Методы бестраншейного восстановления участков трубопроводов и сооружений на подземных инженерных сетях. Строительство подземных инженерных сетей бестраншейными способами. Установка листовых полимерных зубчатых секций по технологии «Trolining»

6.1. НАКЛОННО - НАПРАВЛЕННОЕ БУРЕНИЕ

Наиболее распространенные траншейные способы сооружения подводных переходов трубопроводов наряду с их достоинствами имеют ряд существенных недостатков и в полной мере не отвечают современным требованиям - необходимому уровню конструктивной надежности и защите окружающей среды. Основными недостатками траншейного способа являются большой объем земляных и трудоемких водолазных работ, необходимость громоздких, утяжеляющих при-грузов или других средств, удерживающих трубопровод в проектном положении в обводненной траншее. Механизированная разработка нижних слоев грунта береговых и русловых участков переходов, особенно в сочетании с взрывными работами, наносит ущерб экологическому состоянию водоемов. Значительный ущерб наносится при строительстве переходов магистральных трубопроводов через крупные реки.

После окончания строительства переходов часто не восстанавливаются русла рек, происходит заболачивание поймы, происходит обрушение берегов, нарушается гидрологический режим. Между тем крупные реки играют большую роль. Это и места нерестилищ, и кормовые угодья для рыб, и судоходные пути.

С учетом всех этих факторов одной из основных и все более актуальных задач, стоящих перед строителями магистральных трубопроводов, в последние 20 лет стала задача создания методов и технологий, обеспечивающих наименьшее нарушение окружающей среды, снижение трудоемкости работ, сокращение сроков их выполнения. К таким методам относятся наклонно-направленное бурение и микротоннели-рование.

В России идея метода наклонного бурения возникла в 30-е

годы двадцатого столетия. Она была реализована при прокладке коммуникаций под автодорогами.

Метод строительства магистральных трубопроводов, отвечающий современным требованиям, был разработан и внедрен в США Основателем метода является американский инженер Мартин Черрингтон (фото 7, 8 на цветной вкладке) .

В 1971 г. под р. Педжейро в Калифорнии методом наклонного бурения корпорацией "Черрингтон"" (Cherrington) был проложен трубопровод диаметром 115,3 мм и длиной 231,6 м. После этого был открыт путь к широкому внедрению метода в практику. К 1992 г. было построено 2400 переходов, их диаметр возрос до 1200 мм, максимальная длина перехода достигла 1800 м, а общая длина построенных переходов превысила 800 км. К этому времени в США 75 % переходов были построены по новой технологии.

В России первыми эту технологию использовали строители газопроводов, назвав ее наклонно-направленным бурением (ННБ).

В 1996 г. методом ННБ в АК "Транснефть" был построен переход через р. Корженец длиной более 400 м и диаметром 1020 мм.

Преимущества метода ННБ:

экологическая безопасность, сохранность дна, берегов реки, водного режима реки за счет исключения подводных и береговых земляных, буровзрывных, берегоукрепительных и других работ;

отсутствие помех судоходству; минимальный объем вынутого грунта; значительное сокращение сроков строительства; уменьшение эксплуатационных затрат; долговечность;

надежная защита от внешних механических повреждений, в том числе от воздействия льдов и якорей судов в результате более глубокого заложения трубопровода;

отсутствие опасности обнажения трубопровода при размывах русел рек;

возможность строительства: при отрицательных температурах,

на ограниченных по площа ди строительных площа дк ах, в стесненных условиях,

под гидротехническими сооружениями и глубоко расположенными коммуникациями, в вечной мерзлоте.

К недостаткам метода ННБ, ограничивающим его применение, относятся:

большие единовременные затраты на приобретение оборудования;

необходимость глубокого (до 40 м от дна) геотехнического бурения и гидрогеологических изысканий;

сложность проходки в галечниковых, валунных, илистых и карстовых грунтах;

повышенные требования к устойчивости береговых откосов.

Несмотря на все недостатки, метод ННБ является одним из самых прогрессивных в строительстве подводных переходов.

Для оценки возможности и целесообразности применения ННБ учитываются следующие факторы:

результаты инженерных изысканий, в состав которых входят геодезическая съемка, геологические, гидрогеологические, гидрометрические, гидрометеорологические, геокриологические, экологические изыскания, оценка магнитного фонового состояния;

наличие и особенности хозяйственной инфраструктуры в районе расположения перехода, состояние и условия эксплуатации гидротехнических сооружений, условия взаимного влияния различных сооружений при их эксплуатации; характерные особенности местности.

Для строительства трубопроводов методом ННБ наиболее благоприятны реки (при доступной ширине и геологии русла и берегов), имеющие ленточно-грядовый, побочневый и ог-раниченно-меандрирующий типы руслового процесса, а также русловую многорукавность, где русловые процессы в рукавах развиваются по тому же типу. Существуют проблемы, связанные с применением ННБ на реках, имеющих типы руслового процесса в виде свободного меандрирования, незавершенного меандрирования и пойменной многорукавности. Эти условия характеризуются большими и трудно прогнозируемыми плановыми деформациями, широкой и низкой поймой, разновысотностью береговых склонов, что представляет большие сложности для ННБ. В этих условиях применение ННБ допускается только в случаях с незначительными параметрами русел этих рек (ширина, высота, состояние берегов, скорости их размыва и др.), с последующим прогнозированием условий их дальнейшего развития и разработкой дополнительных мер по их стабилизации и предупреждению опасных русловых процессов.

Применение ННБ ограничено также на участках рек, русло и берега которых сложены из скальных пород выше IV категории прочности или грунтов с большим содержанием галечника (более 30 %) крупностью 5-10 мм и валунов.

Существуют и другие ограничения, которые необходимо учитывать при принятии решения о применении ННБ. Например, наличие в грунтах по трассе трубопровода карстов, обводненных песков, ила, оползней.

Строительство подводных переходов трубопроводов способом ННБ, в зависимости от характеристики водных преград, типа используемых буровых установок, технологии бурения, конструктивных параметров бурового оборудования и протаскиваемого трубопровода (длины криволинейного участка, диаметра и др.), осуществляется по различным технологическим схемам, имеющим определенные различия.

Сущность метода заключается в том, что по створу перехода под руслом реки пробуривается скважина, по которой с берега на берег протаскивается трубопровод.

Общим для всех технологических схем является:

бурение пилотной скважины;

расширение скважины в один или несколько приемов в различных направлениях - прямом и обратном;

протаскивание трубопровода в разработанную скважину.

Буровая головка установки ННБ наклонена таким образом, что постоянное вращение буровой штанги в сочетании с нажимом создает прямолинейную скважину. В результате получается скважина заданной кривизны. Нажим без вращения приводит к отклонению штанги от заданного направления.

При бурении в скальных породах вращение и нажим могут комбинироваться с ударным воздействием молота. Для разработки скальных пород и других твердых формаций используется гидравлическая энергия импульсных струй высокого давления, генерируемая гидрозабойным двигателем.

Существуют установки направленного бурения, которые не требуют для своей работы бурового раствора, что делает их особенно привлекательными в том случае, когда рабочее пространство ограничено.

Устройство управления процессом бурения размещается за долотом буровой колонны. При движении в скважине полученная с его помощью информация позволяет следить за траекторией и направлением бурения. Эта информация постоянно записывается наземной компьютерной системой. На втором этапе в обратном или прямом направлении пилотную скважину расширяют путем разбуривания. Расширение производят столько раз, сколько необходимо, чтобы расширить скважину до диаметра укладываемой трубы. В случае прямого расширения буровую трубу присоединяют как впереди, так и позади расширителя. Расширитель протаскивается, а какое-либо устройство (трактор, трубоукладчик) поддерживает тяговое усилие с выходной стороны, в то время как крутящий момент и вращение прилагаются со стороны входа. Расширяющий элемент для гидромониторного бурения помещается впереди расширителя и позволяет держать скважину открытой для циркуляции бурового раствора. Для расширения пилотной скважины до большого диаметра позади расширителя помещают невращающийся стабилизатор для правильного центрирования буровой трубы в скважине. Буровые трубы поочередно наращиваются в процессе бурения, а каретка станка обеспечивает поступательно-вращательное движение буровой колонне. К выходному концу буровой колонны присоединяется вертлюг; он необходим для обеспечения тягового усилия. В случае обратного расширения буровой станок тянет расширитель в направлении входа скважины и прилагает тяговое и вращательное усилие.

Перед протаскиванием трубопровода при необходимости производится калибровка скважины (зачистка и укрепление стенок) с помощью цилиндрического расширителя. Окончательный диаметр подготовленной скважины должен не менее чем на 25 % превышать диаметр протаскиваемого трубопровода. В подготовленную траншею протаскивается трубопровод. При устойчивых стенках скважины этап протаскивания можно совместить с последним этапом расширения. Дюкер собирается на выходном конце скважины и сваривается в единое целое. Специальный оголовок соединяется с дюкером и затем присоединяется к буровой колонне. Буровая колонна с помощью бурового станка вытягивается назад, а бурильные трубы удаляются по мере протаскивания дюкера.

Основными параметрами механизма подачи буровой установки, характеризующими ее эффективность, являются усилие подачи вперед и назад. Принцип работы бурового станка - вращение и возвратно-поступательное движение буровой колонны.

В табл. 10 приведены параметры некоторых установок производства США

До 1979 г. существовали установки первого поколения. Основные различия между технологиями ННБ первого и второго поколения заключаются в следующем.

Тип установки

Jet Тгас 8/60

Cherrington 60/300R

Тяговое (толкающее)

320(с А-рамой)

усилие, т

Масса, т

Дл.ина, м

модульного исполнения (по станине 2,4x13)

Ширина, м

Максимальная дл.ина

бурения, м

Максимальный диаметр

проходки, мм

Давление бурового рас

твора, кг/см 2 (МПа)

Удельный расход буро

вого раствора, л/мин

Объем резервуара бу

рового раствора, м 3

Технология первого поколения включает в себя ряд постоянно развивающихся процессов, в совокупности называемых двухэтапной технологией - "технологией буровой и промывочной колонн 1 ", основанной на применении в работе двух колонн: буровой и промывочной. Буровая колонна малого диаметра (73 мм) с небольшим турбобуром продвигает буровую колонну на максимально возможное расстояние или до той точки снижения скорости проходки, когда становится невозможным придание необходимого направления турбобуру. В этот момент вокруг буровой колонны в скважину проталкивается обсадная или промывочная колонна. Промывочная колонна проталкивется до турбобура. Затем продвижение буровой колонны возобновляется и проходка осуществляется путем телескопической подачи.

Промывочную или обсадную трубу применяют для снижения нагрузки на буровую колонну, исключения возможности заклинивания буровой колонны и предотвращения изгибания колонны под действием осевого давления. Позже промывочную колонну стали использовать для расширения скважины и протаскивания трубопровода.

Использование мощных турбобуров большого диаметра невозможно из-за обвала пород стенок скважины вследствие вибрации.

Технология второго поколения основывается, в первую очередь, на применении измененной буровой колонны и называется технологией рабочей колонны. При этом бурение производится в один этап; исключается необходимость наличия двух колонн.

Корпорация "‘Черрингтон"" разработала рабочую колонну внешней промывки, позволяющую бурить на большие расстояния (более 1200 м) без применения промывочной колонны. Это хорошо характеризует буровую колонну.

Для преодоления проблем обвала стенок скважины разработана направляющая часть (первые 30 м буровой колонны) из высокопрочного антимагнитного сплава. Проблема вибрации, вызываемой турбобуром, была решена путем замены его на гидравлическое долото, которое разрушает перед собой породу и обеспечивает продвижение рабочего инструмента вперед без вращения. Кроме того, была изменена конфигурация и размещение форсунок на долоте, что позволило достигнуть максимального разрушения пород с использованием минимального количества бурового раствора. Турбобуры по-прежнему применяются, но только в твердых породах, там, где грунты могут удерживать турбобуры большого диаметра, передающие высокий крутящий момент, при собственной массе 450 кг.

Эта новая технология привела к новым достижениям, в том числе к тому, что наклонно-направленное бурение теперь может применяться в различных горных породах, таких, как гравий, щебень, известняк и гранит твердостью до 150 000 кг/см 2 .

Процесс бурения установкой ННБ включает в себя четыре этапа (фото 9):

бурение пилотной скважины; расширение скважины вперед или назад; калибровка скважины; протаскивание дюкера ходом назад.

На первом этапе пробуривается пилотная, направляющая скважина, диаметр которой меньше диаметра дюкера.

Диаметр пилотной скважины не превышает 20 см. Бурение может производиться с использованием, например, струйной шарошки, которая с помощью гидравлической энергии бурового раствора размывает породы. При пилотном бурении используются различные системы навигации, предназначенные для проведения скважины по заданной траектории от ее входа до выхода.

Второй этап - расширение скважины до необходимого размера. Диаметр скважины должен быть больше диаметра трубопровода на 30 - 50 %. При проходке не должно быть такой ситуации, когда диаметр пропускаемых по скважине каких-либо устройств равнялся бы диаметру скважины. Размер этих устройств должен быть значительно меньше диаметра скважины. Расширение можно производить двумя способами:

1) расширение ходом вперед. При этом способе буровой расширитель проталкивается со стороны входа скважины к ее выходу с помощью бурового става. Расширитель, размещенный на входной стороне, при своем вращении режет породы, увеличивая диаметр скважины и перпендикулярность ее к плоскости забоя;

2) расширение ходом назад. При этом способе расширитель с помощью буровой установки перемещается от выхода к входу.

Третий этап бурения - калибровка. Как только скважина будет расширена до необходимого диаметра, барабанный расширитель, имеющий тот же диаметр, что и трубопровод, протаскивается по скважине. Скважина после этого будет, откалибрована и очищена от любых помех, которые могут существовать внутри расширенной скважины. На обоих концах барабанного расширителя имеются резцы, позволяющие расширителю вырезать и удалять вывалы, которые могут затруднять перемещение барабанного расширителя по скважине.

Четвертый этап - протаскивание трубопровода. Головная часть протаскивателя подсоединяется к бурильным трубам, проходящим по скважине к буровой установке. Протаскива-тель имеет шарнирный соединитель, позволяющий головной части изгибаться так, чтобы трубопровод мог пройти в скважину. Кроме того, протаскиватель оснащен спереди режущей головкой, для того, чтобы при встрече с каким-нибудь препятствием внутри расширенной скважины бурильные трубы смогли быть приведены во вращение и режущая головка смогла бы удалить препятствие и открыть дорогу для протаскивания трубопровода по скважине.

Система проталкивания трубопровода состоит из цангового зажима, якорного устойства, системы поддержки трубопровода, системы полиспастов и лебедки. Размещается эта система на стороне выхода скважины и предназначена для облегчения работы буровой установки при проталкивании трубопровода по скважине. Система проталкивания может быть использована для разных диаметров труб.

В качестве буровой смеси, выносящей частицы разработанной породы в виде суспензии, используется бентонитовый раствор, который впоследствии может быть отфильтрован в системе регенерации. Бентонитовый раствор выполняет следующие функции:

размыв грунтов и удаление их из скважины; охлаждение и смазку режущего инструмента; укрепление стенок скважины на время производства работ; снижение трения рабочего трубопровода о стенки скважины и при его протаскивании;

снижение риска возможного повреждения изоляционного покрытия на трубопроводе при его протаскивании.

Для приготовления бурового раствора применяется бентонит - каменная порода, состоящая из глинистых материалов. Для применения в ННБ необходима глина, имеющая пластинчатую, кристаллическую структуру. Такому условию наилучшим образом отвечает натриевый монтмориллонит (бентонит). Этот материал используют потому, что он обладает уникальной способностью впитывать воду, по массе превышающую его собственную в 5 раз, и разбухать, в 12 раз превышая свой первоначальный объем. Для применения в бурении бентонит должен по своему качеству отвечать определенным требованиям, что достигается соответствующей обработкой и очисткой.

Для сохранения целостности скважины и улучшения скольжения при разбуривании и протаскивании необходимо выполнять три простых, но очень важных правила: контроль используемой воды; контроль вязкости; контроль за потерей жидкости; контроль вязкости бурового раствора.

Применяемая для приготовления бурового раствора вода должна иметь значение pH в пределах от 8,0 до 8,5.

На всех этапах ННБ необходимо поддерживать нужную вязкость для эффективного укрепления грунта и сохранения буровой скважины от разрушения.

Чрезмерная потеря воды из состава бурового раствора является причиной многих проблем буровых скважин. Чем выше потеря воды, тем больше риск ослабить грунт, вплоть до его разрушения и образования пробки (закупоривания скважины).

Оптимальный результат использования бентонита в составе бурового раствора достигается при тщательном перемешивании с водой, которая имеет значение pH 8,0 -8,5, низкое содержание кальция и температуру не ниже 4 °С. Для достижения необходимых свойств используют карбонат кальция и полимерные добавки. Количество бурового раствора и полимерных добавок регулируется в зависимости от типа грунта и типа бурового оборудования.

Полимерные добавки применяют с целью: увеличения выхода раствора; стабилизации процесса бурения; создания фильтрационной корки; улучшения смазывающих свойств; уменьшения сопротивления; увеличения прочности;

достижения необходимого уровня вязкости; достижения контролируемого уровня фильтрации; достижения взвешенности при бурении в тяжелых песках и гравии;

увеличения длины прямого и обратного бурения. Ассортимент буровых установок, предлагаемых изготовителями, очень широк: от компактных устройств, предназначенных для бурения скважин малого диаметра на короткие расстояния, до установок, способных прокладывать трубы значительного диаметра на расстояния в несколько сотен метров.

Столь же широк ассортимент предлагаемых систем управления, буровых головок, расширителей и различных сопутствующих инструментов и устройств.

Выбор типа буровой установки по техническим параметрам производится проектной организацией с учетом условий строительства конкретного подводного перехода: длины криволинейного участка, диаметра и толщины стенки трубы, геологических условий в створе перехода, величины необходимых тяговых усилий для протаскивания трубопровода в скважину и других условий.

Буровое оборудование (рис. 24) выбирают исходя из условий: обеспечения проходки пилотной скважины и ее расширения в различных (в том числе скальных) грунтах;

возможности многократного использования бурового раствора за счет его очистки и регенерации;

использования оборудования, допускающего его безаварийную эксплуатацию и открытое хранение на площадках в конкретных климатических условиях.

В комплект оборудования для наклонно-направленного бурения входят:

буровой станок; буровой насос; энергоблок; блок управления;

система приготовления и регенерации бурового раствора; буровая колонна;

забойный инструмент;

толкатель трубы;

оборудование системы навигации.

Основой буровой установки являются станина и буровая каретка. Станина с буровой кареткой часто выполняются отдельно от энергоблока, что расширяет возможности использования буровой установки в различных условиях строительства.

Гидравлические зажимы позволяют фиксировать бурильные трубы в процессе их соединения и разборки. Буровая каретка имеет двигатели, которые обеспечивают движение подачи буровой каретки вперед и назад. Механизм, содержащий зубчатую рейку и шестеренку, позволяет перемещать буровую каретку вверх и вниз, создавая необходимое усилие подачи. Угол наклона станины при бурении скважины может регулироваться от 0° (горизонтальное положение) и до максимального значения в 20°.

Буровая установка должна быть защищена от перемещений на грунте в процессе бурения, когда осуществляется подача вперед или назад. С этой целью используется анкерная система, которая смонтирована на буровой установке в нижней ее части.

С целью увеличения тягового усилия к буровой установке можно присоединять дополнительное устройство подачи назад.

Насос бурового раствора является частью установки ННБ на стороне входа; он обеспечивает гидравлической энергией процесс бурения, размывает породу струйным долотом или вымывает продукты резания при использовании трехшарошечного долота по твердым породам. Насос бурового раствора оптимизирует давление и расход бурового раствора в процессе бурения. Способность вымывать продукты бурения из забоя на поверхность позволяет поддерживать скважину в чистоте.

В качестве главного двигателя буровой установки используется, как правило, дизель, который снабжает ее и вспомогательное оборудование электрической и гидравлической энергией.

Блок управления выполнен таким образом, чтобы обеспечить бурильщику обзор бурового пространства. Кабина имеет большое окно и крышу для защиты от дождя. Есть возможность видеть раму с буровой кареткой и механизм соединения и развинчивания бурильных труб. В блоке управления больших установок предусмотрено место для специалиста, производящ его съемку и расчеты траектории пробуриваемой скважины.






ИНИК r zf

г 4

трубы г У


трубопровод, храниууихлде з


b>I]VEIi уров


В процессе наклонно-направленного бурения используются несколько различных конфигураций буровой колонны. Среди них существуют три основные конфигурации: "пилотная скважина 1 ", "расширение", "протаскивание дюкера". Комбинация различных частей для используемой конфигурации буровой колонны зависит от нескольких факторов: тип пробуриваемой породы; диаметр и длина дюкера; прямое или обратное расширение;

необходимость в предварительной очистке скважины; тип соединения дюкера для протаскивания.

Все три основные конфигурации используют одни и те же компоненты. Тем не менее каждая из конфигураций имеет специфические особенности, присущие только определенной конкретной операции.

В зависимости от свойств и структуры грунта в качестве забойного инструмента используют:

для бурения рыхлых грунтов (супеси, суглинки, глины, пески) - гидроразмывающие насадки эжекторного типа (турбобуры), разрабатывающие забой промывочной жидкостью под давлением 4 МПа и более;

для бурения в грунтах средней твердости - буровые долота различного типа;

для бурения в твердых скальных грунтах - многошарошечные долота.

Для управления направлением бурения пилотной скважины существует система навигации или блок контроля. Система включает в себя: скважинный зонд, компьютер, приборы, показывающие положение в скважине, в некоторых установках имеется кабель, соединяющий скважинный инструмент с наземным компьютером. Этот блок помещается внутри бурового става в немагнитной переходной камере.

В тех случаях, когда вблизи точек входа и выхода скважины проходят стальные трубопроводы, сваи или другие металлические объекты, вызывающие искажение магнитного поля Земли, его использование оказывается невозможным. В этих случаях используют контур, размещенный на трассе скважины для создания искусственного магнитного поля, которое измеряется магнитометром, чувствительным к магнитному полю, и, если знать точное положение контура, то можно точно определить положение измерительного блока в скважине относительно контура.

Выходная информация, формируемая блоком контроля направления, отображает азимут, который определяет угол между осью скважины и направлением на магнитныи меридиан, положение отклонителя в буровой скважине относительно вертикали и угол наклона направления магнитного поля Земли относительно вертикали. Система измеряет напряженность магнитного поля Земли и показывает время, дату и температуру чувствительного элемента в скважине. Эта информация может дистанционно отображаться на панели индикации.

Основные функции системы приготовления и регенерации бурового раствора:

восстанавливает буровой раствор для повторного использования в дальнейшем;

поддерживает требуемые характеристики бурового раствора;

осуществляет функции приготовления, хранения и очистки бурового раствора;

обеспечивает резерв бурового раствора при аварийной ситуации, когда необходимо подать в скважину" большое количество бурового раствора.

Система не загрязняет окружающую среду, потому что все жидкости, используемые при бурении, находятся в резервуарах. Все вспомогательное оборудование резмещено внутри корпуса бака бурового раствора для облегчения транспортирования.

Оборудование для приготовления и регенерации бурового раствора содержит насосы, баки для бурового раствора, генератор, снабжающий энергией насосы, прокачивающие буровой раствор через систему, фильтры и систему вибрационных грохотов.

Система регенерации работает следующим образом: буровой раствор, поступающий из скважины, проходит вибрационный грохот, в результате чего удаляются крупные частицы. Затем буровой раствор проходит через фильтры грубой и тонкой очистки, удаляющие из бурового раствора большинство мельчайших частиц, после чего буровой раствор опять поступает в бак для приготовления раствора.

Бак для приготовления раствора оснащен мешалкой, струйной воронкой и насосом.

При строительстве трубопроводов методом ННБ существуют некоторые особенности.

Перед началом работ при реализации сложного проекта в конкретном проблемном регионе необходимо уделить время для надлежащего планирования и подготовки дорогих превентивных мер. Три простых, но часто упускаемых из внимания правила помогут сохранить целостность скважины и улучшить скольжение при ее разбуривании и протаскивании трубопровода:

1) контроль используемой воды;

2) контроль вязкости бурового раствора;

3) контроль за потерей воды из бурового раствора.

Потеря устойчивости формы протаскиваемого трубопровода может произойти при комбинации растягивающего напряжения, вызванного осевой нагрузкой, напряжения изгиба вследствие искривления скважины и напряжения от давления жидкости или газа, транспортируемого по трубопроводу. В результате происходит образование гофр или даже сплющивание поперечного сечения, что приводит к разрушению трубопровода. При проектировании трубопроводов, сооружаемых способом направленного бурения, должны проводиться исследования возможной потери устойчивости формы, подбор физико-механических характеристик труб и расчет усилий и напряжений при их протаскивании и дальнейшей эксплуатации.

Для балластировки трубопровода в скважине используется заполнение протаскиваемой трубы водой. Эта труба не перемещается вместе с трубопроводом, она как бы выползает из него. Заполнение производится только в трубах большого диаметра, но так, чтобы трубопровод не стал слишком тяжелым. Иногда в трубопроводе размещается полиэтиленовая труба, которая и заполняется водой, постепенно продвигаясь в нем. При необходимости прикладывать дополнительное усилие применяется трубопротаскивающее устройство, так называемая А-рама. При работе с помощью А-рамы начало протаскивания обязательно идет от буровой установки.

Оператор буровой установки прикладывает необходимое начальное усилие, в течение некоторого времени сохраняет его постоянным (50 % от максимального паспортного усилия), затем по радио дает сигнал на А-раму. Протаскивание начинается, и после того, как труба пошла, дается сигнал на буровую установку. При этом усилие на буровой установке не нарастает, так как труба должна двигаться равномерно. Это делается еще и для того, чтобы трубу не поднимало вертикальной составляющей силы протаскивания сильно к верху скважины.

При работе с расширителями на обоих берегах должна соблюдаться синхронность в работах. Тяговое устройство (трактор, установка, лебедка) должно работать только при вращающейся трубе. Каждый цикл работ должен заканчиваться в удобной точке. Это может быть, например, расстояние, равное длине буровой штанги (9 м).

Реактивный крутящий момент возникает в трубе и направлен против направления вращения трубы. Особенно критический момент наступает, когда оператор на установке хочет быстро изменить направление бурения. Когда оператор уже прекратил вращение, труба еще вращается за счет сил скручивания. При работе с трубой на противоположном конце у людей должна быть ясность, вся ли труба раскрутилась. Это фиксируется прибором у оператора-бурильщика. Даже при небольшом крутящем моменте могут быть несчастные случаи. У оператора есть два способа снять реактивный крутящий момент: 1 - вращать трубу назад на 1-2

оборота; 2 - продвигать трубу в скважину поступательно.

Раскручивание особенно опасно при работе с тисками на противоположном берегу (длинные ручки которых могут быть причиной травмы).

Чем мягче породы, тем меньше должны быть остановки. Часто при протаскивании приходится останавливаться, чтобы приварить очередную секцию. Во время остановки (на момент остановки) записываются все показания приборов - при бурении пилотной скважины и ее расширении.

Срыв бурения может произойти по разным причинам. Наиболее типичные из них:

неправильный показатель pH водьт;

неправильный показатель вязкости бурового раствора; буровой раствор используется не в обоих процессах - бурении пилотной скважины и обратном протаскивании;

добавление полимера в воду до того, как добавлен бентонит;

нагнетание раствора до того, как он будет полностью выработан;

перемешивание и нагнетание раствора "в полете", т.е. до того, как он будет полностью готов;

слишком быстрое обратное протаскивание; раствор не выходит наружу скважины, т.е. нет циркуляции;

чрезмерный изгиб буровой трубы;

слишком неровная траектория бурения с большим количеством изгибов и поворотов, создающих трение;

использование расширителя со слишком маленьким диаметром;

использование в неплотных грунтах расширителя для плотных грунтов.

Подводные переходы, построенные методом ННБ, имеют срок эксплуатации до 50 лет. Поэтому изоляционное покрытие труб, прокладываемых методом ННБ, должно быть усиленного типа. Этого же требуют и условия протаскивания. Конструкция покрытия (толщина, материалы) выбирается с учетом характеристики грунтов, назначения трубопровода, условий воздействия на изоляцию сил трения при протаскивании в скважине.

Защита трубопроводов от коррозии, исходя из возможных изменений коррозионных условий при длительных сроках эксплуатации нефтепроводов, должна осуществляться комплексно: защитными и изоляционными покрытиями и средствами электрохимической защиты.

Физико-механические свойства изоляционного покрытия (сопротивление ударной нагрузке, отслаиванию и сдвигу, прочность на разрыв и др.) после нанесения его на трубы в заводских условиях и изоляции сварных стыков плетей в полевых условиях должны соответствовать требованиям ГОСТ Р51164-98.

Одновременно с защитой трубопровода от коррозии с помощью изоляционного покрытия применяется и электрохимическая защита.

Для проектирования и строительства подводных переходов методом ННБ необходимо комплексное изучение природных условий района строительства с целью получения необходимых и достаточных материалов.

В состав инженерных изысканий при строительстве или капитальном ремонте подводных переходов методом ННБ входят: геодезическая съемка, геологические, гидрологические, гидрометрические, гидрометеорологические, геокриологические, экологические изыскания и камеральная обработка полученных данных.

Полученные в результате инженерных изысканий и обработанные материалы должны быть достаточны для выбора проектной организацией варианта строительства перехода трубопровода способом ННБ.

Особенное внимание необходимо уделять участкам с неблагоприятными геологическими условиями. К таким условиям относятся: прерывистость и разрывы пластов, наличие скальных пород или большого количества гравия, наличие карстовых пород и оползней, интенсивные русловые и береговые деформации, наличие многочисленных протоков и островов. На таких участках, а также на криволинейных участках предполагаемого перехода следует бурить разведочные скважины на расстоянии друг от друга не более 100 м.

Как бы часто ни бурились разведочные скважины, есть опасность "не заметить 1 " такие препятствия, как валуны, пустоты, разломы, сбросы или слои грунта с химическим загрязнением.

Существуют технологии изысканий, отображающие картину подземных условий по всей трассе.

Эффективность разведочных скважин значительно увеличивается при размещении в них геофизических приборов и проведении исследований подземного пространства между скважинами различными геофизическими методами.

Сейсмические и электромагнитные методы требуют источников высокочастотной вибрации и приборов, фиксирующих резонанс, отражение и преломление волн в грунте. Исследование отраженной волны позволяет идентифицировать препятствия. Недостаток методов в том, что существуют шумовые помехи антропогенного происхождения и высокое поглощение сейсмической энергии на сбросах, в разломах и многопустотной среде.

Магнитометрическая съемка является легким, непроникающим методом поиска подземных объектов, обладающих магнитной характеристикой.

Измерение удельного сопротивления грунтов позволяет идентифицировать подземные объекты и пустоты.

При геофизическом испытании подземных газов на поверхности в определенном порядке размещаются газовые пробоотборники. Если в массиве присутствует загрязненный грунт, выделяемые им газы довольно быстро достигают поверхности, причем граница их выделения строго соответствует области загрязненного грунта. Различия в химическом составе газов позволяют определять тип загрязнения.

Проведение геологических изысканий возможно с помощью геофизических приборов, размещаемых в предварительно пробуренной горизонтальной скважине или в существующем трубопроводе, расположенном в интересующей зоне.

При предварительном выборе вариантов расположения участков переходов должны приниматься во внимание следующие факторы:

расположение поблизости указанных в материалах населенных пунктов, промышленных предприятий, отдельных зданий и сооружений, железных и автомобильных дорог и прочих объектов;

ведомственные требования о минимальных расстояниях от сооружений до нефтепровода;

характер береговых очертаний водной преграды; предполагаемая протяженность перехода; магнитное фоновое состояние; данные инженерных изысканий.

Окончательный выбор участка перехода осуществляется комиссией, создаваемой заказчиком. При этом учитываются и анализируются следующие факторы:

топография, застроенность и перспектива освоения прилегающей к переходу местности и водной акватории;

геологическая характеристика, составленная по вариантам створов переходов;

параметры водной преграды, состояние и прогноз развития русловых и береговых процессов в створе перехода; конструктивная надежность перехода;

техническая возможность и экологическая допустимость строительства перехода в намеченном створе;

технико-экономические показатели строительства перехода.

6.2. МИКРОТОННЕЛИРОВАНИЕ

Микротоннелирование - второй по распространенности метод бестраншейного строительства трубопроводов. Этот метод основан на строительстве тоннеля с помощью дистанционно управляемого проходческого щита (рис. 25).

Проходческий щит в форме конусной рабочей головки, снабженной системой зубьев, кулаков и дробильных выступов, механически перерабатывает грунт и таким образом бурит отверстие, через которое будет проклады ваться трубопровод. По мере перемещения щита вперед грунт скапливается в открытой передней части, где конусный щит дробилки дробит его и перемещает в камеру смешивания с вымывате-лем бурильной установки. Транспортировка отработанного грунта выполняется в виде вымывающей смеси через технологические трубопроводы в рабочую шахту. Передняя часть щита шарнирно соединяется с блоком удаления отработанного грунта, а силовые цилиндры, которые соединяют обе части, позволяют направлять установку в любую сторону. Контроль за трассой и направлением бурения осуществляется с помощью лазера, которым непрерывно управляет компьютер. Установка вместе с укладываемыми трубами протаскива-

Рис. 25. Схема прокладки трубопровода методом микротоннелирования:

t - бурение пилотной скважины, 6 - поэтапное расширение скважины;

в - протаскивание плети рабочего трубопровода; 1 - буровая установка,

2 - буровая колонка из промывочных штанг, 3 - пилотные штанги, 4 - траектория пилотной скважины, 5 - буровая головка, 6 - вертлюг, 7, 8, 9, 10 - расширители разных диаметров, 11 - трубопровод, 12 - оголовок для протаскивания, 13 - роликовая опора, а - угол забуривания 6°, (3 - угол выхода 5°

ется блоком силовых цилиндров, установленных в рабочей шахте, по мере бурения. Производительность силовых цилиндров и скорость их передвижения синхронна переработке грунта бурильной головкой. Непрерывное отслеживание оператором значения давления на грунт, крутящего момента бурильной головки и параметов движения бурового раствора позволяет непрерывно контролировать процесс прокладки трубопровода. Бурильная головка имеет систему форсунок высокого давления, которые позволяют подкрепить процесс бурения гидравлическим вымыванием грунта буровым раствором.

Проходческий щит работает из заранее подготовленной стартовой шахты в заданном прямолинейном или криволинейном направлении. Выемка щита производится из приемной шахты.

Микротоннелирование может применяться при любых грунтовых условиях и любой степени обводненности грунтов.

Управление процессом строительства микротоннеля производится из кабины, находящейся на поверхности. Местонахождение и ориентация щита контролируется с помощью лазерной системы.

Микротоннельные машины в основном применяются при строительстве коротких (100 - 300 м) тоннелей, однако в практике строительства подводных переходов различных трубопроводов были реализованы проекты, где длина тоннеля составляла около 3000 м. Основной параметр в тоннелестроении - это диаметр. Современные производители предлагают установки диаметром от 200 мм до 14 м.

Для проходки микротоннелей используются щиты различной остастки и компоновки. Возможно, например, размещение силового агрегата внутри щита, либо на поверхности земли. Кроме того, в зависимости от категории грунта, изменяется вид и твердость режущих кромок рабочего органа. Для транспортировки породы из тоннеля на поверхность ис-пользуютя также различные способы. Если грунт не обводнен, то можно применять щит со шнековым устройством, обеспечивающим транспортировку отработанной руды на поверхность. Если же грунты обводнены, либо возможно их обводнение в процессе работ, применяют щит с гидропри-грузом. При этом способе водно-бентонитовый раствор прокачивается по трубопроводам, вынося на поверхность отработанную руду.

Построенный таким образом тоннель можно эксплуатировать в качестве канализационного коллектора, водовода либо проложить в нем стальной трубопровод, транспортирующий нефть, газ или любой другой продукт.

Так же, как и при ННБ, при микротоннелировании объем земляных работ незначителен только для строительства стартовой и конечной шахт. При необходимости прокла дк и длинного или криволинейного участка трубопровода строятся промежуточные шахты. Достоинства микротоннелирования такие же, как и наклонно-направленного бурения.

При применении микротоннелирования необходимо учитывать инженерно-геологические и гидрологические условия. Оборудование выбирают в зависимости от этих условий и

диаметра трубопровода. Например, такие грунты, как пески и глины средней плотности легко перерабатываются и не требуют специальных бурильных щитов (головок). Локально имеющийся ил в твердопластичном виде не создает проблем, лишь требует применения специальных добавок в буровой раствор. Если на месте строительства встречается однородная скала, то определяют ее твердость по шкале Моса, плотность и дают общую оценку качества скалы по месту нахождения проб. Количество пробуренных контрольных скважин зависит от предполагаемой длины бурения тоннеля и сложности геологической структуры. Если длина бурения должна быть около 100 м, то обычно достаточно пробурить по одной скважине на точке начала и конца участка. Если результаты тестирования при разведочном бурении покажут, что имеется однообразная структура грунта на обоих концах, тогда в дополнительных исследованиях нет необходимости. В случае каких-либо отклонений, прерывности геологических слоев, наличия скал или большого скопления щебня необходимо выполнить дополнительное разведочное бурение.

Микротоннельная установка представляет собой комплекс агрегатов, взаимодействующих при строительстве микротоннеля. В состав установки входят следующие агрегаты:

бурильная головка, состоящая из бурильного щита, конусной дробилки и камеры смешивания. В головке находятся: электродвигатель, гидравлический насос, гидравлический двигатель привода бурильного щита, три силовых цилиндра управления, пульт управления, электропровода, провода управления, трубопровод питания и трубопровод вдавливания, насос вымывателя, откачивающий грунт от головки в стартовую шахту;

главная станция вдавливания, которая состоит из рамы и двух силовых гидроцилиндров;

гидравлический агрегат, который питает главную и промежуточные станции вдавливания.

Любые работы предполагают наличие определенных методик, способов решения тех или иных задач. Чем дальше идет человечество в области технологического прогресса, тем проще становится выполнять определенные работы, с меньшими потерями, затратами энергии. Исходя из того, что любые работы можно производить различными методами, люди выбирают наиболее приемлемые, и совершенствуют их. Ярким примером в строительстве и ремонте являются бестраншейные технологии .

Особые условия, в которых приходится сегодня работать строителям и инженерам вынудили людей разрабатывать методы бестраншейной прокладки тех или иных коммуникаций. Особенно актуальны такие методы для городской черты, для секторов, с хорошо развитой инфраструктурой. Там, где уже организованны дороги, уложен асфальт, а так же на поверхности имеется множество построек различного рода, вскрывать поверхностные слои и рыть траншеи просто нецелесообразно. Именно поэтому прокладка бестраншейным способом так распространена сегодня.

Основы и принципы бестраншейных технологий

Актуальность бестраншейных технологий обусловлена стремлением людей к производству земельных работ и работ по подводке коммуникаций с наименьшими затратами материальных и физических средств. Таким образом, бестраншейные технологии - бестраншейная прокладка коммуникаций производится с их применением, в первую очередь упрощают задачу, сводя при этом расходы к минимумам. В основу бестраншейных технологий ложатся знания и умения в области геологической разведки, владение определенным оборудованием, специальными агрегатами, помогающими реализовывать намеченные цели, а так же стремление человека к совершенствованию имеющихся методов.

Технология бестраншейной прокладки трубопроводов , как и следует из названия, подразумевает подводку различного рода коммуникаций к тем или иным объектам в обход перекапыванию территорий. Это позволяет исключить расходы на восстановление прилегающих территорий, а так же сократить сроки проведения работ. Основным принципом, на котором базируются бестраншейные технологии, является сквозное прохождение через пласты почвы в любом направлении.

Методы бестраншейной прокладки подразумевают применение определенной техники, агрегатов, работающих за счет энергии сжатого воздуха. Прокладка трубопроводов бестраншейным способом может осуществляться несколькими основными способами: проколом грунта, горизонтально направленным бурение и способом металлического футляра. Разность этих способов ничуть не сказывается на качестве выполняемых работ, а обусловлена природными и прочими условиями, такими, как плотность грунта и состав почвы, дальность коммуникаций, диаметр прокладываемых труб.

Преимущества бестраншейных технологий

Бестраншейные технологии прокладки труб исключают возможность просадки грунта, также они дают человеку возможность работать в таких местах, в которых ранее подвести коммуникации представлялось просто невозможным. Так, например, подведение дополнительных коммуникаций к жилому дому в городской черте может осуществляться прямо из подвала этого самого дома. Многие, наверное, представили себе огромную бурильную установку, но это не совсем так. Если говорить о методе прокола грунта, то прокладка труб бестраншейным методом прокола подразумевает применение самого малогабаритного оборудования, а для начала осуществления прокола с земли достаточно вырыть небольшую яму, около двух квадратных метров.

Установки для горизонтального направленного бурения несколько больших размеров, конечно, однако это не сравнится с тем количеством техники и людей, которые задействованы в организации траншей под коммуникации и трубопроводы различного типа.

Но все же главным плюсом является то, что бестраншейные технологии прокладки труб позволяют беспрепятственно проходить под дорогами, готовыми постройками, путями железнодорожного сообщения, небольшими водоемами и прочими преградами, с которыми можно было бы столкнуться на поверхности.

Это не все плюсы таких методов. Многие могли подумать, что за счет своей уникальности такая услуга будет стоить очень дорого. Однако даже если учесть тот факт, что такие способы обходятся несколько дороже, экономия средств и времени все равно очень значительна. Да и сложно себе вообще представить, как можно выкопать траншею, к примеру, через небольшую речушку, Таким образом, методы бестраншейной прокладки в некоторых ситуациях являются незаменимыми и безальтернативными.

Технология бестраншейной прокладки трубопроводов, помимо значительной материальной экономии, дает еще и значительную экономию времени. Все это благодаря тому, что такие методы объединяют в себе сразу множество процессов воедино: раскопать, закопать, завести трубы. Первые два и вовсе отпадают, отсюда и такая экономия времени.

Процесс бестраншейной прокладки

Бестраншейный способ прокладки труб определяется специалистами. Сначала производится геологическая разведка, специалисты определяют плотность грунта, наличие твердых пород и прочих примесей. Затем определяется дистанция, которую необходимо будет пройти. Уже после этого подбирается соответствующий метод. Так, например, при дистанции до двадцати метров можно справиться методом прокола грунта, в случае, когда дистанция выше или требуется абсолютная точность, применяется метод направленного горизонтального бурения, так как в этом случае движение наконечника контролируется. Методы бестраншейной прокладки полностью оправдывают затраты, которые несет заказчик, так как дают значительную экономию и являются максимально выгодными. Таким образом, в своем стремлении к идеалу, к постоянному совершенствованию человек во многих отраслях жизни очень сильно превосходит свои возможности, в том числе и в области прокладки инженерных коммуникаций, в строительстве, как и во многих других отраслях.

А. Рыбаков,
директор компании «МГС-Бестраншейные технологии»

На сегодняшний день в передовой зарубежной практике 95% объема работ по прокладке и реконструкции подземных инженерных коммуникаций проводят бестраншейными методами, это позволяет снизить затраты на проведение ремонта трубопроводов на 10...40% (в зависимости от их диаметра). Во многих крупных зарубежных городах прокладка инженерных коммуникаций открытым способом уже запрещена. Необходимо отметить, что в Европе растет число объектов, где находят применение методы бестраншейной технологии ремонта, реконструкции и прокладки коммуникаций, причем этот рост более стремительный, чем в США, так как крупнейшие европейские города были заложены в основном несколько веков назад.

В России из-за отсутствия соответствующего оборудования и материалов ремонт и прокладку коммуникаций в последние годы вели преимущественно открытым способом. Это резко увеличивало стоимость работ и сроки строительства объектов, а сам метод требовал разрушения дорожных покрытий и перекрытия движения автомобильного и железнодорожного транспорта. Получившая широкое распространение в последние десятилетия в зарубежной и отечественной практике технология бестраншейной прокладки методом горизонтально направленного бурения (ГНБ) и реконструкции водоотводящих труб позволяет успешно решать эти проблемы.

Развитие современного городского хозяйства невозможно без нормального функционирования основных систем жизнеобеспечения – инженерных коммуникаций различного назначения. Подземные трубопроводы снабжают жилые дома и предприятия горячей и холодной водой, электроэнергией, газом, обеспечивают отвод бытовых и промышленных стоков, поверхностных и фильтрационных вод.

В настоящее время в городах России находится в эксплуатации свыше 300 тыс. км систем водоснабжения и водоотведения, отслуживших нормативный срок, из них свыше 85,2 тыс. км находится в аварийном состоянии и требует немедленной замены.

При бестраншейном методе прокладки подземных инженерных коммуникаций окружающая среда не подвергается техногенному воздействию.

При открытой перекладке сетей трубопроводов основные затраты приходятся на земляные работы и транспортные перевозки, по большей части – грунта. При бестраншейной технологии объем земляных работ пренебрежимо мал. Бестраншейный метод позволяет избежать проблем и с экологией: окружающая среда не подвергается техногенному воздействию – не уничтожаются зеленые насаждения и травяной покров, как в случае применения открытого способа.

Бестраншейные технологии позволяют:

  • резко увеличить темпы работ по новому строительству и ремонту изношенных коммуникаций, более эффективно использовать финансовые и материальные ресурсы;
  • соблюдать экологические нормы, практически исключить ведение земляных работ, ликвидировать угрозу повышения уровня грунтовых вод и загрязнения грунтовых массивов бытовыми и производственными стоками;
  • обеспечивать бесперебойное движение транспорта в районе проведения работ.

Бестраншейные технологии отличаются практически стационарным режимом работы, высоким уровнем механизации и, в отличие от открытого способа, меньшим объемом ручных работ. Воздействие на дорожное покрытие и поверхность грунта либо полностью отсутствует (при работе по методу «из колодца в колодец»), либо имеет место только на начальном и конечном этапах работ. Бестраншейная технология позволяет обойтись без транспортных перевозок, упрощается пересечение уже существующих коммуникаций, есть возможность отказаться от водоотливных мероприятий. Техника безопасности при бестраншейной замене трубопроводов значительно проще по сравнению с открытыми земляными работами: работникам достаточно навыков по обращению с комплектом оборудования для бестраншейной замены.

Техника горизонтально направленного бурения возникла в США и в последнее время получила распространение по всему миру.

В отличие от существующих в нефтегазовом секторе понятий «направленное в глубину» и «горизонтальное бурение», термином «горизонтально направленное бурение» (ГНБ, международное сокращение – HDD) называется прокладка трубопроводов, кабелей, фильтрационных колодцев, удлиненных конструкций и крепежных систем близко к поверхности с помощью мобильных буровых установок с соответствующим буровым лафетом, системами локации, промывочной техникой и возможностью расширять буровые скважины, причем этот способ предпочтителен, если необходим обратный ход.

Техника ГНБ быстро развивается. За последние несколько лет мощность установок ГНБ значительно возросла, появились многочисленные дополнительные функции, разработана автоматика, модернизированы механизмы. Это позволяет выполнять такие объемы работ, для которых три-четыре года назад понадобилось бы вдвое больше установок. Тенденция сохраняется, поэтому компании-производители демонстрируют только основные компоненты в базовых вариантах компоновки, сознательно не предоставляя их детальные описания, которые всего несколько лет назад имели совершенно другую конструкцию.

Наибольшее распространение технология горизонтально направленного бурения получила при прокладке труб водоснабжения, канализации и газификации в населенных пунктах.

Первоначально способ ГНБ разрабатывался для прокладки тонких электрокабелей, тонких и коротких линий, подключаемых к газопроводам, а также коротких отрезков трубопроводов. В США и Европе возросла потребность в подключении к главным магистралям отводных газо- и водопроводов, а потребность инициировала интерес к применению данного способа, причем для прокладки трубопроводов большого диаметра, что привело к созданию еще более мощных установок ГНБ. Установки ГНБ класса 10 и 12 т теперь широко применяют для бестраншейной прокладки трубопроводов. Крупными потребителями бестраншейных технологий стали службы газо- и водоснабжения, телекоммуникационные компании.

Отмена государственной монополии на телекоммуникации в Европе и сильная конкуренция между частными компаниями несколько лет назад послужили мощнейшим толчком для развития ГНБ. Именно частные компании обеспечивали более двух третей всех заказов, выполнявшихся с использованием технологий ГНБ. К настоящему времени потребность в прокладке телекоммуникаций несколько снизилась, но на такие работы существует относительно равномерный спрос. Сегодня в Европе и США прокладка трубопроводов газо- и водоснабжения способом ГНБ составляет около 15% длины всех прокладываемых газо- и водопроводов, и эта доля постоянно растет. В некоторых регионах Германии, особенно на юге и юго-востоке страны, более половины всех газо- и водопроводов прокладывают методом ГНБ. Его существенными преимуществами являются сокращение сроков работ, сохранение окружающей среды и поверхности, но в первую очередь – долговечность проложенных трубопроводов. Для трубопроводов, прокладываемых способом ГНБ, разработаны технические требования к процессу, требования по гарантии качества и документация по качеству прокладки.

При бестраншейной прокладке затягиваются газо-, водо-, электро-, а также телекоммуникационные трубопроводы с длиной отрезка прокладываемой трубы от 100 до 200 м, а в некоторых случаях и до 400 м. Достаточное пространство для установки необходимо только в начале и в конце буровой трассы. Трубу перед затягиванием сваривают.

Для раскладки нитки трубопровода также нужна площадь. Если нитку трубопровода растягивают с прицепа, то требуется место только для прицепа. Затягивание трубопровода отрезками требует, как правило, всего несколько часов. Монтажные работы для будущих ответвлений (подключения домов) займут значительно больше времени, чем бестраншейное создание трубопроводов в области сетей. Между тем трубопроводы зачастую прокладывают не только на отдельных улицах, но и в целых районах города. При обновлении трубопроводов снабжения питьевой водой новые трубы прокладывают способом ГНБ, а старая поврежденная сеть продолжает функционировать до подключения к домам, заслонкам и распределителям. Таким образом, несколько буровых установок реализуют строительные задачи, и весь район за короткое время незаметно оборудуется новыми трубопроводами.

На данный момент существует большой выбор техники ГНБ, но особый интерес представляет продукция немецкой фирмы Tracto-Technik, уже более 40 лет занимающейся исключительно вопросами бестраншейной прокладки труб, в частности ГНБ. Фирма производит установки для разных сфер применения техники ГНБ: пневмопробойник Grundomat, система статического разрушения труб Grundoburst, инструмент для забивки стальных футляров Grundoram и, конечно, системы для бестраншейной прокладки труб Grundodrill.

Система Grundoburst состоит из лафета, гидравлической силовой станции и принадлежностей. Grundoburst можно быстро привести в рабочее состояние, так как собирается она просто. Управление несложное, для обслуживания требуется только два человека, которые при благоприятных условиях могут заменить до 200 м труб за день. Система позволяет заменять не только чугунные трубы, но и трубы из стали, бетона, керамики, фазерцемента (FZM) на новые трубы из ПВХ/ ПВХД, как длинные, так и короткие. Тracto-Technik предлагает установки с тяговым усилием от 40 до 250 тс.

С помощью данных установок можно заменять трубы диаметром от 50 до 1000 мм. Grundoburst состоит из гидравлической станции на базе дизеля Deutz, лафета, набора специальных штанг и инструмента. Лафет снабжен телескопическими упорами для извлечения инструмента из земли и приспособлен для работы из котлована. Он имеет два захвата штанг, один из которых служит в качестве фиксатора обратного хода, а второй надежно удерживает штангу. В отличие от установок такого типа со штангами круглого сечения от других производителей здесь исключена необходимость постоянного контроля чистоты штанги и кулачкового механизма во избежание проскальзывания при захвате.

Модельный ряд Grundodrill поражает многообразием и функциональностью. Например, установка Grundodrill 7 Х и ее модификации 7 Хplus. Область применения – прокладка труб диаметром до 300 мм, в основном из ПНД (полиэтилена низкого давления), на длину до 200 м в зависимости от типа грунтов с минимальным теоретическим радиусом изгиба 33 м и глубиной, определяемой в зависимости от применяемой локационной системы. Это полностью автономная буровая установка, и для ее работы требуется только постоянная подача воды либо от пожарного гидранта, либо из емкости с помощью небольшого насоса. Маневренность и компактность установки Grundodrill 7 Х позволяют широко использовать ее в городских условиях.

В серию X входят также установки Grundodrill 7 Х, 10 Х, 13 Х и 15 Х с усилием прямой и обратной тяги соответственно 70, 100, 125 и 150 кН. Трубы диаметром до 450 мм возможно затягивать на длину до 350 м.

В большинстве случаев телекоммуникационные или газовые эксплуатационные сети прокладывают из главного трубопровода в распределительные помещения уже построенных зданий. Для устройства новых трубопроводов питьевого водоснабжения и канализации возможна прокладка труб «с нуля». В таких случаях предпочтение отдается управляемой буровой технике, особенно если трубопровод должен быть проложен под зелеными насаждениями, парковыми ограждениями, пешеходными дорожками, ступеньками или другими подобными объектами. Дистанционно управляемая буровая техника обеспечивает подключение к домам в местах с затрудненным доступом или в местах со сложной формой трассы трубопровода.

Самая мощная установка ГНБ в модельном ряду Tracto-Technik – Grundodrill 20 S. Она имеет особо прочную конструкцию, кабину для оператора, двигатель для работы и передвижения. Эта установка с применением соответствующего оборудования успешно работает в грунтах 5-й и 6-й категорий крепости.

Отличительной особенностью этой буровой установки является электростанция и смесительная установка, где все гидравлические двигатели заменены электрическими. Насос высокого давления для подачи бурового раствора вынесен на буровой лафет и имеет гидравлический привод.

Выводы напрашиваются сами: технологии бестраншейной прокладки, получившие в последние десятилетия широкое распространение в зарубежной и отечественной практике, гораздо эффективней в современных условиях, чем традиционные открытые методы.

09.04.2013 Во всем мире все большую популярность приобретает строительство трубопроводов бестраншейным методом, когда вскрытие грунта совсем не требуется. Такой способ бурения позволяет основной объем работ проводить под землей, что исключает ряд последствий, таких как необходимость восстановления дорожного полотна, проблемы с уже существующими коммуникациями, перекрытие проезжей части, нарушения почвы, вред экологии и т.д.

Традиционные методы бурения приблизительно в три раза проигрывают бестраншейным по экономической эффективности, поскольку восстановление дорог и обустройство траншей забирают львиную долю бюджета, выделяемого на строительство трубопровода траншейным методом. При бестраншейном методе требуется незначительное количество персонала, и короткие сроки работ.

Основные способы бестраншейного строительства трубопроводов

Среди всех методов строительства трубопроводов следует выделить прокалывание и горизонтальное бурение.

Способ горизонтально-направленного бурения впервые был применен в 70-е годы в Калифорнии и сразу завоевал популярность. В наши дни в цивилизованных странах вы практически нигде не увидите вскрытого асфальта, поскольку при наличии современных методов, рытье траншей воспринимается уже как варварство.

Принцип технологии очень прост - на одном конце предполагаемого прохождения трубопровода устанавливается специальная техника, которая бурит пилотную скважину по намеченной траектории с высокой точностью. Далее посредством риммера, скважина расширяется до нужного диаметра. В процессе используется специальный буровой раствор, обеспечивающий смазку буровой головке и укрепление стенок самой скважины.

При таком подходе, строительство трубопроводов обладает рядом преимуществ. В частности, бурение не касается коммуникаций, встречающихся на пути, что позволяет избегать масштабных аварий и ненужных трат. Помимо этого экологическая составляющая процесса остается на высоте, поскольку зеленые насаждения абсолютно не страдают, а плодородный слой почвы не трогается. В работах принимают участие не более четырех человек.

Такой способ, как прокалывание применяется лишь в тех случаях, когда диаметр труб не превышает 150 мм. Процесс проходит следующим образом: на саму трубу, предназначенную для прокола, надевается конус. Для того чтобы проталкивать трубу, используют усилия виброударных, или пневмоударных машин, а также бульдозеров и даже тракторов. При толкании трубы, с помощью конуса раздвигается грунт и уплотняется, а труба продвигается дальше.

Сталкиваясь со сложными строительными задачами, связанными с трубопроводам, и выбирая бестраншейные методы, вы значительно сэкономите время и свой бюджет.

При эксплуатации коммуникационных трубопроводов со временем возникают моменты, когда линия теряет прочность, подвергается износу и нуждается в ремонте или реконструкции. Ранее такие работы были проблематичными, поскольку приходилось раскапывать грунт, вынимать трубы, чинить их и снова закапывать. Объемы СМР приводили к заторам на городских улицах, разрозненным свалкам грунта, были довольно затратными в денежном плане. Теперь всего этого возможно избежать, поскольку все большее применение находят бестраншейные технологии.

Трубопроводы по большей части размещены в толще грунта. Там они не создают препятствий для городской жизни, защищены, не нуждаются в добавочной теплоизоляции. Однако подход к таким трубам затруднен и ремонт или реконструкция оборачиваются серьезной проблемой. На сегодняшний день существует варианты проверки герметичности соединения трубопроводов такие как гелиевый течеискатель.

Так же БТ позволяют вести СМР из котлована или вовсе прямо из колодца без заготовки траншей по всему маршруту трассы. Это экономит технические ресурсы, сберегает бюджет, позволяет проводить работы в более короткие сроки.

В сегменте БТ разработана масса вариантов реализации технологии. Выбор зависит от степени изнашивания, бюджета, технических особенностей коммуникации. Выделяют:

– способ затягивания гибкого полимерного рукава;

Способ нанесения ЦПП покрытия;

Релайнинг;

Берстлайнинг;

Способ нанесения местных покрытий (спиралевидных, листовых, точечных, калиброванных).

Для труб, которые имеют сильный износ, актуальны методики берстлайнинга(это способ, при котором происходит разрушение старой, дефектной трубы и протяжка новой. … Старую трубу разрушают с помощью специальных ножей-разрушителей, внутри нее протягивается специализированный расширитель, который производит вдавливание осколков старой трубы в грунт) и релайнинга(бестраншейный метод санации и восстановления трубопроводов, когда новый трубопровод прокладывается внутри существующего без раскрытия (или с частичным раскрытием), а также без демонтажа старого трубопровода). Одним из вариантов является прокладка новых труб в старом трубопроводе. В целом это 2 похожих метода. Подготовительные работы у них одинаковы. Трубы надо очистить, обеспечить к ним доступ (котлован), вскрыть, инсталлировать оборудование. После наступает ведущий технический процесс, который обуславливает тип методики. При релайнинге с помощью троса лебедки в ремонтируемую трубу затягивается труба ПВП меньшего калибра. Основной трубопровод притом остается в грунте, но выполняет теперь только защитную функцию (кожуха). Вещество далее транспортируется по трубе ПВП. При берстлайнинге старая труба вначале разрушается при помощи специального оборудования. После в получившемся канале прокладывается труба ПВП. Она стыкуется с основной линией муфтами. Как результат, поврежденный отрезок восстанавливается на тех же условиях, с тем же калибром, с единственной заменой типа трубы.

Обе методики могут использоваться на разных видах коммуникаций. Это дает большие преимущества. Глядя на технологию, можно сказать, что эти методы просты и экономичны. Восстановить линию до полной работоспособности можно в кратчайшие сроки. Это удобно в городских условиях, когда простои услуг для потребителей должны быть минимальными.