Скоростная съемка. Современные приёмы киносъёмки. Рейтинг: лучшие высокоскоростные камеры

Высокоскоростная съемка как способ замедлить быстропротекающее событие и разглядеть его в деталях впервые появилась в середине 19 века, и с тех пор интерес к этой технологии неуклонно растет, совершенствуется оборудование и его возможности, находится все больше областей ее применения.

Тем не менее, проведя небольшой анализ Интернет источников информации, мы пришли к выводу, что само понятие «высокоскоростная съемка» встречает несколько определений. Так, Википедия предлагает следующее ранжирование по скоростям:

  • Ускоренная съемка – 32 - 200 к/с
  • Скоростная съемка – 200 – 10 000 к/с
  • Высокоскоростная съемка – 10 000 – 1 000 000 000 к/с.
В то же время, Сообщество инженеров кино и телевидения (SMPTE) дает такое определение: быстрая смена ряда изображений, снятых камерой со скоростью 128 к/с и более, которые можно воспроизвести в виде последовательности как минимум трех кадров.

Также можно встретить мнение, что скоростная съемка – любая съемка со скоростью более 25 к/с.

Профессиональные высокоскоростные камеры работают, как правило, на матрицах CMOS. Матрицы состоят из большого количества светочувствительных датчиков, которые преобразуют оптическое излучение (изображение объекта) в электрический сигнал. В зависимости от скорости съемки, разрешения и качества изображения системе, как правило, требуется сохранять данные со скоростью более 8 ГБ/с. Объем внутренней памяти современных высокоскоростных камер составляет, в зависимости от модели, примерно от 2 до 288 ГБ.

Для понимания ориентировочного времени съемки на такие камеры, рассчитаем его на примере. У нас есть камера Phantom Flex со стандартной внутренней памятью 32ГБ. Мы решили снимать в стандартном режиме со скоростью 2500 к/с и разрешением Full HD (12бит). На какое максимальное время съемки мы можем рассчитывать? Давайте разбираться. Исходя из того, что каждый кадр будет весить 3,11 МБ, а максимальная память – 32 ГБ, мы сможем записать примерно 11 000 кадров. И на это у нас уйдет порядка 4,4 секунд. То есть, используя только внутреннюю память камеры, время съемок составит всего несколько секунд. Если уменьшить скорость до, скажем, 300 к/с, то время съемки увеличится до 36 секунд. Уменьшив разрешение до HD при сохранении предыдущих параметров, мы получим 1,4 минуты записи.

Здесь стоит отметить, что даже полученные 1,4 минуты записи прерываются 15-20 минутами переноса материала на компьютер в зависимости от его характеристик, формата сохранения данных и категории кабеля «витая пара». А это, как Вы понимаете, неоправданная трата рабочего времени. Для оптимизации процесса записи, как правило, используют специальные устройства для записи, хранения и переноса большого объема данных - CineMag, CineFlash и CineStashion, согласованная работа которых позволяет свести к минимуму время ожидания и простоя камеры.

Основная мысль, которую мы хотели бы донести этими расчетами - чтобы выбрать оптимальные параметры съемки, нужно четко понимать стоящую перед Вами задачу и тонкости настроек камеры.

Как правило, все многообразие задач, для решения которых используют высокоскоростные камеры, можно условно разделить на два типа по ожидаемому результату: получить красивую картинку и получить материал для последующего анализа и вычислений. Опираясь на эту классификацию, мы будет постепенно разбираться с тонкостями высокоскоростной съемки и рассматривать их на конкретных примерах в следующих новостных статьях.

А движутся образующие изображение пучки света, сформированные оптической системой. В некоторых системах высокоскоростной киносъёмки используются линзовые растры или волоконная оптика . В последних случаях запись не содержит цельного изображения и для его воспроизведения на экране требуются дешифровка и печать на обычной киноплёнке с помощью специальных типов кинокопировальной аппаратуры .

Ускоренная киносъёмка лакающей собаки

Назначение скоростной съёмки

Контроллер дискового видеорекордера «Ampex HS-100» для замедленных повторов

Ускоренная съёмка позволяет замедлить движение на экране и рассмотреть его во всех подробностях. Это актуально при съёмках спортивных соревнований, когда необходимо определить победителя или оценить точность выполнения упражнений. В кино о спорте ускоренную киносъёмку одной из первых использовала Лени Рифеншталь при создании фильма «Олимпия » . В постановочном кинематографе ускоренная съёмка используется как выразительное средство, например, чтобы показать действия героя «во сне». Иногда повышенная частота устанавливается в кинокамере для имитации слабой гравитации и невесомости . Ускоренная съёмка (обычно 80-100 кадров в секунду) обязательна при создании комбинированных кинокадров с макетами: замедление движения позволяет сохранить достоверность действия, несмотря на небольшие размеры декораций . При этом обвал или разрушения крупного объекта не выглядят на экране «игрушечными» (так, например, выполнялась часть съёмок в фильме «Экипаж »).

Замедление темпа движения на экране возможно не только за счёт увеличения частоты киносъёмки, но и за счёт замедления киноплёнки в кинопроекторе или магнитной ленты в видеомагнитофоне с динамическим трекингом . Этот способ в 1970-х годах нашёл широкое применение в показах замедленных повторов при телетрансляциях спортивных мероприятий. Первые опыты замедленных повторов стали возможны уже в 1934 году на немецком телевидении после начала эксплуатации кинотелевизионной системы «Цвишенфильм » с промежуточной киноплёнкой, однако для вещания система оказалась слишком неудобной, уступив место электронным камерам. Первое устройство «HS-100», пригодное для электронных трансляций замедленных видеоповторов соревнований, было выпущено только в марте 1967 года американской компанией Ampex . Устройство воспроизводило одни и те же телевизионные поля по несколько раз, замедляя движение на экранах телевизоров . В кинематографе замедлить движение, снятое с нормальной частотой, можно таким же образом путём кратного размножения каждого кадрика на специальном кинокопировальным аппарате трюковой печати . Двукратная печать каждого кадрика даёт на экране двукратное замедление, соответствующее такому же увеличению частоты съёмки или уменьшению частоты проекции.

Однако при таком способе замедления движение на экране становится прерывистым, а некоторые фазы быстропротекающих процессов вообще невидимы, поскольку при съёмке попадают в интервал между снятыми кадрами. При сильном замедлении проекции до 1-2 кадров в секунду изображение становится похожим на слайд-шоу . Поэтому в большинстве случаев для замедления движения на экране предпочтительно использование ускоренной съёмки. В настоящее время для осуществления замедленных повторов на телевидении (Ultra Motion повторы в прямом эфире) выпускаются специальные вещательные системы, состоящие из высокоскоростной передающей камеры , видеосервера и контроллера, позволяющего замедленно воспроизвести с сервера любой момент отснятого действия . При этом движение на экране остаётся плавным за счёт высокой частоты съёмки камеры до 250 кадров в секунду .

В отличие от ускоренной съёмки, используемой, главным образом, в научно-популярном и художественном кинематографе, а также в спортивном телевещании, скоростная и высокоскоростная запись изображения применяются для исследования быстропротекающих процессов в науке и технике . Первые опыты с хронофотографией , ставшей прообразом кинематографа, проводились с теми же целями, позволяя изучать явления, недоступные человеческому восприятию. Наиболее известным примером таких исследований являются опыты Эдварда Мэйбриджа по фиксации фаз лошадиного галопа , позволившие определить момент отрыва от земли всех четырёх ног . Современная аппаратура позволяет снимать от нескольких тысяч до десятков миллионов кадров в секунду, делая возможным наблюдение очень быстрых процессов. Высокоскоростные цифровые устройства применяются в науке и промышленности для анализа краш-тестов , детонации , искровых разрядов и других явлений. Полученные в лабораторных условиях кадры позволяют точно измерить параметры движения, и в конечном счёте улучшить конструкцию изделий или проверить научную теорию. Иногда эти съёмки используются в качестве иллюстрации в документальных и научно-популярных фильмах .

Технические особенности процесса

Масштаб времени - количественная мера замедления движения, равная отношению проекционной частоты кадров к съёмочной . Так, если проекционная частота кадров стандартная и равна 24 кадрам в секунду, а киносъёмка производилась с частотой 72 кадра в секунду, масштаб времени составит 1:3, что соответствует трёхкратному замедлению.

Оптическая ёмкость - максимальное количество кадров, которые могут быть сняты за время одной киносъёмки . Для высокоскоростной киноаппаратуры это понятие имеет решающее значение, так как ёмкость принципиально ограничена конструкцией аппарата и его кассет . Например, аппарат «ФП-22» с оптической ёмкостью 7500 кадров при максимальной частоте съёмки 100 000 кадров в секунду расходует весь запас за 0,075 секунды. Поэтому для гарантированной регистрации исследуемого процесса даже небольшой длительности требуется точная синхронизация запуска киносъёмочного аппарата или видеосервера с началом процесса.

Понятие частота киносъёмки напрямую применимо только при кадровом способе съёмки. При бескадровых способах чаще всего пользуются понятием разрешающей способности во времени или временны́м разрешением . Параметр определяется как функция максимальной временно́й частоты изменения яркости тест-объекта, которая может быть измерена по результатам съёмки .

Максимальная частота съёмки в кинематографе определяется конструкцией кинокамеры и динамическими характеристиками её скачкового механизма . В видеозаписи и высокоскоростной цифровой фотографии максимальная частота определяется особенностями фотоматрицы и временем считывания заряда. В любительской киноаппаратуре предусматривалась ускоренная съёмка на частотах до 64-72 кадров в секунду. В профессиональном оборудовании применяются специализированные грейферные механизмы , обеспечивающие до 360 кадров в секунду для 35-мм киноплёнки и до 600 кадров в секунду для 16-мм . В СССР для ускоренной киносъёмки выпускались камеры 1СКЛ-М «Темп», 2КСК, 3КСУ и другие . Современные профессиональные киносъемочные аппараты общего назначения обеспечивают частоту съемки до 200 кадров в секунду с возможностью её плавной регулировки непосредственно во время съёмки для получения спецэффектов изменения хода времени. Повышение скорости сверх этих значений осуществляется при непрерывном движении киноплёнки, поскольку ни один из существующих скачковых механизмов не способен транспортировать фотоматериал с более высокими скоростями без его повреждений.

Второй главной проблемой ускоренных съёмок является неизбежное уменьшение выдержки при повышении частоты . Даже при коэффициентах обтюрации , близких к единице, для частоты 1000 кадров в секунду выдержка не может превышать 1/1000 секунды. При высокоскоростной съёмке этот же параметр может составлять несколько наносекунд. Это вынуждает использовать высокочувствительные сорта киноплёнки и фотоматрицы с низким уровнем шумов, а также яркое освещение снимаемой сцены. Большинство современных цифровых устройств этого назначения оснащаются охлаждающим элементом Пельтье для снижения шумов матрицы и получения возможности предельного повышения её светочувствительности .

Технологии скоростной съёмки

Падение шара с водой, снятое с частотой 480 кадров в секунду

После появления цифровых фотографии и видеозаписи большинство технологий скоростной съёмки, основанных на кинематографических процессах, устарели, поскольку электронные устройства не содержат никаких движущихся частей, ограничивающих быстродействие. ПЗС -матрицы позволяют регистрировать быстропротекающие процессы с частотой до 1000 кадров в секунду . Появление КМОП -матриц стало примером подрывной инновации , позволив снимать миллионы кадров в секунду и полностью заменить киноплёнку. Достигнутый в 2011 году уровень быстродействия в 0,58 триллиона кадров в секунду позволяет зафиксировать перемещение светового фронта импульсного лазера . Даже некоторые цифровые компактные фотоаппараты , например серии «Casio Exilim», уже оснащаются функцией скоростной видеосъёмки с частотой до 1200 кадров в секунду при уменьшенных размерах кадра . В постановочном кинематографе для ускоренных съёмок используются специальные цифровые кинокамеры , среди которых наиболее известны устройства «Phantom», способные снимать до миллиона кадров в секунду .

Однако в отдельных отраслях до сих пор используются скоростные киноаппараты. Методы скоростной киносъёмки могут быть условно разделены на две главные разновидности: съёмка на движущуюся киноплёнку и на неподвижную с движением оптических деталей аппарата. Первый способ с использованием лентопротяжного механизма применим, если скорость движения киноплёнки не превышает 40 метров в секунду, поскольку при более быстрой протяжке плёнка рвётся или самовоспламеняется . Во втором случае киноплёнка размещается на неподвижном или вращающемся барабане . Подвижный барабан разгоняется до номинальной скорости (до 350 метров в секунду) перед съёмкой, позволяя аппарату работать в ждущем режиме без потери оптической ёмкости. Известны два основных способа скоростной киносъёмки:

Оптическая компенсация

Для того, чтобы изображение кадра оставалось неподвижным относительно движущейся равномерно киноплёнки, между ней и съёмочным объективом устанавливается вращающаяся призма или многогранный зеркальный барабан . Размер и положение призмы выбираются такими, чтобы линейное смещение оптического изображения соответствовало перемещению плёнки за то же время. При этом незначительный взаимный сдвиг изображения и киноплёнки (тангенциальная ошибка) неизбежен, и для его уменьшения время экспонирования ограничивается дополнительным обтюратором . По такому принципу были построены советские киносъёмочные аппараты «ССКС-1» и многие зарубежные, например, американский «HyCam» .

При использовании вращающегося зеркального барабана закон смещения изображения зависит от расстояния до объекта съёмки, становясь практически линейным только для предметов, расположенных в бесконечности. Поэтому для съёмки с конечных дистанций аппараты такого типа снабжаются комплектом коллиматорных линз, помещаемых между объективом и зеркальным барабаном. Такую конструкцию имели различные аппараты, например советский «СКС-1М» и немецкие «Пентацет-16» и «Пентацет-35». 16-мм аппарат «СКС-1М» был способен снимать до 16 000 уменьшенных кадров в секунду при их расположении в два ряда . В комплект может входить несколько зеркальных барабанов с различным количеством граней, от которого зависит размер получаемых кадриков и частота съёмки.

Для повышения частоты съёмки при неизменной оптической ёмкости иногда применяется расположение кадриков небольшого размера в несколько рядов с уменьшенным шагом. Каждый из рядов может экспонироваться через отдельный объектив, а неизбежный при этом параллакс считается допустимым при съёмке удалённых объектов . Подобная технология изобретена задолго до появления кинематографа и использовалась в ранней хронофотографии .

Кратковременное экспонирование

Высокоскоростная съёмка

Ещё одно распространённое название - лупа времени . В современных технологиях регистрации изображения известны несколько методов высокоскоростной съёмки, осуществляемых на фотоматериал или цифровым способом.

Оптическая коммутация

Цифровая установка «Fastcam» для высокоскоростной съёмки

При таком способе, чаще всего, один или несколько витков киноплёнки располагают на внутренней поверхности неподвижного барабана. Против каждого будущего кадра обычно располагается коммутационная призма и вторичный объектив. Вторичные объективы могут располагаться в несколько рядов с взаимным смещением, позволяя повысить частоту киносъёмки. При этом размеры получаемых кадров уменьшаются пропорционально возрастанию их рядности. В центре барабана с большой скоростью вращается зеркало, которое и осуществляет «развёртку» по длине плёнки. Для повышения скорости вращения зеркало иногда помещают в среду инертного гелия . Для предотвращения повторного экспонирования общее время съёмки не должно превышать одного оборота зеркала, и ограничивается фотозатвором , располагающимся за входным объективом. Требуемое быстродействие недостижимо для обычных затворов, поэтому для прерывания съёмки часто используют одноразовые затворы взрывного типа . По принципу оптической коммутации построены советские аппараты «СФР», «ССКС-3» и «ССКС-4» .

Две последних камеры для обеспечения рабочего угла в 360° используют четырёхрядную укладку киноплёнки изнутри барабана и четыре зеркала, вращающихся на общей оси. При этом зеркала смещены друг относительно друга на 90°, обеспечивая последовательное экспонирование всех четырёх рядов киноплёнки за один полный оборот. Аппарат «ССКС-4», предназначенный для 35-мм киноплёнки с кадром обычного формата , обеспечивает при таком устройстве частоту съёмки до 100 000 кадров в секунду. 16-мм аппарат «ССКС-3» может снять за секунду до 300 000 кадров . Из-за ограниченного рабочего угла зеркала перечисленные камеры, относящиеся к категории аппаратов с прямым вводом , мало пригодны для работы в ждущем режиме.

Значительно более совершенны аппараты с соосным вводом , в которых оптическая ось объектива совпадает с осью барабана. Камеры этого типа, такие как «ФП-22», предусматривают размещение по спирали нескольких витков киноплёнки, и повышенную оптическую ёмкость до 7500 кадров на 8-мм киноплёнке . Способ оптической коммутации применим и при цифровых технологиях. В этом случае вместо киноплёнки с линзовой вставкой вторичных объективов размещаются один или несколько рядов миниатюрных цифровых фотоаппаратов . Максимальная частота съёмки при этом зависит не от времени считывания матриц , а от скорости вращения зеркала.

Механическая коммутация

В аппаратах этого типа используются несколько объективов, расположенных по окружности напротив вращающегося с большой скоростью диска с узкой щелью. Количество получаемых кадров равно количеству объективов, а вся съёмка происходит за один оборот диска. Более совершенная схема предполагает наличие на диске нескольких щелей и нескольких рядов объективов. Несмотря на неизбежный параллакс и малую оптическую ёмкость, такой принцип обеспечивает съёмку с частотой до 250 000 кадров в секунду в ждущем режиме .

Электронная коммутация

При этом методе объект съёмки, расположенный вблизи коллективной линзы, освещается искровыми разрядами , электронными вспышками или импульсным лазером . Изображение строится на неподвижном фотоматериале несколькими объективами, а коммутация источников света осуществляется бесконтактными электронными устройствами. Какие-либо подвижные части в такой камере отсутствуют. Данный метод применяется для процессов, протекающих в относительно малом объёме. Несмотря на существенные недостатки, заключающиеся в наличии пространственного параллакса между соседними кадрами, при электронной коммутации возможна съёмка с очень высокими частотами вплоть до нескольких миллионов кадров в секунду . Метод непригоден для съёмки светящихся объектов.

Ещё одна технология предусматривает использования электронно-оптического преобразователя со скачкообразным перемещением изображения по поверхности флуоресцирующего экрана при помощи магнитной отклоняющей системы . Таким образом на одном экране можно одновременно разместить от четырёх до шестнадцати кадриков, соответствующих различным фазам движения объекта. За счёт эффекта послесвечения каждый полученный набор кадров фиксируется на одном кадре киноплёнки. При этом способе достигается частота съёмки до 600 миллионов кадров в секунду. Ещё одно достоинство заключается в возможности получения высокой яркости вторичного изображения при помощи фотоэлектронного умножителя , компенсирующей падение экспозиции при коротких выдержках. В СССР подобные аппараты на основе отечественных трубок начали выпускать в начале 1960-х годов. За рубежом наиболее известны камеры с электронной коммутацией производства Hadland Photonics Limited и Cordin Company.

Бескадровая съёмка с диссекцией изображения

Бескадровая съёмка с диссекцией основана на разложении изображения на отдельные элементы, изменения яркости каждого из которых записываются непрерывно . При таком способе скоростной киносъёмки чаще всего используется волоконная оптика , предназначенная для относительного смещения отдельных элементов изображения. В съёмочном аппарате между объективом и киноплёнкой размещается светопровод, составленный из множества элементарных стеклянных нитей сечением в сотые доли миллиметра. Один из торцов светопровода располагается в фокальной плоскости объектива, строящего действительное изображение объектов съёмки. Пользуясь тем, что форма сечения многожильного светопровода легко изменяется смещением отдельных волокон друг относительно друга, его противоположный конец выполняется в виде узкой щели шириной в одну элементарную нить .

При равномерном движении киноплёнки мимо заднего торца светопровода, изображение среза каждого волокна записывается в виде линии с переменной оптической плотностью. Для воспроизведения изображения используется тот же жгут, расположенный относительно киноплёнки таким же образом, как и во время съёмки. В этом случае на противоположном от плёнки торце светопровода образуется видимое изображение объектов съёмки. Такой способ киносъёмки позволяет рагистрировать движения любой скорости, а временна́я разрешающая способность ограничена только разрешением киноплёнки и диаметром нитей. В то же время изменение геометрических размеров фотоматериала во время лабораторной обработки, при такой технологии недопустимо, так как приводит к искажению изображения при его дешифровке. Поэтому для съёмки с диссекцией применимы только киноплёнки на безусадочной лавсановой подложке или фотопластинки на стеклянной основе.

Бескадровая растровая съёмка

Метод скоростной киносъёмки с непрерывным движением киноплёнки. При такой технологии на киноплёнке не образуется видимого изображения объектов съёмки, представленных совокупностью линий различной оптической плотности. Для съёмки используется оптический растр, помещаемый перед киноплёнкой вблизи фокальной плоскости объектива. Простейший растр представляет собой непрозрачную перегородку с предельно малыми отверстиями, расположенными в несколько рядов с малым шагом. Каждое отверстие работает как элементарный стеноп , строя изображение выходного зрачка объектива на фотоэмульсии .

Более высокой светосилой обладает линзовый растр похожей конструкции. Каждому отверстию пластины соответствует элементарная линза растра, строящая изображение зрачка. Расположение разных линз растра на различных расстояниях от оптической оси объектива приводит к тому, что элементарные изображения каждой из них отличаются. Соседние ряды линз сдвинуты друг относительно друга на расстояние, равное доле шага растра. При движении киноплёнки изображение каждой линзы отображается в виде отдельной полосы, оптическая плотность которой колеблется в соответствии с изменениями яркости каждого участка движущегося изображения кадра.

Для обратного синтеза изображения используется тот же растр, расположенный относительно киноплёнки так же, как во время съёмки. В результате на экране получается движущееся изображение объектов съёмки. Советский растровый аппарат «РКС-11» при таком методе обеспечивает разрешающую способность во времени до 150 000 с −1 при оптической ёмкости 300 кадров на двух фотопластинках 13 × 18 см .

Фоторегистрация (щелевая бескадровая съёмка)

Разновидность высокоскоростной киносъёмки с непрерывным экспонированием светочувствительного материала . При такой технологии из прямоугольного кадра выделяется отдельный элемент в виде линии, ограниченной узкой щелью . Киноплёнка или оптический коммутатор могут двигаться непрерывно с любой скоростью. При этом записывается только узкая линия, изображающая ограниченную область объектов. Полученное на киноплёнке изображение называется фоторегистрограммой и лишь условно изображает часть объекта съёмки . В то же время, благодаря возможности измерения основных параметров движения, фоторегистрация получила распространение в некоторых отраслях науки, в которых полное изображение снятых объектов считается избыточным. Щелевая бескадровая съёмка широко используется в спорте, в том числе в качестве фотофиниша .

Режим фоторегистрации предусмотрен во многих аппаратах с оптической коммутацией. При этом между объективом и коммутатором соосно с ним размещается щелевая диафрагма, а линзовые вставки с вторичными объективами убираются от киноплёнки. В таком режиме временна́я разрешающая способность возрастает в несколько десятков раз . В высокоскоростной видеосъёмке уменьшение высоты кадра вплоть до одного пикселя также позволяет повысить частоту регистрации в несколько раз за счёт сокращения времени считывания.

Щелевая фоторегистрация послужила основой для целого направления в фотоискусстве - щелевой фотографии .

См. также

Источники

  1. , с. 136.
  2. , с. 343.
  3. , с. 300.
  4. , с. 267.
  5. , с. 40.
  6. , с. 56.
  7. , с. 36.
  8. , с. 28.
  9. , с. 181.
  10. , с. 305.
  11. , с. 157.
  12. , с. 37.
  13. Steven E. Schoenherr. 1967 (англ.) . Ampex History (недоступная ссылка - история ) . Ampex . Проверено 20 июня 2015. Архивировано 20 июня 2015 года.
  14. , с. 189.
  15. Высокоскоростная вещательная система I-Movix (рус.) . Продукция . «Седатэк». Проверено 19 июня 2015.
  16. , с. 51.
  17. Высокоскоростная фотосъёмка (рус.) . История фотографии (недоступная ссылка - история ) . «Фотография» (26 августа 2012). Проверено 19 июня 2015. Архивировано 19 июня 2015 года.
  18. , с. 66.
  19. , с. 274.
  20. , с. 272.
  21. , с. 30.
  22. , с. 41.
  23. Н. А. Тимофеев. Использование высокоскоростных цифровых камер для исследования физических систем (рус.) (недоступная ссылка - история ) . Проверено 18 июня 2015. Архивировано 19 июня 2015 года.
  24. Леонид Попов. Учёные создали камеру с частотой триллион кадров в секунду (рус.) . «Мембрана» (15 декабря 2011). Проверено 17 февраля 2016.
  25. Femto-Photography: Visualizing Photons in Motion at a Trillion Frames Per Second (англ.) . Camera Culture. Проверено 17 февраля 2016.
  26. Фотоаппарат Casio Exilim Pro EX-F1 и скоростная съёмка (рус.) . «Фаствидео». Проверено 19 июня 2015.
  27. Андрей Баксаляр. Vision Research выпускает скоростные камеры Phantom v1210 и v1610 (рус.) . «GadgetBlog» (9 августа 2011). Проверено 19 июня 2015.

Чувствуете ли вы «Жажду скорости»? Вы наверняка видели крутые фотографии, когда определенное динамическое действие показывается навеки застывшим во времени, и хотели научиться делать их самостоятельно. Может вы хотите попробовать заняться «фотомагией» и сделать, чтобы предметы замирали в воздухе? Позвольте показать, как это делается.

Canon 50D с 50mm f/1.8 объективом Canon - 1/2000 с., f/6.3, ISO 400. Только дневной свет - вспышка отключена.

Чем дольше вы занимаетесь фотографией, тем больше начинаете ценить способность камеры творить магию. Одна из особых функций наших «магических ящиков» - умение останавливать время. Мне нравится выражение художника Джона Бёрджера: «Фотография кажется странным изобретением, ведь ее основные рабочие материалы - свет и время».

Когда вы нажимаете на кнопку спуска затвора, вы в буквальном смысле используете свет, чтобы запечатлеть момент времени, который не существовал до этого и не будет существовать после. Дни идут, а застывший момент остается, и чем короче выдержка, тем этот осколок времени тоньше.

Скоростная съемка - что это такое?

В рамках статьи мы определим скоростную съемку как способность регулировать выдержку фотографии так, чтобы всё движение было застывшим, и зритель мог увидеть то, что невооруженным глазом рассмотреть невозможно. Есть два основных способа это сделать: первый - сократить выдержку, второй - использовать вспышку с минимальной длительностью. Общий знаменатель этих двух методов - очень маленькое время экспонирования. Но насколько маленьким оно должно быть? Как и в большинстве сфер фотосъемки, это относительное понятие.

Съемка в дневном свете

Когда вы пользуетесь только естественным светом, например, на улице в солнечный день, логично, что уже применяется первый метод. Вы наверняка знаете - чтобы двигающийся субъект на фотографии не двигался, нужно использовать короткую выдержку. А если конкретнее? Если вы хотите полностью заморозить субъект, выдержка должна быть достаточно короткой, чтобы во время экспонирования не было никакого отчетливого движения.

Необходимая выдержка зависит от скорости движения субъекта. Направление движения относительно камеры (по направлению к фотографу или от него, диагонально или перпендикулярно) также играет роль. Не нужно забывать о расстоянии до субъекта и силе зуммирования.

Для работы с очень быстрыми объектами (например, летящей пулей), ксеноновая вспышка вряд ли даст необходимый результат. Так называемая вспышка с коротким импульсом (air-gap flash) может обеспечить снимок с выдержкой, равной 1/1000000 секунды вместо стандартной 1/35000. В качестве замены ксенона используется воздух, а вместо 100 вольт напряжения - смертельно опасные 30 тысяч вольт. Если вы займетесь этим, то бесспорно переступите черту новичка и перейдете на новый уровень.

Как снять фотографию, схожую с той, что вы видите ниже? Это бокал шампанского, разбитый при помощи пневматического пистолета. Данная идея, аналогичная идеям работ, опубликованных в этой галерее . Вы можете использовать эту технику, чтобы сфотографировать взрыв помидоров, воздушных шаров, наполненных водой, арбузов или даже вашей камеры Canon, когда вы разбиваете ее о стену, потому что не смогли разобраться в меню (простите, не удержался…).

Заморозка быстрого движения (также известная как высокоскоростная фотосъемка, англ. High Speed Photography ) может обеспечить вам некоторые довольно необычные фотографические эффекты. Высокоскоростная фотосъемка применяется в физике, медицинских исследованиях, спорте и др. Это руководство объясняет, как запечатлеть чрезвычайно быстрое движение, используя обычную камеру и немного самодельной электроники. Я опишу, какие я использовал настройки, с какими проблемами я столкнулся и что я делал, чтобы решить их или миновать.
Вот хороший пример высокоскоростной фотосъемки:

Съемка воздушного шарика в тот момент, когда он лопается.

Взрыв яблока

Съемка таких изображений связана с множеством трудностей. Как можно точно рассчитать время при использовании выдержки меньше, чем 1/6000 секунды?!

Мы должны учесть лаг затвора, синхронизировать вспышку и время экспонирования в нужный момент.
Но лаг затвора любой нормальной камеры настолько велик, что это практически несовместимо с реальным временем экспонирования. И как вы синхронизируете вспышку с выдержкой менее 1/6000 секунды?

Чтобы обойти проблемы с лагом затвора и синхронизацией вспышки, экспонирование должно производиться в абсолютно темной комнате. Таким образом, затвор может быть открыт фактически без произведения экспонирования. Выдержка, установленная на камере, должна быть достаточно длинной для совершения действия, пока затвор все еще открыт. Поскольку комната темная, длинное экспонирование не возымеет эффекта на финальный результат (поскольку свет не проникает через объектив, воздействуя на матрицу/пленку).

Чтобы действительно получить «экспозицию», необходима вспышка. Длительность работы вспышки не будет совпадать с реальным временем экспонирования.

Итак, теперь нам нужно понять, как много времени нужно для срабатывания вспышки. Оказывается, что мощность вспышки на самом деле влияет на продолжительность освещения, и соответственно, на выдержку. Если вам нужна выдержка короче 1/6000 секунды, мощность должна быть уменьшена. Для получения дополнительной информации о длительности освещения, пожалуйста, ознакомьтесь с тестом, который я провел на своей вспышке Sigma EF-500 .

Теперь нам осталось только синхронизировать вспышку с действием, которое мы хотим зафиксировать.

Это может быть сделано несколькими способами. Например, синхронизация с лопающимся шариком может быть произведена при помощи звука. В случае с импульсным воздействием, таким как при контакте с пульками пневматического пистолета, систему можно привести в действие при помощи механического переключателя, как на картинке ниже. Когда пулька попадает в покрытие диска, она толкает переключатель, который затем запускает вспышку.

Вот мои настройки и ход работы при высокоскоростной фотосъемке (для кадра с воздушным шариком).

Приспособления:

  • Воздушный шарик (мы собираемся его уничтожить, так что не выбирайте ваш любимый)
  • Цифровая камера
  • Штатив
  • Вспышка Sigma
  • Собранный в домашних условиях синхронизатор (больше информации). Если у вас нет IR синхронизатора, вы можете использовать схему универсального звукового синхронизатора .
  • Игла (или пневматический пистолет, смотрите ниже)
  • Фон (я использую черный лист бристольского картона)

Установка

Первый шаг - это создание сцены. Черный лист картона используется как фон . Воздушный шарик, вспышка, микрофон и камера размещаются, как на изображении ниже.

Настройки оборудования:

  • Вспышка: IR синхронизатор и мощность 1/16.
  • Камера: выдержка 1-2 сек, ISO 100-200, диафрагма f 11-16, ручной фокус.
  • Микрофон: расстояние 50-70 см между объектом и микрофоном отлично подходит для синхронизации, в случае съемки кадра с прокалыванием шарика.

Следующий шаг - это построение кадра и фокусировка :

Пытаясь сохранить максимальную производительность объектива, я использую приближение или передвигаю штатив, пока не получаю желаемую компоновку кадра. Фокусировка может быть достигнута как автоматически, так и вручную, но не забудьте переключиться в ручной режим, чтобы заблокировать фокус, иначе камера будет стараться найти фокус, пока свет выключен.

Теперь пришло время проверить настройки и освещение. Все освещение выключено, а выдержка переведена в ручной режим (B, bulb).

Чтобы вспышка сработала, я просто хлопаю в ладоши. Потом я смотрю на получившееся изображение на камере, проверяя экспозицию, композицию, фокус и глубину резкости.

Для получения корректного освещения/экспозиции, вы можете увеличить или уменьшить:

Расстояние от источника света до шарика
- мощность вспышки
- значение диафрагмы на камере
- чувствительность ISO

Сделайте кадр

Тестирование повторяется, пока не будет достигнут удовлетворительный результат, и тогда уже может быть снят итоговый кадр. Это делается так же, как и во время проведения тестов, но вместо хлопка шарик лопается иглой.
Можно также наполнить шарик водой и снять кадр, используя вместо иглы пневматический пистолет.

Понятно, что подобная скоростная фотосъемка недоступна не только простому обывателю, но и многим профессионалам, так как простые камеры для этого не предназначены. Но тем не менее, снимков из серии «остановись мгновение» достаточно много. Откинем в сторону высокоскорострельные фотокамеры для научных экспериментов.

Что нужно для того, чтобы получить сверхскоростной снимок? Можно выделить 3 составляющих:

  • Очень короткая выдержка. От 1/6000 и выше
  • Хорошее освещение
  • Затвор должен сработать в нужный момент.

При ближайшем рассмотрении — это мало реально. Зеркалки топового класса выдают максимум 1/8000 и стоят очень много денег. Источник света, позволяющий снимать на таких выдержках — выжжет наши глаза до задней стенки черепа. До нужного момента мы уже не дойдем. :)

Но решение есть. К сожалению, статей в интернете по тому, как сделать скоростной фотоснимок дома, очень мало. На русском и того меньше. Фактически единственное, что удалось найти на русском это статья Евгения Орлова на сайте Хулиганствующего Элемента , но она страдает тяжелым наследием полноценного академического образования:). Автор сильно уклоняется в научно экспериментальную область, двигаясь в сторону создания самодельных вспышек.

На самом деле все прозаичнее.

А еще один способ, для съемки «водяного макро» описывается в другой статье Quick guide to Simple High Speed Macro Photography . Он несколько проще и отличается от предыдущих двух, но сфера его применения более ограниченная.

В заключении, для поднятия боевого духа, подборка высокоскоростных фото от SmashingMagazine