальтом (кобальтовые стали Р9К5, Р9К10);

высоколегированные стали и сплавы высокой теплостойкости (быстрорежущие стали повышенной прочности) – безуглеродистые сплавы (Р18М3К25, Р18М7К25 и Р10М5К25), отличающиеся содержанием вольфрама и молибдена.

Кроме традиционных быстрорежущих сталей, получаемых плавкой, в последнее время освоено производство порошковых быстрорежущих сталей, имеющих более высокие режущие свойства за счет особой мелкозернистой структуры. Такие стали позволяют получить лезвия с очень малым начальным радиусом округления режущей кромки.

Широкое применение быстрорежущей стали при изготовлении самых разных инструментов объясняется ее хорошими режущими и технологическими свойствами. Из быстрорежущих сталей изготовляют различные режущие инструменты, в том числе и фрезы для обработки древесных и композиционных материалов. Ввиду высокой стоимости быстрорежущих сталей, их, в основном, применяют при изготовлении сборного инструмента в виде режущих пластин.

Твердые сплавы. Помимо сборного инструмента, с пластинами из быстрорежущих сталей широкое распространение получили конструкции фрез, оснащенных твердым сплавом. В отличие от углеродистых, легированных и быстрорежущих сталей, производимых методом выплавки в электроплавильных печах с последующей прокаткой, твердые сплавы получают металлокерамическим методом порошковой металлургии (спечением). Исходными материалами для изготовления твердых сплавов являются порошки карбидов тугоплавких металлов: вольфрама, титана, тантала и не образующего карбидов кобальта. Порошки смешивают в определенных пропорциях, прессуют в формах и спекают при температуре 1500…2000 0 С. При спекании твердые сплавы приобретают высокую твердость и в дополнительной термической обработке не нуждаются.

Карбиды вольфрама, титана и тантала обладают высокими тугоплавкостью и твердостью. Они образуют режущую основу сплава, а кобальт, по сравнению с карбидами вольфрама, титана и тантала, значительно мягче и прочнее, и поэтому в сплаве он является связкой, цементирующей режущую основу. Увеличение количества карбидов вольфрама, титана, тантала приводит к увеличению твердости и теплостойкости сплава и снижает его механическую прочность. При увеличении содержания кобальта твердость и теплостойкость сплава снижаются, но возрастает его прочность.

Промышленность выпускает четыре группы твердых сплавов:

вольфрамовые однокарбидные (ВК), спекаемые из карбида вольфрама и кобальта: ВК2, ВК3М, ВК4, ВК4В, ВК6М, ВК6, ВК6В, ВК8, ВК8В;

вольфрамовые двухкарбидные (титановольфрамовые ТК), спекаемые из карбида вольфрама, карбида титана и кобальта: Т30К4, Т5К6, Т14К8, Т5К10, Т5К12В;

вольфрамовые трехкарбидные (титанотанталовольфрамовые ТТК), спекаемые из карбида титана, карбида тантала и карбида вольфрама и кобальта: ТТ7К12;

безвольфрамовые (ТНТ – КНТ), спекаемые из карбида титана (ТНТ), нитрида титана (КНТ), никеля и молибдена.

Различные физико-механические и режущие свойства инструментов определяются химическим составом марок твердых сплавов. Основные свойства твердых сплавов представлены в табл. 1. 2 .

Сплавы группы ВК используют для обработки хрупких материалов.

Таблица 1.2

Основные свойства твердых сплавов

Свойства

ВК

ТК

ТТК

ТНТ – КНТ

Плотность, кг/м 3

12900…

15300

10100…

13600

12000…

13800

5500…

9500

σ изг, МПа

1180…2450

1170…1770

12500…17000

400…1750

Микротвердость, МПа

8,8…16,2

11,3…21,6

13,9…14,4

~ 18

Температура эксплуатации, 0 С

~ 500

~ 900

~ 1000

~ 800

Сплавы группы ТК обладают высокими износо- и теплостойкостью, но более хрупкие, чем сплавы группы ВК. Основные свойства и химический состав некоторых сплавов группы ВК представлены в табл. 1. 3 .

Сплавы группы ТТК по применяемости универсальны и годятся для обработки многих конструкционных материалов. Сплавы отличаются меньшей хрупкостью, большей прочностью удержания карбидной фазы, лучшей сопротивляемостью высокотемпературной текучести и большим пределом прочности при циклическом характере нагружения, чем сплавы ТК и ВК. Поэтому, инструмент, оснащенный пластинами из ТТК, особенно эффективен в процессах прерывистого резания. В этих случаях повышенная прочность сплавов ТТК компенсирует их пониженную теплостойкость. Основные свойства и химический состав некоторых сплавов групп ТК и ТТК представлены в табл. 1. 4 .

Таблица 1.3

Основные свойства и химический состав некоторых сплавов группы ВК

Марка сплава

WC, %

TiC, %

TaC, %

Co, %

σ изг, МПа

HRA

σ сж, МПа

НВ

Свойства

ВК2

1100

15,2

416

Высокая износост.

ВК3

1100

16,2

ВК3М

ВК6

1450

14,8

460

Выше, чем у ВК2, ВК3М

ВК6М

1500

14,8

Зерна крупные, износост. ниже

ВК8

ВК10

1700

14,8

366

ВК25

2000

83,5

13,0

370

Важнейшими правилами при выборе марки твердого сплава в пределах каждой группы являются:

при тяжелых условиях работы инструмента в силовом отношении твердый сплав должен содержать достаточно большой процент кобальта;

чем легче силовой режим работы, тем больше в сплавах должно содержаться карбидов титана и вольфрама.

Для изготовления режущих инструментов твердые сплавы поставляют в виде пластинок определенной формы и размеров.

Твердые сплавы в форме пластинок соединяют с крепежной частью пайкой или с помощью специальных высокотемпературных клеев. Многогранные твердосплавные пластины закрепляют прихватами, винтами, клиньями и др.

Таблица 1.4

Основные свойства и химический состав некоторых сплавов групп ТК и ТТК

Марка сплава

WC , %

TiC , %

TaC , %

Co , %

σ изг, МПа

HRA

σ сж, МПа

Свойства

Т30К4

900

9,7

Высокая износост. сопротивл. ударным нагрузкам

Т15К6

1159

11,3

3900

Высокая износост.

Т5К10

1385

13,0

4000

Сопротивл. выше, чем у Т14К8

ТТ7К12

1600

13,0

Увелич. V р в 2 раза (по срав. с БРС

ТТ10К8Б

1400

13,6

Умеренная износост., высокая экспл. прочность

Мелкоразмерные твердосплавные инструменты изготовляют в виде припаиваемых к хвостовикам твердосплавных стержней и коронок или целиком из твердого сплава.

Наряду с вольфрамовыми твердыми сплавами существуют также сплавы, не содержащие карбида вольфрама, и называются безвольфрамовыми твердыми сплавами.

Причиной полной или частичной замены карбида вольфрама другими твердыми материалами послужил дефицит вольфрама в качестве сырья для получения металлокерамических твердых сплавов.

Полная замена карбида вольфрама может осуществляться тремя путями :

Применение других твердых материалов, например нитридов, боридов, силицидов, окислов или карбидов неметаллов (карбидов бора и кремния);

Замена карбида вольфрама другими тугоплавкими карбидами металлов (карбидами ниобия, циркония, гафния, ванадия и др.) или их бинарными или тройными твердыми сплавами;

Простое исключение карбида вольфрама из состава твердого сплава.

Безвольфрамовые твёрдые сплавы по сравнению с вольфрамовыми имеют меньшую прочность на изгиб, но обладают более высокой твёрдостью и низкой схватываемостью со сталями. Инструменты из этих сплавов работают по сталям практически без наростообразования, что и определяет область их применения (чистовое и получистовое точение и фрезерование малолегированных, углеродистых сталей, чугуна и цветных сплавов). Износостойкость в 1,2 - 1,5 раза выше, чем у сплавов группы ТК. Основные физико-механические свойства безвольфрамовых твердых сплавов представлены в табл. 1. 7 .

Таблица 1.5

Физико-механические свойства безвольфрамовых твердых сплавов

Марка твердого сплава

Плотность, г/см 3

σ изг, МПа

σ сж, МПа

Твердость, HRA

Модуль упругости·10 3 МПа

Величина зерна, мкм

ТМ3

5,9

1150

3600

410

ТН-20

5,5

1000

3500

89,5

400

1-2

ТП-50

6,2

1250

86,5

КНТ-16

5,8

1150

3900

440

1,2-1,8

МНТ-А2

5,5

1000

Недостатком является то, что безвольфрамовые твердые сплавы плохо поддаются пайке и заточке вследствие неудовлетворительных термических свойств и поэтому применяются в основном в виде неперетачиваемых пластин.

Материалом для изготовления инструментов может служить также минералокерамика, представляющая собой кристаллический оксид алюминия (Al 2 O 3 ). Широкое распространение получила минеральная керамика марки ЦМ-332.

В результате спекания минералокерамика становится поликристаллическим телом, которое состоит из мельчайших кристаллов корунда и межкристаллитной прослойки в виде аморфной стекловидной массы. Минералокерамика является дешевым и доступным инструментальным материалом, так как не содержит дефицитных и дорогих элементов, являющихся основой инструментальных сталей и твердых сплавов.

Кроме того, минералокерамика обладает высокой твердостью и исключительно высокой теплостойкостью. По теплостойкости минеральная керамика превосходит все распространенные инструментальные материалы, что позволяет минералокерамическому инструменту работать со скоростями резания, значительно превышающими скорости резания твердосплавных инструментов, и что является основным достоинством минеральной керамики.

Вместе с указанными достоинствами минералокерамики она имеет недостатки, ограничивающие ее применение: пониженную прочность на изгиб, низкую ударную вязкость, исключительно низкую сопротивляемость циклическому изменению тепловой нагрузки. В результате этого при прерывистом резании на контактных поверхностях инструмента возникают температурные усталостные трещины, являющиеся причиной преждевременного выхода инструмента из строя.

Низкая прочность на изгиб и высокая хрупкость минеральной керамики позволяют использовать ее лишь в инструментах для обработки конструкционных материалов на чистовых операциях с непрерывным точением и с малыми сечениями срезаемого слоя при отсутствии толчков и ударов.

Режущий инструмент оснащается пластинками из минералокерамики определенных форм и размеров. Пластинки крепятся к корпусу инструментов припаиванием, приклеиванием и механическим путем.

Все шире в деревообработке применяют алмазные и сверхтвердые материалы, которые можно разделить на три разновидности:

природные и синтетические алмазы в виде моно- и поликристаллов;

кубический нитрид бора, в виде моно- и поликристаллов;

синтетические поликристаллические композиционные материалы (композиты), получаемые путем синтеза или спекания.

Природные алмазы представляют собой особую группу материалов для оснащения режущих инструментов.

Разновидностями алмаза являются: баллас, карбонадо, борт. Полезным свойством алмазов является, в первую очередь, исключительно высокая их твердость. Высокая теплопроводность, намного превышающая теплопровод-

ность всех известных инструментальных материалов, и малый коэффициент линейного расширения алмаза позволяют проводить алмазным инструментом точную размерную обработку. Низкий коэффициент трения об обрабатываемый материал и малая склонность к адгезии обеспечивают при резании алмазными инструментами малую шероховатость поверхности.

В промышленности используют как природные (марки А), так и синтетические алмазы (марок АСО, АСР, АСВ и др.). Синтетические алмазы получают из графита и углеродистых веществ. Разновидности природного алмаза: борт и карбонадо – используют только в промышленности.

К синтетическим сверхтвердым материалом того же назначения, что и алмаз, относят кубический нитрид бора (эльбор). Он образуется в результате химического соединения бора и азота. Твердость эльбора ниже, чем алмаза, однако по теплостойкости кубический нитрид бора превосходит алмаз, но по теплопроводности примерно в 3 раза ниже его. Производство крупных поликристаллических образований кубического нитрида бора диаметром 3…4 и длиной 5…6 мм, обладающих высокой прочностью, позволяет оснащать им режущий инструмент.

Материалы для режущих инструментов 5.00 /5 (100.00%) проголосовало 5


Материалы для режущих инструментов.

Режущая способность инструмента для токарных работ определяется физико-механическими свойствами материала, из которого он изготовлен. К основным свойствам, определяющим работоспособность инструмента относятся твердость, теплостойкость, износостойкость, теплопроводность и адгезионная способность.

Твердость материала, из которого изготовлен инструмент, должна превышать твердость обрабатываемого материала. В связи с тем, что на рабочую часть инструмента действуют значительные силы резания, создающие деформации изгиба, инструментальный материал должен обладать прочностью. На твердость и прочность инструментального материала существенное влияние оказывает соотношение легирующих компонентов и углерода, входящих в их состав в виде карбидов. С увеличением количества карбидов и уменьшением их зернистости твердость и износостойкость инструмента повышается, а прочность понижается.

Теплостойкость инструмента определяется температурой, выше которой снижается твердость и возрастает износ.

Износостойкость инструмента характеризуется сопротивляемостью инструмента истиранию под действием сил трения, возникающих в процессах резания.

Теплопроводность инструмента определяется способностью его отводить возникающее в процессах резания тепло от режущих граней инструмента. Чем выше теплопроводность, тем лучше отводится тепло от режущих кромок, благодаря чему повышается стойкость инструмента.

Адгезионная способность инструментального и обрабатываемого материала характеризуется температурой, при которой происходит налипание обрабатываемого материала на режущие грани инструмента. Она зависит от молекулярных сил, развивающихся при высоких температурах и давлениях в точках контакта режущего инструмента с обрабатываемой поверхностью. Чем выше температура налипания обрабатываемого материала на инструмент, тем качественней должен быть материал, из которого инструмент изготовлен.

Инструментальные стали.

Инструментальные стали делят на:

  • углеродистые;
  • легированные;
  • быстрорежущие.

Углеродистые инструментальные стали.

Для того, чтобы изготовить режущий инструмент применяют углеродистые стали марки У10А, У11А, У12А и У13А. Буква У означает, что сталь углеродистая инструментальная. Число после буквы указывает, сколько примерно углерода в десятых долях процента содержится в данной стали.

Если в конце названия марки стали есть буква А, то это говорит о том, что сталь относится к группе высококачественных (У10А; У12А).

После закалки и отпуска твердость инструмента из этих сталей составляет HRC 60-64. Однако при нагреве до температуры свыше 220-250°С твердость инструмента резко снижается. Поэтому в настоящее время на токарных станках такой инструмент используется только на работах, связанных с невысокими скоростями резания (некоторые типы метчиков, зенкеров и разверток).

Легированные инструментальные стали.

Легированные инструментальные стали - это такие, в состав которых с целью повышения физико-механических свойств вводятся специальные примеси (легирующие элементы).

При введении хрома, молибдена, вольфрама, ванадия, титана и марганца твердость стали повышается, так как они образуют с углеродом простые или сложные соединения (карбиды), которые обладают высокой твердостью (особенно карбиды вольфрама и ванадия). При этом у стали сохраняется достаточная вязкость. Никель, кобальт, алюминий, медь и кремний, растворяясь в железе, упрочняют сталь.

При соответствующей термообработке инструмент имеет твердость HRC 62-64 и сохраняет ее при нагреве до температуры 250-300°С. Зенкера, развертки, метчики, протяжки изготовляют из сталей марок 9ХС, ХВГ и ХВ5.

Быстрорежущие инструментальные стали.

Быстрорежущие инструментальные стали - это легированные стали со значительным содержанием вольфрама, кобальта, ванадия и молибдена. Они сохраняют полученную после термообработки твердость HRС 62 – 64 при нагреве до температуры 600°, а некоторые марки комплексно легированных сталей сохраняют свою твердость даже при нагреве до температуры 700-720°С.

Эти качества быстрорежущих сталей позволяют увеличивать в процессе обработки скорости резания в два-три раза по сравнению с инструментом, изготовленным из углеродистой и обычной легированной инструментальной стали.

Все марки быстрорежущей стали обозначаются буквой Р (Р9, Р12, Р18), число, проставленное после буквы Р, показывает среднее процентное содержание вольфрама в этой стали.

Широкое применение имеют быстрорежущие стали , содержащие 3-5% молибдена (Р6М3, Р6М5). Эти стали по прочности превосходят сталь Р18, хотя имеют несколько меньшую теплостойкость. Их обычно применяют для инструментов, работающих в условиях тяжелых силовых режимов.

При обработке легированных, жаропрочных и нержавеющих сплавов и сталей эффективно применение быстрорежущих сталей повышенной производительности, в состав которых входит ванадий и кобальт (Р10КФ5, Р18К5Ф2), или комплекснолегированных сталей (марки Р18МЗК25, Р18М7К25 и Р10М5К25). При наличии в стали 10% и более кобальта твердость ее после термообработки составляет 67-68 и сохраняется до температуры нагрева 640 – 720°С.

Быстрорежущие инструментальные стали применяются для изготовления резцов, сверл, зенкеров, разверток, метчиков, плашек и другого инструмента. .

Твердые сплавы.

Твердые сплавы состоят из карбидов тугоплавких металлов, которые равномерно распределены в кобальтовой связке. Их изготовляют методом прессования и спекания. Твердые сплавы имеют высокие показатели плотности и твердости, которая не снижается даже при нагреве до 800- 900°С. По составу твердые сплавы разделяются на три группы:

  • вольфрамовые;
  • титановольфрамовые;
  • титанотантало-вольфрамовые.

Основными марками твердого сплава вольфрамовой группы, применяемыми для изготовления режущего инструмента являются ВКЗ, ВКЗМ, ВК4, ВК4М, ВК6 ВК6М ВК6В, ВК8, ВК8В, ВК10. В обозначении марки твердого сплава этой группы буква В обозначает группу, буква К и число, следующее за ней - процентное содержание кобальта, являющегося связывающим металлом. Буква М обозначает, что структура сплава мелкозернистая, а буква В - что она крупнозернистая.

Твердые сплавы титановольфрамовой группы.

Твердые сплавы титановольфрамовой группы состоят из зерен твердого раствора карбида вольфрама в карбиде титана, избыточных зерен карбида вольфрама и кобальта, являющегося связкой. Основными марками сплава этой группы являются Т5К10, Т5К12, Т14К8, Т15К6. В обозначении сплавов этой группы число после буквы Т показывает процентное содержание карбида титана, а число после буквы К - содержание кобальта в процентах. Остальное в сплаве - карбиды вольфрама.

Твердые сплавы титанотанталовольфрамовой группы.

Твердые сплавы титанотанталовольфрамовой группы состоят из зерен карбидов титана, тантала, вольфрама и связки, в качестве которой также использован кобальт. Марками этой группы сплавов являются ТТ7К12, ТТ8К6, ТТ10К8Б и ТТ20К9. В обозначении этой группы сплавов число после букв ТТ показывает содержание карбидов титана и тантала, а число после буквы К - содержание кобальта в процентах.

В зависимости от содержания карбида вольфрама, карбида титана, карбида тантала и кобальта твердые сплавы имеют различные свойства. Чем больше кобальта, тем сплав более вязок и лучше сопротивляется ударной нагрузке. Поэтому для изготовления инструментов, которыми выполняют обдирочные работы, используют сплавы с большим содержанием кобальта. При обработке стали применяют твердые сплавы, содержащие карбид титана, так как на инструмент из этих сплавов стальная стружка меньше налипает.

Вольфрамокобальтовые твердые сплавы.

Согласно ГОСТ 3882 – 74 твердые сплавы группы ВК (вольфрамокобальтовые) рекомендуются для обработки хрупких материалов (чугун, бронза). Сплавы группы ТК (титановольфрамокобальтовые) рекомендуются для обработки вязких материалов (сталь, латунь). Сплавы титанотанталовольфрамовой группы применяются при неблагоприятных условиях работы инструмента с ударными нагрузками, при обработке стальных отливок и поковок.

Минералокерамические материалы.

Минералокерамические материалы для режущего инструмента изготавливают в виде пластинок из окиси алюминия Al 2 O 3 (глинозема) методом прессования под большим давлением с последующим спеканием. Они имеют высокую твердость, температуростойкость (до 1200°С), износостойкость и достаточную прочность на сжатие. К недостаткам этих материалов относится большая хрупкость и малая ударная вязкость. Инструменты, оснащенные минералокерамикой, обычно используются при чистовой обработке при точении с постоянной нагрузкой и в случае отсутствия вибрации.

Синтетические материалы.

Синтетический алмаз характеризуется высокими твердостью и износостойкостью, химически мало активен. Имеет небольшой коэффициент трения и слабую склонность к налипанию стружек обрабатываемого материала. Недостатки алмаза его хрупкость и сравнительно низкая температуростойкость (750-850°). Алмазные резцы применяют для финишной обработки цветных металлов, сплавов и неметаллических материалов.

Кубический нитрид бора (КНБ) — синтетический сверхтвердый материал (эльбор, кубанит, гексанит) состоящий из соединений бора и азота. Твердость его несколько ниже твердости алмаза, но температуростойкость значительно выше (1200 – 1300°С). Он химически инертен к материалам, содержащим углерод, поэтому при обработке сталей и чугунов его износостойкость значительно выше износостойкости алмазов. Вставками из КНБ оснащаются токарные резцы для обработки закаленной стали и высокопрочных чугунов.

Режущие инструменты работают в условиях значительных силовых нагрузок, высоких температур, трения и износа. Поэтому инструментальные материалы должны обладать определенными эксплуатационными физико-механическими свойствами. Материал режущей части инструмента должен иметь большую твердость и высокие значения допустимых напряжений на изгиб, растяжение, сжатие, кручение. Твердость материала режущей части инструмента должна значительно превышать твердость материала обрабатываемой заготовки.

Высокие прочностные свойства необходимы для того, чтобы инструмент обладал сопротивляемостью соответствующим деформациям в процессе резания, а достаточная вязкость материала позволяла бы воспринимать ударную динамическую нагрузку, возникающую при обработке заготовок из хрупких материалов или с прерывистой обрабатываемой поверхностью. Инструментальные материалы должны обладать высокой красностойкостью, т.е. сохранять большую твердость и режущие свойства при высоких температурах нагрева. Важнейшей характеристикой материала режущей части инструмента служит износостойкость. Чем выше износостойкость, тем медленнее изнашивается инструмент и выше его размерная стойкость. Это значит, что заготовки, последовательно обработанные одним и тем же инструментом, будут иметь минимальное рассеяние размеров обработанных поверхностей. В целях повышения износостойкости на режущую часть инструментов специальными методами наносят одно- и многослойные покрытия из карбидов вольфрама, нитридов титана. Материалы для изготовления инструментов должны по возможности иметь наименьшее процентное содержание дефицитных элементов.

2. ИНСТРУМЕНТАЛЬНЫЕ СТАЛИ

Углеродистые инструментальные стали содержат 1,0 ... 1,3 % С. Для изготовления инструментов применяют качественные стали У10А, УНА, У12А. После термической обработки стали (HRC э 60 ... 62) имеют красностойкость 200 ... 240 °С. При этой температуре твердость стали резко уменьшается и инструменты не могут выполнять работу резания. Допустимые скорости резания не превышают 0,2 ... 0,3 м/с. Из этих сталей изготовляют метчики, плашки, ножовочные полотна, сверла и зенкеры малых диаметров.

Легированные инструментальные стали - это углеродистые инструментальные стали, легированные хромом (X), вольфрамом (В), ванадием (Ф), кремнием (С) и другими элементами. После термообработки легированные стали (НКС Э 62 ... 64) имеют красностойкость 220 ... 260 °С. Легированные стали по сравнению с углеродистыми имеют повышенную вязкость в закаленном состоянии, более высокую прокаливаемость, меньшую склонность к деформациям и появлению трещин при закалке. Допустимая скорость резания 0,25 ... 0,5 м/с. Для изготовления протяжек, сверл, метчиков, плашек, разверток используют стали 9ХВГ, ХВГ, ХГ, 6ХС, 9ХС.

Быстрорежущие стали содержат 5,5 ... 19 % W, 3,8 ... 4,4 % С, 2 ... 10 % Со и V. Для изготовления инструментов используют стали Р9, Р12, Р18, Р6МЗ, Р6М5, Р9Ф5, Р14Ф2, Р9К5, Р9К10, Р10К5Ф2. Режущий инструмент из быстрорежущей стали после термической обработки (НКСЭ 62 ... 65) имеет красностойкость 600 ... 640 °С и обладает повышенной износостойкостью;

он может работать со скоростями резания до 2 м/с.

Сталь Р9, например, рекомендуют для изготовления инструментов простой формы (резцов, фрез, зенкеров). Кобальтовые быстрорежущие стали Р9К5, Р18К5Ф2, Р9К10 применяют для обработки труднообрабатываемых материалов в условиях прерывистого процесса резания. Ванадиевые быстрорежущие стали Р9Ф5, Р14Ф4 рекомендуют для изготовления инструментов, предназначенных для чистовой обработки (протяжки, развертки, шеверы). Их применяют для обработки труднообрабатываемых материалов при срезании стружек малого поперечного сечения.

Вольфрамомолибденовые стали Р9М4, Р6МЗ используют для инструментов, работающих в условиях черновой обработки и для изготовления протяжек, долбяков, шеверов, фрез.

Для экономии быстрорежущих сталей режущий инструмент изготовляют сборным или сварным. Режущую часть инструмента делают из быстрорежущей стали, которую сваривают с присоединительной частью из конструкционных сталей 45, 50, 40Х. Часто используют пластинки из быстрорежущей стали, которые приваривают к державкам или корпусам инструментов.

3. ТВЕРДЫЕ СПЛАВЫ

Твердые сплавы - это твердый раствор карбидов вольфрама, титана и тантала (WC, TiC, TaC) в металлическом кобальте (Со). Твердые сплавы применяют в виде пластинок определенных форм и размеров, изготовляемых порошковой металлургией. Пластинки предварительно прессуют, а затем спекают при температуре 1500... 1900 °С.

Твердые сплавы делят на группы: вольфрамовую - ВК2, ВКЗ, ВКЗМ, ВК4, ВК4В, ВК6М, ВК6, ВК6В, ВК8, ВК8В, ВК10, ВК15, ВК20, ВК25; титановольфрамовую - ТЗОК4, Т15К6, Т14К8, Т5К10, Т5К12В; титанотанталовольфрамовую - ТТ7К12, ТТ10К8Б. Пластинки твердого сплава (HRA, 86 ... 92) обладают высокими износостойкостью и красностойкостью (800 ... 1250 °С), что позволяет вести обработку со скоростями резания до 15 м/с. Пластинки припаивают к державкам или корпусам инструментов медными, латунными припоями или крепят механическим способом.

В промышленности применяют многогранные неперетачиваемые твердосплавные пластинки (трех-, четырех-, пяти-, шестигранные), которые крепят механическим способом. После изнашивания одной из режущих кромок такой пластинки в работу вводят следующую. Недостаток твердых сплавов - пониженная пластичность.

Твердые сплавы группы ВК используют для обработки заготовок из хрупких металлов, пластмасс, неметаллических материалов; сплавы группы ТВК - для обработки заготовок из пластичных и вязких металлов и сплавов. Мелкозернистые твердые сплавы ВК6М применяют для обработки заготовок из труднообрабатываемых коррозионно-стойких и жаропрочных сталей и сплавов, твердых чугунов, бронз, закаленных сталей, сплавов легких металлов, сплавов титана, фарфора, керамики, стекла, ферритов. Трехкар-бидные сплавы ТТК отличаются от групп сплавов ВК и ТВК повышенными износостойкостью, прочностью и вязкостью. Их применяют для обработки заготовок из труднообрабатываемых сталей аустенитного класса.

4. СИНТЕТИЧЕСКИЕ
СВЕРХТВЕРДЫЕ И
КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ

Эффективность обработки заготовок на автоматических линиях, станках с ЧПУ, многоцелевых станках, в гибких производственных модулях и системах в значительной степени зависит от материалов режущей части инструментов. Высокая эффективность работы этих систем обеспечивается применением новых сверхтвердых материалов и керамики.

В настоящее время инструментальная промышленность выпускает материалы на основе нитрида бора (композиты) и на основе оксида алюминия (керамика).

Существует большое разнообразие сверхтвердых материалов (СТМ) на основе плотных модификаций нитрида бора. Группы СТМ различаются технологией производства, структурами и физико-механическими свойствами.

СТМ на основе фазового превращения графитоподобного нитрида бора в кубический. Производят композит 01 (эльбор) в композит 02 (белбор). Применяют для тонкого и чистового точения резцами в условиях безударной нагрузки и торцового фрезерования закаленных сталей и чугунов любой твердости, твердых сплавов с содержанием кобальта более 15 %.

СТМ на основе частичного или полного превращения вюрцитного нитрида бора в кубический. Производят композит 01 (гексанит-Р) и модификации композита 09-ПТНБ (поликристалл твердого нитрида бора), ПТНБ-ИК и др. Гексанит-Р и пластины из композита 10Д (композит 10 на подложке из твердого сплава) применяют для предварительного и окончательного точения и торцового фрезерования сталей и чугунов любой твердости, твердых сплавов в условиях безударной или ударной динамической нагрузки (наличие на обрабатываемой поверхности отверстий, пазов, ребер).

СТМ на основе спекания частиц кубического нитрида бора (КНБ). Производят композит 05, киборит и ниборит. Используют следующие технологии изготовления: вдавливание частиц КНБ в металлическую матрицу; спекание зерен КНБ с зернами связки; спекание в условиях химического взаимодействия зерен КНБ со связкой.

Композит 05 применяют для предварительного и чистового точения и торцового фрезерования закаленных деталей из чугунов любой твердости с наличием поверхностной литейной корки.

Инструментальные керамические материалы можно разделить на группы, различающиеся химическим составом, методом производства и областями рационального использования.

Оксидная "белая" керамика, состоящая из А1 2 О 3 с легирующими добавками MgO, ZrO 2 и др. Марки керамики: ЦМ332, ВО-13. Применяют для чистовой и получистовой обработки незакаленных сталей и серых чугунов со скоростями резания до 15 м/с.

Оксидно-карбидная "черная" керамика, состоящая из Al 2 O 3 (до 60 %), TiC (20 ... 40 %), ZrO 2 (20 ... 40 %) и других карбидов тугоплавких металлов. Марка керамики ВОК-60. Применяют для чистовой и получистовой обработки ковких, высокопрочных и отбеленных модифицированных чугунов и закаленных сталей.

Керамика на основе нитрида кремния с легированием оксидами иттрия, циркония, алюминия. Марка силинит-Р, получаемая способом горячего прессования. Применяют для получистовой обработки чугунов.

Основным направлением конструирования инструментов из СТМ и керамики является создание резцов и фрез с механическим креплением цельных и двухслойных круглых и многогранных режущих пластин.

Для обеспечения работоспособности металлорежущего инструмента необходимо изготовлять его рабочую часть из материала, обладающего комплексом определенных физико-механических свойств (высокими показателями твердости, износостойкости, прочности, теплостойкости и др.). Материалы, отвечающие требованиям этого комплекса и способные осуществлять резание, называются инструментальными материалами . Рассмотрим физико-механические свойства инструментальных материалов.

Чтобы внедриться в поверхностные слои обрабатываемой заготовки, режущие лезвия рабочей части инструментов должны быть выполнены из материалов, имеющих высокую твердость. Твердость инструментальных материалов может быть природной (т. е. свойственной материалу при его образовании) или достигнута специальной обработкой. Например, инструментальные стали в состоянии поставки с металлургических заводов легко поддаются обработке резанием. После механической обработки, термообработки, шлифования и заточки инструментов из стали их прочность и твердость резко повышаются.

Твердость определяется с помощью различных методов. Твердость по Роквеллу обозначается цифрами, характеризующими число твердости, и буквами HR с указанием шкалы твердости А, В или С (например, HRC). Твердость термообработанных инструментальных сталей измеряется по шкале С Роквелла и выражается в условных единицах HRC. Наиболее устойчивый режим работы и наименьшая изнашиваемость лезвий инструментов, изготовленных из инструментальных сталей и прошедших термообработку, достигается при твердости HRC 63...64. При меньшей твердости возрастает изнашиваемость лезвий инструмента, а при большей твердости лезвия начинают выкрашиваться из-за чрезмерной хрупкости.

Металлы, имеющие твердость HRC 30...35, удовлетворительно обрабатываются инструментами из термообработанных инструментальных сталей (HRC 63... 64), т. е. при отношении твердостей, примерно равном двум. Для обработки термообработанных металлов (HRC 45...55) необходимо использовать инструменты, изготовленные только из твердых сплавов. Их твердость измеряется по шкале А Роквелла и имеет значения HRA 87...93. Высокая твердость синтетических инструментальных материалов позволяет использовать их для обработки закаленных сталей.

В процессе резания на рабочую часть инструментов действуют силы резания, достигающие 10 кН и более. Под действием этих сил в материале рабочей части возникают большие напряжения. Чтобы эти напряжения не приводили к разрушению инструмента, используемые для его изготовления инструментальные материалы должны иметь достаточно высокую прочность .

Среди всех инструментальных материалов наилучшим сочетанием прочностных характеристик обладают инструментальные стали. Благодаря этому рабочая часть инструментов, выполненных из инструментальных сталей, успешно выдерживает сложный характер нагружения и может работать на сжатие, кручение, изгиб и растяжение.

В результате интенсивного выделения теплоты в процессе резания металлов нагреваются лезвия инструмента, причем в наибольшей степени - их поверхности. При температуре нагрева ниже критической (для различных материалов она имеет разные значения) структурное состояние и твердость инструментального материала не изменяются. Если температура нагрева превышает критическую, то в материале происходят структурные изменения и связанное с этим снижение твердости. Критическая температура называется также температурой красностойкости . В основе термина «красностойкость» лежит физическое свойство металлов при нагреве до 600 °С излучать темно-красный свет. Красностойкость - это способность материала сохранять при повышенных температурах высокие твердость и износостойкость. По своей сути красностойкость означает температуростойкость инструментальных материалов. Температуростойкость различных инструментальных материалов изменяется в широких пределах: 220...1800°С.

Увеличение работоспособности режущего инструмента может быть достигнуто не только за счет повышения температуростойкости инструментального материала, но и благодаря улучшению условий отвода теплоты, выделяющейся в процессе резания на лезвии инструмента и вызывающей его нагрев до высоких температур. Чем большее количество теплоты отводится от лезвия в глубь инструмента, тем ниже температура на его контактных поверхностях. Теплопроводность инструментальных материалов зависит от их химического состава и температуры нагрева.

Например, присутствие в стали таких легирующих элементов, как вольфрам и ванадий, снижает теплопроводящие свойства инструментальных сталей, а легирование их титаном, кобальтом и молибденом, наоборот, заметно повышает.

Значение коэффициента трения скольжения материала заготовки по инструментальному материалу зависит от химического состава и физико-механических свойств материалов контактирующих пар, а также от контактных напряжений на трущихся поверхностях и скорости скольжения.

Коэффициент трения связан функциональной зависимостью с силой трения и работой сил трения на пути взаимного скольжения инструмента и заготовки, поэтому значение этого коэффициента оказывает влияние на износостойкость инструментальных материалов.

Взаимодействие инструмента с обрабатываемым материалом протекает в условиях постоянного (подвижного) контакта. При этом оба тела, образующие пару трения, взаимно изнашиваются.

Материал каждого из взаимодействующих тел обладает:

  • свойством истирать материал, с которым он взаимодействует;
  • износостойкостью, т.е. способностью материала сопротивляться истирающему действию другого материала.

Изнашивание лезвий инструмента происходит на протяжении всего периода взаимодействия с обрабатываемым материалом. В результате этого лезвия инструмента теряют некоторую часть своих режущих свойств, изменяется форма рабочих поверхностей инструмента.

Износостойкость не является неизменным свойством инструментальных материалов, она зависит от условий резания.

Современные инструментальные материалы отвечают требованиям, рассмотренным выше. Они подразделяются на следующие группы:

  • инструментальные стали;
  • твердые сплавы (металлокерамика);
  • минералокерамика и керметы;
  • синтетические композиции из нитрида бора;
  • синтетические алмазы.

Инструментальные стали разделяют на углеродистые, легированные и быстрорежущие.

Углеродистые инструментальные стали применяют для изготовления инструмента, работающего при малых скоростях резания.

Марки таких сталей обозначают буквой У (углеродистая), затем цифрами, которые показывают содержание в стали углерода (в десятых долях процента), буква А в конце марки означает, что сталь высококачественная (содержание серы и фосфора не более 0,03 % каждого элемента).

Основными свойствами углеродистых инструментальных сталей являются высокая твердость (HRC 62...65) и низкая температуростойкость.

Из стали марок У9 и У10А изготовляют пилы; из стали марок У11; У11А; У12 - ручные метчики и др.

Температуростойкость сталей марок У10А...У13А 220°С, поэтому инструмент из этих сталей рекомендуется применять при скорости резания 8...10 м/мин.

Легированная инструментальная сталь в зависимости от основных легирующих элементов может быть хромистой (X), хромокремнистой (ХС), вольфрамовой (В), хромовольфрамомарганцевой (ХВГ) и др.

Марки таких сталей обозначают цифрами и буквами (первыми буквами названия легирующих элементов). Первая цифра слева от букв показывает содержание углерода в десятых долях процента (если содержание углерода менее 1 %), цифры справа от букв показывают среднее содержание легирующего элемента в процентах.

Из стали марки X изготовляют метчики и плашки, из стали 9ХС - сверла, развертки, метчики и плашки. Сталь В1 рекомендуется для изготовления мелких сверл, метчиков и разверток.

Температуростойкость легированных инструментальных сталей 350...400°С, поэтому допустимые скорости резания для инструмента из этих сталей в 1,2... 1,5 раза выше, чем для инструмента из углеродистых инструментальных сталей.

Быстрорежущие (высоколегированные) стали применяют чаще всего для изготовления сверл, зенкеров и метчиков. Марки быстрорежущих сталей обозначают буквами и цифрами, например Р6МЗ. Буква Р означает, что сталь быстрорежущая, цифры после нее показывают среднее содержание вольфрама в процентах, остальные буквы и цифры обозначают то же, что и в марках легированных сталей. Важнейшими компонентами быстрорежущих сталей являются вольфрам, молибден, хром и ванадий.

Быстрорежущие стали в зависимости от режущих свойств делят на стали нормальной и повышенной производительности. К сталям нормальной производительности относятся вольфрамовые стали марок Р18; Р9; Р9Ф5 и вольфрамомолибденовые стали марок Р6МЗ; Р6М5, сохраняющие твердость не менее HRC 58 до температуры 620°С. К сталям повышенной производительности относятся стали марок Р18Ф2; Р14Ф4; Р6М5К5; Р9М4К8; Р9К5; Р9К10; Р10К5Ф5; Р18К5Ф2, сохраняющие твердость HRC 64 до температуры 630...640°С.

Стали нормальной производительности - твердость HRC 65, температуростойкость 620°С, предел прочности при изгибе 3...4 ГПа (300...400 кгс/мм 2) - предназначены для обработки углеродистых и низколегированных сталей с пределом прочности на изгиб до 1 ГПа (100 кгс/мм 2), серого чугуна и цветных металлов. Быстрорежущие стали повышенной производительности, легированные кобальтом или ванадием (твердость HRC 70...78, температуростойкость 630...650°С, предел прочности при изгибе 2,5...2,8 ГПа, или 250 ...280 кгс/мм 2), предназначены для обработки труднообрабатываемых сталей и сплавов, а с пределом прочности при изгибе свыше 1 ГПа (100 кгс/мм 2) - для обработки титановых сплавов.

Все инструменты, изготовленные из инструментальных сталей, подвергают термической обработке. Инструменты из быстрорежущей стали могут работать при более высоких скоростях резания, чем инструменты из углеродистой и легированной инструментальных сталей.

Твердые сплавы делят на металлокерамические и минералокерамические. Форма пластин, изготовленных из этих сплавов, зависит от их механических свойств. Инструменты, оснащенные пластинами из твердых сплавов, позволяют работать на более высоких скоростях резания по сравнению с инструментами из быстрорежущей стали.

Металлокерамические твердые сплавы подразделяют на вольфрамовые, вольфрамотитановые и титановольфрамотанталовые. Вольфрамовые сплавы группы В К состоят из карбидов вольфрама и титана. Марки этих сплавов обозначают буквами и цифрой, например ВК2; ВКЗМ; ВК4; ВК6; ВК6М; ВК8; ВК8В. Буква В означает карбид вольфрама, буква К - кобальт, а цифра показывает содержание кобальта в процентах (остальное - карбид вольфрама). Буква М, приведенная в конце некоторых марок, означает, что сплав мелкозернистый. Инструмент, изготовленный из такого сплава, обладает повышенной износостойкостью, но его сопротивляемость ударам снижена. Инструменты из вольфрамовых твердых сплавов применяют для обработки чугуна, цветных металлов и их сплавов и неметаллических материалов (резины, пластмассы, фибры, стекла и др.).

Вольфрамотитановые сплавы группы ТК состоят из карбидов вольфрама, титана и кобальта. Марки этих сплавов обозначают буквами и цифрами, например Т5К10; Т5К12В; Т14К8; Т15К6; Т30К4; Т15К12В. Буква Т означает карбид титана, цифра за ней - процентное содержание карбида титана, буква К - карбид кобальта, цифра за ней - процентное содержание карбида кобальта (остальное в данном сплаве - карбид вольфрама). Инструменты из этих сплавов применяют для обработки всех видов сталей.

Вольфрамотитанотанталовые сплавы группы ТТК состоят из карбидов титана, вольфрама, тантала и кобальта. Для изготовления металлорежущего инструмента используют сплавы марок ТТ7К12 и ТТ10К8Б, содержащие соответственно 7 и 10 % карбидов титана и тантала, 12 и 8 % карбидов кобальта (остальное - карбид вольфрама). Инструмент из этих сплавов применяют в особо тяжелых условиях обработки, когда использование других инструментальных материалов неэффективно.

Твердые сплавы обладают высокой температуростойкостью. Вольфрамовые твердые сплавы сохраняют твердость HRC 83...90, а вольфрамотитановые - HRC 87...92 при температуре 800...950 °С, что позволяет инструменту из сплавов работать при высоких скоростях резания (до 500 м/мин при обработке сталей и до 2700 м/мин при обработке алюминия).

Для обработки деталей из коррозионно-стойких, жаропрочных и других труднообрабатываемых сталей и сплавов предназначены инструменты из мелкозернистых сплавов группы ОМ: из сплава ВК6-ОМ - для чистовой обработки, а из сплавов ВКЮ-ОМ и ВК15-ОМ - для получистовой и черновой обработки. Еще более эффективно для обработки труднообрабатываемых материалов использование инструментов из твердых сплавов марок BKIO-XOM и ВК15-ХОМ, в которых карбид тантала заменен карбидом хрома. Легирование сплавов карбидом хрома увеличивает их твердость и прочность при высоких температурах.

Для повышения прочности пластины из твердого сплава плакируют, т.е. покрывают защитными пленками. Широко применяют износостойкие покрытия из карбидов, нитридов и карбонидов титана, нанесенные тонким слоем (толщиной 5... 10 мкм) на поверхность твердосплавных пластин. На поверхности этих пластин образуется мелкозернистый слой карбида титана, обладающий высокой твердостью, износостойкостью и химической устойчивостью при высоких температурах. Износостойкость твердосплавных пластин с покрытием в среднем в три раза выше износостойкости пластин без покрытия, что позволяет увеличить скорость резания на 25... 30 %.

При определенных условиях в качестве инструментального материала применяют минералокерамические материалы , получаемые из окиси алюминия с добавками вольфрама, титана, тантала и кобальта.

Для режущего инструмента используют минералокерамику марки ЦМ-332, которая отличается высокой температуростойкостью (твердость HRC 89...95 при температуре 1200°С) и износостойкостью, что позволяет вести обработку стали, чугуна и цветных сплавов при высоких скоростях резания (например, чистовое обтачивание чугуна при скорости резания 3700 мм/мин, что в два раза выше скорости резания при обработке инструментом из твердых сплавов). Недостатком минералокерамики марки ЦМ-332 является повышенная хрупкость.

Для изготовления режущих инструментов применяют также режущую керамику (кермет) марок ВЗ; ВОК-6О; ВОК-63, представляющую собой оксидно-карбидное соединение (окись алюминия с добавкой 30...40% карбидов вольфрама и молибдена). Введение в состав минералокерамики карбидов металлов (а иногда и чистых металлов - молибдена, хрома) улучшает ее физико-механические свойства (в частности, снижает хрупкость) и повышает производительность обработки в результате повышения скорости резания. Получистовая и чистовая обработка инструментом из кермета деталей из серых, ковких чугунов, труднообрабатываемых сталей, некоторых цветных металлов и сплавов производится со скоростью резания 435...1000 м/мин без подачи СОЖ в зону резания. Режущая керамика отличается высокой температуростойкостью (твердость HRC 90...95 при температуре 950...1100 °С).

Для обработки закаленных сталей (HRC 40...67), высокопрочных чугунов (НВ 200...600), твердых сплавов типа ВК25 и ВК15 и стеклопластиков применяют инструмент, режущая часть которого изготовлена из сверхтвердых материалов (СТМ) на основе нитрида бора и алмазов. При обработке деталей из закаленных сталей и высокопрочных чугунов применяют инструмент, изготовленный из крупных поликристаллов (диаметром 3...6 мм и длиной 4...5 мм) на основе кубического нитрида бора (эльбора Р). Твердость эльбора Р приближается к твердости алмаза, а его температуростойкость в два раза выше температуростойкости алмаза. Эльбор Р химически инертен к материалам на основе железа. Предел прочности поликристаллов при сжатии 4...5 ГПа (400... 500 кгс/мм 2), при изгибе - 0,7 ГПа (70 кгс/мм 2), температуростойкость 1350... 1450°С.

Из других СТМ, применяемых для обработки резанием, следует отметить синтетические алмазы балас (марка АСБ) и карбонадо (марка АСПК). Карбонадо химически более активен к углеродсодержащим материалам, поэтому его используют при точении деталей из цветных металлов, высококремнистых сплавов, твердых сплавов ВК10... ВК30, неметаллических материалов. Стойкость резцов из карбонадов в 20... 50 раз выше стойкости резцов из твердых сплавов.

Контрольные вопросы

  1. Какие материалы называют инструментальными?
  2. На какие классы делят инструментальные материалы?
  3. Какими свойствами обладают твердые сплавы?
  4. Что такое твердые сплавы групп ВК и ТК?

Высокие эксплуатационные характеристики режущих инструментов в значительной степени зависят от качества материала, из которого эти инструменты изготовлены. Материалы, предназначенные для режущих инструментов , должны по ряду показателей значительно превосходить материалы, применяемые в машиностроении для изготовления различных деталей.

Основные требования к инструментальным материалам следующие:

1. Инструментальный материал должен иметь высокую твердость - не менее 63... 66 НRС по Роквеллу (шкала С).

2. При резании металлов выделяется значительное количество теплоты и режущая часть инструмента нагревается. Температура рабочих поверхностей и режущих кромок инструмента может достигать нескольких сот градусов. Необходимо, чтобы при значительных температурах резания твердость поверхностей инструментов существенно не уменьшалась.

Способность материала сохранять высокую твердость при повышенных температурах и исходную твердость после охлаждения называется теплостойкостью.

Инструментальный материал должен обладать высокой теплостойкостью.

3. Наряду с теплостойкостью, инструментальный материал должен иметь высокую износостойкость при повышенной температуре, т. е. обладать хорошей сопротивляемостью истиранию обрабатываемым материалом.

4. Важным требованием является высокая прочность инструментального материала . Если высокая твердость материала рабочей части инструмента сопровождается значительной хрупкостью, это приводит к поломке инструмента и выкрашиванию режущих кромок.

5. Инструментальный материал должен обладать технологическими свойствами, обеспечивающими оптимальные условия изготовления из него инструментов.

Для инструментальных сталей ими являются :

  • хорошая обрабатываемость резанием и давлением;
  • малая чувствительность к перегреву и обезуглероживанию;
  • хорошие закаливаемость и прокаливаемость;
  • минимальные деформирование и образование трещин при закалке и т. д.;
  • хорошая шлифуемость после термической обработки.