Полимерные трубопроводы с завода. Производство полимерных труб. Оборудование для производства труб: основные составляющие

На данный момент полиэтилен является мировым лидером среди материалов, идущих на изготовление труб для воды и канализации. При этом увеличение количества предприятий по производству полиэтилена и трубных изделий из него дополняется совершенствованием технологий и свойств конечных продуктов.

Развитие производства в России

Рост российских предприятий, выпускающих пластиковые трубы, совпал с переходом мирового производства на изготовление полиэтилена, как более широко применимого и более дешевого полимера. Возможно, поэтому именно на Российских предприятиях основная доля полимерных труб (около 76 %) делается именно из полиэтилена, в то время как зарубежные фирмы по-прежнему работают на ПВХ (в США до 60-ти % от всех полимерных компаний). Это производство с каждым годом все растет вместе с увеличением спроса потребителей.

Сейчас наибольшее количество центров по производству сосредоточено в следующих регионах Европейской части России:

  • Центральном,
  • Северо-Западном,
  • Поволжском,
  • Уральском.

Также усиленными темпами идет развитие полимерной промышленности на Дальнем Востоке и Северном Кавказе. Конкурентоспособность новых компаний растет за счет повышения как ассортимента продукции, так и её качества.

Российские лидеры

Производством ПЭ труб в РФ занимаются уже более ста предприятий, и их количество увеличивается. В основном это небольшие и средние компании, существование которых объясняется сравнительной дешевизной цехового оборудования и самого производства. Крупных же немного, хотя на них и сосредоточена основная доля выпуска полиэтиленовых трубопроводов: «Казаньоргсинтез» и «Евротрубпласт», дающих более 40% всего объёма поставок, и несколько других.

Казаньоргсинтез

ОАО «Казаньоргсинтез» производит более 20% российского объема трубной ПЭ продукции. Размещенное на площадке одного высокомощного завода, предприятие поставляет потребителям напорные трубы диаметрами от 10-ти до 1200 мм и газопроводные диаметрами от 63-х до 315 мм. Мощности завода, рассчитанные на работу с марками полиэтилена ПЭ-63 и ПЭ-80, с 2006-го года переориентированы на выпуск трубных изделий полностью из ПЭ-80, отвечающего мировым стандартам качества.

Евротрубпласт

Объединение «Евротрубпласт» - это группа компаний, производящих полимерные трубы по всей России. Это Московский завод «Газтрубпласт», «Белтрубпласт», Климовский, Чебоксарский, Рубежановский, Кохановский трубные заводы, а также производство в Краснодарском крае, выпускающие ПЭ трубы различных видов и назначений. Завод на Северном Кавказе является новым перспективным проектом «Евротрубпласта», расположившимся в удобной близости к поставщикам сырья в Ставрополье.

ТехСтройПолимер

Компания «ТехСтройПолимер» с базой в Подольском районе Московской области занимается выпуском ПЭ труб из полиэтилена марки ПЭ-100 – газовых и водопроводных, диаметрами от 20-ти до 1200 мм, с возможным рабочим давлением от 5-ти до 25-ти атм, а также фасонных изделий и термосварочного оборудования. Поставки налажены по Москве и Центральному региону.

БалтЭнергоСистемы

Группа «БалтЭнергосистемы» объединяет компании по производству полимерных изделий на территории Северо-Западного региона, дающих полный цикл производственных работ: от получения гранул до готовой ПЭ трубы всех видов, широкого ассортимента. Головной офис «БалтЭнергосистемы» находится в Санкт-Петербурге, в состав входят производственная и торговая компании.

ПолиПластик

Компания «ПолиПластик» объединяет заводы, выпускающие полиэтиленовые трубы, по территории всего СНГ (более 10-ти, размещенные в РФ, Белоруссии, Казахстане и Украине). Один из них – это Иркутский трубный завод, который является крупнейшим в Сибири производителем напорных и безнапорных ПЭ трубопроводов и фасонины к ним. Завод поставляет напорные и безнапорные трубопроводы для воды и канализации, а также канализационные и хозяйственно-бытовые колодцы. Группа располагает собственным научно-техническим центром и проектным институтом, в её состав входят также 3 предприятия по совместной работе Россия-Швейцария.

Торговый дом «ПолиПласт»

«ПолиПласт» - Московская компания, занимающаяся реализацией труб из полиэтилена разных марок, изготавливаемых ООО «ВорсиноПолимер». Современные линии и технологии, используемые этим производителем, дают высококачественную трубную продукцию различного назначения – газовые, водопроводные, технические, т.п.

Описание технологии

Под трубами понимают изделия кольцевого сечения закрытого профиля цилиндрические или гофрированные диаметром от 5 до 1500 мм. Тонкостенные изделия этого типа с толщиной стенки 1-1,5 мм при диаметре до 25 мм принято называть шлангами. Трубки диаметром менее 5 мм со стенками толщиной менее 0,5 мм называют капиллярами. Название «труба» является обобщающим.

Как правило, трубы изготовляют из высоковязких сортов полимеров. Для их производства применяют полиэтилен низкой плотности, полиэтилен высокой плотности (ПЭ-80, ПЭ-100), жесткий и пластифицированный поливинилхлорид, АБС-пластик, полипропилен, ударопрочный полистирол.

В зависимости от свойств используемых полимеров пластмассовые трубы могут обладать не только низкой плотностью, щелоче-, кислотостойкостью, но и термостойкостью до 120-150 0 С, высокими электроизоляционными свойствами, бензо- и маслостойкостью, не ржавеют в процессе использования. Кроме того пропускная способность пластиковых труб больше, чем металлических, вследствие незначительных потерь на преодоление трения жидкости о полимерную поверхность.

Также использование полимерных труб обычно дает ощутимый экономический эффект: затраты на транспортировку и монтаж сокращаются по сравнению со стальными трубами в несколько раз, значительный срок службы (около 50 лет), отсутствие расходов в период эксплуатации. В результате монтаж, выполненный из труб и фитингов из полипропилена, даст удешевление на 15–20% по сравнению с трубопроводом, выполненным из стальных оцинкованных труб.

Ещё одно важное достоинство пластмассовых труб - технологичность их соединения в трубопроводные системы.

Технология и оборудование для производства труб

Процесс производства труб из пластика технологически достаточно прост, относительно нетрудоемок, энергетически малозатратен и экологически безвреден, а минимальная площадь, необходимая для установки и эксплуатации одной комплектной линии для производства труб, составляет порядка 100 м 2 .

Все стадии технологического процесса производства труб неразрывны и выполняются на одной линии непрерывного действия.

Рис. 1. Линия для производства полимерных труб.

Гранулированный полимерный материал пневмозагрузчиком подается в бункер экструдера, где нагревается, пластицируется и в виде расплава под давлением подается в прямоточную формующую головку, из которой отформованная труба поступает в калибратор и далее в охлаждающую ванну. Для отвода трубы служит тянущее устройство, захватывающие элементы которого соответствуют профилю изделия. Толщина стенки трубы и правильность ее геометрической формы контролируются бесконтактным измерительным устройством. Для нанесения надписей тиснением или печатью служит счетно-маркирующее устройство. Трубы диаметром более 50 мм нарезаются на отрезки заданной длины дисковой или гильотинной пилой, перемещающейся вдоль трубы со скоростью ее отвода, и укладываются манипулятором в штабеля. Трубы диаметром менее 50 мм наматываются в бухты тянуще-намоточным устройством.

Экструдеры. Используются главным образом одночервячные прессы с длиной червяка (25-30)D. Применение длинных червяков способствует уменьшению пульсации расплава и повышению качества изделий. При производстве тонкостенных изделий используют экструдеры с осевым перемещением червяков, позволяющим регулировать зазор между концом червяка и головкой. В современных агрегатах, служащих для производства труб диаметром более 1000 мм с толщиной стенки более 25 мм, используют высокопроизводительные двухчервячные экструдеры.


Рис. 2. Одношнековый экструдер.

Формование профиля трубы. Формование осуществляется за счет течения расплава полимера через кольцевую щель головки. Для этого обычно используют прямоточные, угловые и Z-образные формующие головки.


Рис. 3. Прямоточная кольцевая головка для изготовления труб и шлангов:
1 - штуцер для подвода сжатого воздуха; 2 - корпус; 3 - регулировочные винты; 4 - крепежное устройство; 5 - трос для удержания скользящих пробок в калибрующем устройстве; 6 - трубная заготовка; 7 - канал для поступления в трубу сжатого воздуха; 8 - матрица; 9 - дорнодержатель; 10 - дорн.

Наибольшее применение находят прямоточные головки (рис. 2). Корпус головки состоит из двух частей, между которыми закреплена радиальная решетка дорнодержателя. В переднюю часть корпуса вставляется формующее кольцо (мундштук), которое крепится к корпусу фланцем. На входе в головку вставляются решетка и пакет фильтрующих сеток. На решетке дорнодержателя закреплены рассекатель и дорн. Решетка дорнодержателя имеет штуцер для подвода сжатого воздуха внутрь трубы. Расплав полимера из цилиндра экетрудера проходит через пакет фильтрующих сеток, решетку, а затем течет в кольцевом зазоре между патрубком и рассекателем дорна и входит в отверстия решетки дорнодержателя, где ребрами разделяется на несколько параллельных потоков. Чтобы не было застойных зон, ребра решетки дорнодержателя делают обтекаемой формы.

После решетки дорнодержателя расплав вновь поступает в кольцевой канал, образованный второй частью корпуса и дорном. Окончательные размеры расплав принимает в формующем канале, при этом для обеспечения равной толщины трубы по периметру формующее кольцо (мундштук) может перемещаться винтами в радиальных направлениях относительно дорна.

Длина формующего канала обычно принимается кратной глубине канала h и должна быть равна l/h =15 - 30.


Рис. 4. Формующая головка для изготовления труб большого диаметра.

Конструкции формующих головок должны удовлетворять следующим общим требованиям:
1) равномерное течение расплава по периметру головки;
2) отсутствие линий спаев;
3) плавный переход от одного участка канала к другому;
4) равномерное нагревание расплава по периметру;
5) отсутствие застойных зон;
6) форма канала выбирается из условия эксплуатации и области применения труб.

Кроме конструктивных факторов на качество изготовляемых труб влияют технологические параметры - температура, скорость течения и скорости вытяжки расплава. При течении происходит ориентация молекул полимера, которая зависит от вязкости расплава и скорости течения. При увеличении температуры расплава ориентация и время релаксации уменьшаются, поэтому усадка труб в осевом направлении снижается.

Скорость течения расплава в головке влияет в основном на анизотропию свойств трубы. При увеличении скорости может появится шероховатость поверхности, т.к. происходит периодический срыв расплава с поверхности формующего канала.

При формовании профиля трубы расплав из головки отводится с помощью тянущего устройства. Если расплав отводится со скоростью большей, чем скорость выхода расплава, происходит уменьшение толщины стенки трубы и повышается осевая ориентация трубы.

Калибрование труб. Для придания профилю экструдата заданных размеров и исключения его деформации в охлаждающем устройстве трубы калибруют, т.е. предварительно охлаждают с обеспечением расплаву определенной конфигурации и размеров. Как правило, трубы калибруют по их наружному диаметру, поскольку это важно для стыкования и соединения при дальнейшем использовании. Тонкостенные шланги и капилляры калибруют также и по внутреннему размеру.

Для придания калибруемому изделию требуемой формы с последующим ее сохранением процесс должен начинаться при температуре, близкой к температуре плавления термопласта Т 1 ≤ Т пл а заканчиваться, когда расплав затвердевает, то есть при температуре ниже температуры размягчения Т 2 Калибрование можно проводить с использованием сжатого воздуха или вакуума.

При калибровании по наружному диаметру с использованием сжатого воздуха трубчатая заготовка расплава выдавливается из головки и поступает внутрь металлической гильзы калибратора. При подаче сжатого воздуха внутрь трубы происходит частичное раздувание ее по диаметру, вследствие чего труба на выходе из головки плотно прилегает к охлаждаемым стенкам калибрующей гильзы. Чтобы не произошло разрушения (раздувания) экструдата, насадка в данном случае крепится вплотную к головке, а в рубашку калибрующей насадки подается охлаждающая жидкость. Для исключения прилипания расплава, гильза насадки охлаждается до температуры, которая всегда должна быть ниже температуры стеклования или плавления. При этом на поверхности трубы образуется слой твердого полимера, который после выхода из насадки должен выдерживать внутреннее давление воздуха, а также силы трения, возникающие в насадке.

Давление калибрования выбирается в зависимости от диаметра трубы, толщины ее стенки, а также от свойств полимеров и температуры расплава. Обычно его подбирают экспериментально при запуске установки. При этом следует учитывать, что при низком давлении ухудшается внешний вид труб (образуется поверхностная рябь), а при чрезмерно большом снижается прочность из-за возрастания коэффициента трения и появления микротрещин.

Для создания внутри трубы давления конец её закрывают пробкой или несколько раз перегибают под углом 180 0 . Применение пробки ухудшает качество внутренней поверхности трубы и увеличивает силу ее трения при калибровке.

Раздувание сжатым воздухом позволяет создавать внутри трубы высокое давление. Этот способ калибровки используют при производстве труб диаметром более 100 мм и толщиной стенки более 5 мм.

При калибровании вакуумом необходимо обеспечить герметичность между зкструдатом и гильзой на входе, поэтому диаметр формующего мундштука делают несколько больше, чем диаметр гильзы. Необходимые размеры труба приобретает в результате прижатия экструдата к стенкам гильзы под действием разности давления атмосферного воздуха и вакуума. Поскольку невозможно создать большую разность давлений (∆P не превышает 0,05 МПа), этот метод неприменим при калибровании толстостенных труб.


Рис. 5. Вакуумный калибратор.

При калибровании пластинами трубчатая заготовка раздувается сжатым воздухом, подаваемым внутрь трубы, или за счет создания вакуума в калибрующей камере. В этом случае набор калибрующих пластин помещают в герметичную камеру, в которой создают вакуум. В этой же камере устанавливают форсунки для разбрызгивания воды или полностью заливают ее водой. Уровень воды поддерживается с помощью сливных трубок. Расстояние между пластинами на входе делают небольшим, чтобы под действием вакуума не произошло раздувание расплава. По мере отвода трубы температура расплава понижается и расстояние между пластинами возрастает. Калибрование охлаждаемыми пластинами ускоряет процесс охлаждения и уменьшает трение.

При калибровке по внутреннему диаметру калибратор крепится непосредственно к дорну головки. По трубке, проходящей через дорн, в него подается охлаждающая вода. Труба, протягиваемая по калибратору, охлаждается и разглаживается. Используя этот метод, можно получать изделия с толщиной стенки до 0,2 мм и с сечением любой формы, соответствующей конфигурации формующей щели головки.

При калибровании изделий следует избегать быстрого охлаждения, чтобы свести к минимуму остаточные напряжения и неравномерность усадки, нередко являющиеся причиной образования микротрещин. Необходимо согласовывать толщину стенки изделия, скорость ее отвода от головки, длину калибрующей втулки и теплофизические свойства перерабатываемого полимерного материала (теплопроводность,температуропроводность).

Для более равномерного охлаждения трубы внутрь нее также через дорн впрыскивается водяной туман. В этом случае тепло отводится не только через калибрующую втулку, но и внутрь изделия.

Эксплуатационный нагрев калиброванных труб выше Т р может сопровождаться самопроизвольным изменением их диаметра из-за высокоэластической деформации.

Охлаждение труб проводится орошением их водой или пропусканием через водяную ванну. Основное требование к этой операции - равномерное и быстрое охлаждение расплава.

В ваннах обеспечивается интенсивное перемешивание жидкости, для чего устанавливают барботажные трубки, разбрызгивающие форсунки или создают спиральный поток воды вокруг трубы. Интенсивное перемешивание необходимо также для удаления пузырьков воздуха, оседающих на поверхности трубы и нарушающих теплообмен. Иначе поверхность становится дефектной (с оспинами). Температура охлаждающей воды обычно выбирается в зависимости от полимера, а также с учетом требований, предъявляемых к трубам. Трубы хорошего качества получаются, если температура расплава на внутренней поверхности после выхода из ванны понижается до температуры плавления или текучести. Поэтому необходимо обеспечивать определенную скорость отвода трубы тянущим устройством. Длина ванны и кратность обмена воды определяются с учетом толщины стенки изделия.

Тянущее устройство предназначено для отвода изделия от формующей головки и перемещения его через охлаждающую ванну. Наиболее широко применяются устройства гусеничного типа. В зависимости от диаметра трубы, толщины ее стенки, конфигурации поперечного сечения тянущие элементы могут представлять собой бесконечный ремень с эластичными накладками или роликовые цепи с траками, повторяющими контур изделия. Количество таких «гусениц» может составлять 2, 3, 4 или 6, также в зависимости от размеров трубы. Тянущее устройство должно комплектоваться приводом с плавной регулировкой и прибором для оценки линейной скорости отводимого изделия. Последнее особенно важно, поскольку, во-первых, позволяет компенсировать разбухание экструдата, а во-вторых, от отношения скорости отвода изделия к скорости выдавливания экструдата зависит так называемая степень вытяжки трубы иее свойства в продольном и поперечном направлениях.

Если расплав отводится со скоростью большей, чем скорость выхода расплава, происходит уменьшение толщины стенки трубы и повышается осевая ориентация трубы. Прочность в продольном направлении увеличивается, а в поперечном снижается. Соответственно, с усадкой всё происходит наоборот: поперечная растет, в то время как в осевом направлении усадка существенно понижается.

Резка труб осуществляется пилами различной конструкции (циркульной, ленточной). В процессе резки пила перемещается вместе с трубой и после завершения цикла возвращается в исходное положение.


Рис. 6. Отрезное устройство.

Штабелер сбрасывает готовые трубы заданной длины по мере их поступления с отрезного устройства на специальный стеллаж для их дальнейшей сортировки или упаковки оператором.

При производстве безнапорных труб из полиэтилена или ПП-труб малого диаметра вместо штабелера может использоваться автоматический намотчик, который, имея регулируемый по диаметру намоточный барабан, электропривод и систему счетчика метража, позволяет получать на выходе готовые бухты.

Производство гофрированных труб.

Гофрированные трубы применяют для прокладки канализационных и дренажных магистралей. За счет гофрированной (профилированной) поверхности труба имеет небольшую толщину стенки, обладая достаточно высокой прочностью к смятию, т.е. имеет поперечную жесткость и вместе с тем продольную гибкость. При прокладке под землей она выдерживает давление грунта, имея при этом незначительную массу (малый вес) одного погонного метра трубы и достаточно легко укладывается в траншеи.

Гофрированные трубы могут быть однослойными или многослойными, когда для уменьшения гидравлического сопротивления гофрированная часть изнутри имеет гладкий слой полимера, рис. 7.При этом у трубы сохраняется гибкость. В некоторых случаях для обеспечения более высокой жесткости и теплопроводности, на наружную поверхность гофров наносят третий слой полимера.


Рис. 7. Гофрированная труба.

Установка для производства гофрированных изделий состоит из экструдера с прямоточной трубной головкой с удлиненным дорном и необогреваемым мундштуком (рис. 8).


Рис. 8. Схема процесса гофрирования труб.
1 - дорн; 2 - мундштук; 3 - полуформа; 4 - трос; 5 - пробка; 6 - изделие.

Экструдер должен выполняться на рельсах, для компенсации теплового расширения при изменении температуры цилиндра. В непосредственной близости от головки располагается гофратор, устроенный подобно двухцепному отводящему устройству, на каждом траке которого закреплена полуформа с каналом для охлаждающей воды. На рабочем участке полуформы сомкнуты. Тонкостенная трубная заготовка поступает в зону сомкнутых полуформ гофратора, под давлением сжатого воздуха прижимается к охлажденным поверхностям и затвердевает, сохраняя приданную ей форму. Для поддержания давления внутри раздуваемого рукава в нем размещается плавающая пробка, прикрепленная к дорну тросом. Гофратор, таким образом, выполняет две функции. Первая - подобно калибратору он придает изделию требуемую геометрическую форму, вторая - является отводящим устройством с плавной регулировкой скорости движения полуформ.

Особенность технологии производства гофрированных изделий заключается в том, что для обеспечения полноты формования гофров процесс ведется на предельно допустимой для перерабатываемого материала температуре. Кроме того, поскольку формование рукава-заготовки происходит на необогреваемом участке головки, в ней возникает значительное давление, достигающее 30-40 МПа.

Развитие технологий обработки железа в полной мере можно проследить, рассматривая историю применения чугуна и стали для изготовления труб. Историю чугунных трубопроводов принято отсчитывать с создания подземных трубопроводов Версаля (1662 г. мастер Р. Салем по проекту архитектора А. де Виля), после чего чугун стал основным материалом для труб водоводов и канализации. В России чугунные трубы были использованы для реконструкции Ростокинского водопровода Москвы (1858 г. А. Дельвиг). Первый российский нефтепровод построен на нефтяных промыслах Баку-Батуми (1897-1907 г. В.Г.Шухов) длиной 835 км.

Объем производства труб является индикатором технологического и технического состояния тяжелой промышленности любого государства, а уровень собственного потребления трубной продукции — индикатором динамики всей экономики.

Виды продукции

Номенклатура наименований позиций трубной продукции очень обширна. ГОСТ 28548-90 «Трубы стальные. Термины и определения» дает следующую классификацию:

  • Бесшовные стальные трубы.
  • Сварные стальные трубы.
  • Паяльные стальные трубы.
  • Стальные трубы с наружным или внутренним защитным покрытием (покрышками).
  • Стальные трубы с обработанной (внутренней или наружной) поверхностью.

Классификация построена на базовых технологиях изготовления. Внутри каждой категории стандартами определены свои требования, т.к. различные отрасли предъявляют свои технические требования. Существуют ГОСТы на трубы для химической, нефтегазовой или атомной промышленности. Кроме этого, современные технологии защиты трубы от воздействия внешних и внутренних факторов существенно расширяют количество номенклатурных позиций.

  • особо тонкостенные,
  • тонкостенные,
  • толстостенные,
  • особо толстостенные.

Технология производства

Различают две базовые технологии изготовления труб: бесшовная и сварная. Внутри каждой технологии существуют технологические приемы, которые обеспечивают изготовление определенных типоразмеров с наиболее оптимальными техническими и ценовыми параметрами.

Бесшовная технология

Технология основана на пластической деформации заготовки. Различают технологии по температурному режиму обработки по отношению к температуре рекристаллизации сплава железо-углерод (Fe-C):

  • Холоднодеформированные.
  • Горячедеформированные.
  • Теплодеформированные.

По технологическим схемам различают следующие способы изготовления бесшовной трубы:

Ковка . Применяется для изготовления заготовки (гильзы) под последующую обработку. Кроме этого, ковка применяется для изготовления труб из труднодеформируемых сталей и сплавов. Близким методом получения трубы, по способу формирования и условиям обработки, можно считать горячее прессование.

Прокатка . Способ изготовления, при котором заготовка проходит через клеть с калиброванными валками. При прокатке гильзы через валки происходит пропорциональное изменение геометрии трубы — уменьшение толщины стенки и увеличение длинны. Различают:

  • холоднокатаные трубы (диаметр 5...250 мм, стенка толщиной 0,3...24 мм, ГОСТ 8734-75) изготавливают непосредственно после ковки (прошивки) заготовки, без дополнительного нагрева. В процессе вальцовки деталь охлаждают до температуры ниже температуры кристаллизации сплава Fe-C.
  • горячекатаные трубы (диаметр 20...550 мм, толщина стенок не менее 2,5 мм, при максимальном значении толщины 75 мм, ГОСТ 8732-78) изготавливают после дополнительного нагрева выше температуры нагрева выше температуры рекристаллизации на 50...70 °С. Требуется термическая обработка.
  • теплокатанные трубы изготавливаются с применением промежуточного температурного режима, что позволяет упростить режим последующей термической обработки.

Волочение . Способ изготовления, при котором гильза проходит через калиброванные отверстия. Волочение, в части наименований, связано с температурным режимом процесса, аналогично прокатке: горяче, холодно и теплотянутые.

Специальные технологии .. Технологии прессования, центробежного литья и обработки резанием, которые не используют непосредственно деформацию металла, применяются для получения труб со специфическими свойствами или труб с применением специальных материалов.

Технологии с применением сварки

Сварка краев, деформированного в трубку листа или полосы происходит двумя способами:

  • Сварка давлением, под действием сил деформации, когда подогретые и подготовленные края полосы смыкаются в формообразующей фильере (печная сварка).
  • Сварка краев производится электродуговым способом в защитной среде или под флюсом. Электросварка различается по положению шва относительно оси трубы на прямолинейную и винтовую.

Сварка электродуговым способом получила широкое распространение благодаря развитию технологий сварки и методов неразрушающего автоматического контроля качества шва.

Положение в отрасли

В девяностые годы спад промышленного производства коснулся металлургии и трубного производства. Сокращение объемов производства в 4, 4 раза в погонных метрах и в 2,6 раза в весовом выражении, по сравнению с 1990 годом, поставило трубное производство на грань уничтожения. Приватизированная металлургическая отрасль, вплоть до 2000 года, подвергалась реструктуризации и пределу между собственниками. В итоге сформировались несколько финансово-промышленных групп, которые представляют собой вертикально ориентированные структуры с достаточно самостоятельным набором предприятий. Шесть холдингов: Evraz Group, Магнитогорский металлургический комбинат (ММК), Северсталь Российская Сталь, Новолипецкий металлургический комбинат (НЛМК), Металлоинвест и Мечел — контролируют около 80% трубного производства. С 2000 по 2007 годы производство труб в России выросло в 2,7 раза в весовом выражении и достигло уровня 1990 года прошлого столетия. Основной прирост производства получен в сегменте производства труб большого диаметра (ТБД) для нефтегазовой промышленности.

Перспективы отрасли

Перспективы отрасли следует рассматривать в двух сегментах трубного производства: производство труб общего назначения и производство ТБД. В первом сегменте ощущается сильное давление производителей высокотехнологичных труб с антикоррозионным покрытием и производителей полимерных труб, особенно Китая, Японии и Индии, которые предлагают большие объемы по демпинговым ценам. На переоснащение производства требуется порядка 90 млрд. $ в течение 10 лет. В сегменте ТБД ситуация намного лучше благодаря относительно высокой доле нового оборудования, на котором выпускается 40% ТБД и участию в государственных программах строительства новых нефте- и газопроводов, как на территории России, так и вне ее.

Как говорят специалисты, использование полимерных труб в тепло- и водоснабжении произвело настоящую революцию в строительстве. Главные преимущества этих материалов заключаются в высокой коррозионной стойкости; незначительном весе; в гладкости внутренней поверхности, что обеспечивает более низкое, по сравнению с обычными металлическими трубами, гидравлическое сопротивление; относительно невысокая стоимость (опять же по сравнению с металлическими изделиями); удобство монтажа, высокая износоустойчивость (срок службы полимерной трубы может составлять 50 лет и более). Хотя у таких труб есть и определенные недостатки: низкая температурная стойкость, газопроницаемость, малое рабочее давление, большое линейное расширение и затруднения с применением надежных резьбовых соединений. Все это заметно ограничивало их использование в горячем водоснабжении и отоплении, пока не были разработаны новые виды материалов, способы монтажа и технологии производства полимерных труб.

Основным материалом для производства таких изделий является особый тип термопластичного полимера. Одна линия для производства полиэтиленовых труб позволяет изготавливать трубы высокого и низкого давления из различных полимерных материалов – полипропилена, полибутена, поливинилхлорида и пр. Поливинилхлорид, к примеру, обладает таким качеством, как пожаробезопасность, что объясняется высокой температурой его воспламенения (+440°С) и кислородным индексом 60 %. Однако главный недостаток поливинилхлорида состоит в повышенной жесткости этого материала, что сильно осложняет работу с ним.
Полихлорвинил образуется путем полимеризации хлористого винила. Он бывает двух видов – хлорированный и непластифицированный поливинилхлорид. ПВХ представляет собой достаточно прочный, удобный в использовании и стойкий к внешним воздействиям материалы. Но область его применения ограничивается из-за повышенной токсичности и быстрой возгораемости. По этим причинам такие трубы применяются, в основном, для оборудования дренажа и канализации. Но с другой стороны, изделия из ПВХ имеют и ряд преимуществ: стойкость к коррозии, низкая теплопроводность, гладкая поверхность внутри, жесткость. Как и другие полимеры, ПВХ неустойчив к воздействиям солнечных лучей, кислородонепроницаем и требует использования специального монтажно-сварочного оборудования.

Полиэтиленовые трубы отличаются низкой себестоимостью, удобны для сварки, а их производство не требует больших вложений. Однако они недостаточно теплостойкие и прочные, поэтому их редко используют для отопления (только трубы из специального полиэтилена для повышенной температуры). В нашей стране преобладает производство труб из полиэтилена вида PE 63, хотя на Западе получил широкое распространение материал нового поколения – PE100, который более прочный и теплостойкий. Трубы из PE 80 в нашей стране выпускает достаточно большое количество компаний (например, ОАО «Казаньоргсинтез», ООО «Ставролен»), а из PE 100 – единицы (эпизодически их производит завод АНД «Газтрубпласт» и АОА «Кузполимермаш»). Еще одно довольно перспективное направление для развития – производство труб из полиэтилена для повышенной температуры – PE-RT. Пока в нашей стране продается продукция из этого полимера только польской компании KAN. Однако российские предприниматели все еще не спешат вводить трубы из PE-RT в свой ассортимент, считая, что они слишком дорогие по цене (сравнимы со стоимостью труб из металлопластика и PE-X) и при этом все же обладают рядом недостатков по сравнению с металлопластиковыми изделиями (более низкое давление, степень стойкость к воздействию хлора и др.).

Кроме того, для производства труб используют три модификации полипропилена: блок-сополимер РР-В, гомополимер РР-Н и статический сополимер пропилена с этиленом PP-R. Каждый из этих видов материалов используется для определенных труб. Так, например, РР-Н применяется для строительства технологических трубопроводов, РР-В используется в канализационных системах, а PP-R, благодаря своей высокой прочности, применяется в горячем теплоснабжении и отоплении. Впрочем, полипропилен в строительстве отопительных систем постепенно уступает в Европе трубам на основе PE-X. В нашей стране он все еще популярен, так как имеет хорошую свариваемость. И это его преимущество компенсирует для отечественных строителей все недостатки: относительно большую скорость распространения трещин, жесткость и высокое линейное тепловое расширение (по сравнению с металлопластиковыми трубами). Впрочем, в системах холодного водоснабжения и канализации полипропилен преобладает над ПВХ, так как он обладает более высокой химической и тепловой стойкостью по сравнению с последним.

Лидерами на рынке полипропиленовых труб являются зарубежные производители Aquatherm и Polymelt Kunststoftechnik. Среди российских компаний-производителей полипропиленовых труб можно назвать «Стройполимер», «Бородино-Пласт» и «Агригазполимер». Главная сложность производства изделий из пропилена заключается в необходимости закупать определенное сырье. Лучшим сырьем считается продукция шведской компании Borealis, однако она существенно (примерно на 150 евро за одну тонну) дороже аналогичного сырья других немецких, корейских, венгерских и даже российских компаний.

Вышеупомянутый PE-X – это так называемый сшитый полиэтилен. Эта технология производства труб появилась сравнительно недавно. Преимущества сшитого полиэтилена заключаются в лучших показателях ударной вязкости при низких температурах, в химической стойкости, минимальной длительной прочности и устойчивости к распространению трещин по поверхности трубы. Однако этот материал неустойчив к воздействию нефтепродуктов и продуктов их переработки (масел, растворителей, жиров).

Назначение трубы и материал, из которого она изготовлена, можно определить по ее маркировке и окраске. Так, например, трубы черного цвета производятся из полиэтилена, оранжевого и желто-розового – из поливинилхлорида, серые – из полипропилена. При изготовлении на трубы наносится маркировка в виде разноцветных полос. Продольно нанесенными полосами голубого и синего цветов отмечаются трубы для холодного водоснабжения, а полосками белого цвета маркируются трубы в системах отопления и горячего водоснабжения. Трубы желтого цвета применяются для газопроводов. Для изготовления труб из полимерных материалов используется экструзионная линия для производства полиэтиленовых труб. Газопроводные трубы обычно бывают желтого цвета.

Для изготовления труб из полимерных материалов применяют специальные экструзионные линии для производства полиэтиленовых труб. Такое оборудование обычно изготавливается под заказ с учетом требований клиента. Функциональность и комплектация линии напрямую зависит от нескольких факторов. В частности, необходимо принимать во внимание тип материала, из которого будут производиться трубы, учитывать необходимость нанесения маркировочных отметок (это также осуществляется на автоматизированном оборудовании), желаемую производительность оборудования, размеры сечения труб и толщину их стенок.

С технологической точки зрения процесс производства труб из полимерных материалов достаточно простой и не требует много времени для обучения работников (за месяц они вполне могут постигнуть все премудрости). Производственная линия для изготовления полимерных труб при помощи экструзии работает по принципу непрерывного и закрытого цикла. Она состоит из нескольких основных элементов. Одношнековый экструдер представляет собой червячный пресс, внутри которого образуется однородная масса полимерного вещества и пропорционально разделяется на несколько частей (их точное количество зависит от длины и ширины трубы) с помощью формующей головки. Экструдер включается при помощи привода. Высокоскоростные трубные головки выполнены по спиральному принципу, что позволяет обеспечить необходимую экструзию. Они же контролируют температуру. Вакуумный калибратор использует сжатый воздух, который формирует диаметр трубы. Особенно это важно при производстве водопроводных труб, так как позволяет четко калибровать их внутренний диаметр, что необходимо для точной стыковки. Секции охлаждения бывают двух видов: с системой орошения или с полным погружением трубы в воду. Главное, чтобы охлаждение проходило равномерно, иначе велика вероятность получить брак. Тянущее устройство снимает изделие с головки и протягивает его через секцию охлаждения. Эти устройства могут быть различных видов, в зависимости от размера трубы: в виде цепей, ремня или роликовых конструкций. Отрезное устройство представляет собой электрические пилы, которые могут быть как циркульными, так и ленточными. Труба нарезается на отрезки необходимой длины. Маркиратор наносит на поверхность трубы сведения о длине, толщине и диаметре изделия.

В качестве сырья используется гранулированный пластик, который помещается в бункерное отделение экструдера. В этом отсеке находятся кольцевые нагреватели и шнек, которые расплавляют гранулы, образуя однородную вязкую смесь. Расплавленные гранулы подаются к экструзионной голове, через которую выдавливаются под высоким давлением, формируя, таким образом, будущее изделие. Сформованная труба из полипропилена направляется на вакуумную калибровку, где ее сечение калибруется при помощи вакуума. Там же заготовка подвергается первичному охлаждению. Затем труба движется по охлаждающим камерам, где она окончательно остывает, а затем нарезается на отрезки заданной длины. Для того чтобы обеспечить протяжку длинной трубы используется специальный тянущий механизм с гусеницами. При помощи этого механизма трубы вытягиваются без повреждения. Для работы с линией требуется 1-2 оператора на одну смену.

Подобная линия позволяет производить трубы диаметром от 15 до 63 мм. Годовая мощность производства составит от 115000 до 310000 погонных метров, в зависимости от толщины изделий. Установленная мощность токоприемников – 20 кВт, а водопотребление составляет 1 куб. метр в сутки. Для размещения линии понадобится площадь 120-150 кв. метров. Прибавьте к этому площадь административно-бытовых помещений (20-25 кв. метров) и площадь прилегающей территории (50-70 кв. метров). Стоимость такой линии составляет от 3 млн. рублей. Более дорогие варианты обойдутся в $150000 и более. При покупке линии (особенно недорогой) обратите внимание на то, есть ли в ее составе установка подготовки воздуха (воздушный компрессор и фильтр). Иногда для линии в базовой комплектации может потребовать докупить принтер для нанесения маркировки на готовые изделия, холодильные установки и пр.

Общий размер инвестиций для создания собственного производства полимерных труб составит свыше 6 млн. рублей. В эту сумму входит аренда помещений, покупка оборудования, заработная плата работникам, закупка сырья. Сроки окупаемости зависят от рентабельности, которая может сильно различаться (максимум до 20-25 %). В среднем, такое предприятие окупает себя в течение 2-2,5 лет. Однако учитывайте высокий уровень конкуренции в этом сегменте. Вполне вероятно, что сроки окупаемости возрастут, если вы не сможете с самого запуска своего производства обеспечить сбыт вашей продукции по выгодным ценам. Поэтому поисками каналов сбыта стоит озаботиться еще на этапе составления бизнес-плана.