Что понимают под электронным лучом пучком. Свойства электронных пучков и их применение. Большая энциклопедия нефти и газа

Cтраница 1


Пучки электронов, движущихся с большими скоростями, можно использовать для получения рентгеновских лучей, плавки и резки металлов. Способность электронных пучков испытывать отклонения под действием электрических и магнитных полей и вызывать свечение кристаллов используется в электронно-лучевых трубках.  


Пучки электронов получают с помощью электронной пушки - вакуумного устройства, обычно диода, в к-ром электроны вылетают из катода благодаря гл. Фокусировку пучков осуществляют электронными линзами, создающими необходимые электрич.  

Бета-лучи представляют собой пучки электронов. Нулевой индекс отражает то обстоятельство, что масса электрона пренебрежимо мала по сравнению с массой нуклона. Индекс - 1 указывает на то, что рассматриваемая частица имеет отрицательный знак, равный по величине, но противоположный по знаку заряду протона.  

УФ облучения или пучка электронов (инициирующий агент) инициируется быстрая молекулярно-радикальная р-ция, высвобождающая запасенную в смеси энергию в виде короткого импульса когерентного излучения.  

Поэтому для воздействия на пучки электронов применяются электрические поля с непрерывным изменением потенциала.  

Следует отметить, что пучки электронов сильно взаимодействуют с веществом. Максимально допустимая толщина образцов составляет всего лишь несколько микрон. Это обстоятельство в значительной степени ограничивает возможности метода для изучения жидких дисперсных систем. Обычно изучаются мелкокристаллические образцы, наносимые на специально обработанные подложки.  

Поэтому оказывается возможным сообщить пучку электронов, летящему вдоль о: п снг. Пучок электронов, взаимодействуя с этим полем, может отдавать линии часть своей энергии и тем самым усиливать волны, бегущие в линии, или возбуждать такие волны.  

В обычном, неполяризованном пучке электронов или позитронов спины частиц направлены хаотически. Таким образом, по прошествии некоторого времени (времени релаксации) обычный пучок электронов или позитронов становится поляризованным - спины частиц принимают упорядоченную ориентацию.  

Такие волны могут возбуждаться продольными пучками электронов или ионов. Что касается волн, распространяющихся в сторону дрейфа электронов (а 0), то для их нарастания во времени оказывается достаточным лишь наличие градиента плотности.  


Полимерные цепи сшиваются непосредственно пучками электронов высокой энергии. Эти электроны генерируют макрорадикалы ПЭ, извлекая радикалы водорода. Обычно этот метод используют для изготовления кабелей 1 1 кВ с изоляцией из СПЭ.  

Электростатическая катодная электронная линза. / - катод. 2 - фокусирующий электрод. 3-анод. Тонкие линии-эквипотенциали. О-одна из точек катода. Заштрихованное пространство-сечение области, занятой потоком электронов, испущенных точкой О.| Электростатические цилиндрические электронные линзы. а-диафрагма со щелью. б-иммерсионная линза, состоящая из двух пластин. В области прохождения заряженных частиц поле линз не меняется в направлении, параллельном щелям диафрагм или зазорам между пластинами соседних электродов.| Сечение электродов электростатических цилиндрических линз плоскостью, проходящей через ось z перпендикулярно средней плоскости. а-цилиндрическая (щелевая диафрагма. б-иммерсионная цилиндрическая линза. - одиночная цилиндрическая линза. г-катодная цилиндрическая линза. К, и К2 - потенциалы соответствующих электродов.| Сечения кьадрупольных электростатической (а и магнитной (6 электронных линз, перпендикулярные направлению движе-ния пучка электронов. / - электроды. 2-силовые линии полей. 3-магнитный полюс. 4-обмотка возбуждения.| Дублет из двух квадрупольных электростатических линз.  

Электронные пучки представляют собой поток быстро летящих электронов. Электронные пучки образуются в электронной лампе и различных газоразрядных устройствах.

Электронные пучки обладают следующими свойствами:

  1. вызывают свечение некоторых твердых и жидких тел (стекла, сульфидов цинка и кадмия). В настоящее время применяются люминофоры, у которых до 25 % энергии электронного пучка превращается в световую:
  2. при торможении быстрых электронных пучков в веществе возникает рентгеновское излучение. Это используется в рентгеновских трубках;
  3. электронные пучки отклоняются в электрических полях, например, в поле плоского конденсатора происходит смещение электронного пучка к положительно заряженной пластине;
  4. электронные пучки отклоняются в магнитных полях вследствие действия на электроны силы Лоренца. Пролетая над северным полюсом магнита, электроны отклоняются в одну сторону, а пролетая над южным полюсом - в противоположную сторону. Отклонение электронных потоков, идущих от Солнца, в магнитном поле Земли приводит к тому, что они огибают поверхность Земли и лишь в полярных областях небольшая часть этих частиц вторгается в верхние слои атмосферы и вызывает свечение газов атмосферы у полюсов (северное сияние);
  5. при попадании на вещество электронные пучки нагревают его и оказывают механическое действие. Нагревание, которое вызывает электронный пучок, попадая на какое-либо тело, используют для плавки сверхчистых металлов в вакууме;
  6. электронный пучок при попадании на фотопленку вызывает ее потемнение.

Благодаря возможности управлять электронным пучком с помощью электрического или магнитного поля и свечению покрытого люминофором экрана под действием пучка его применяют в электронно-лучевой трубке.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 298.

Контуры обратной связи для случаев ЛБВ с внешней обратной связью (а и ЛОВ с внутренней обратной связью (б.  

Электронный пучок должен отдавать полю определенный минимум энергии, выше уровня собственных потерь данной системы. Отсюда в любой конкретной системе возникает необходимость обеспечить определенную, как говорят, пусковую величину электронного тока.  

Схематическое изображение многолучевой электронной пушки с цилиндрической системой электродов..| Схематическое изображение многолучевой электронной - пушки с малой эмиттирую-щей площадью катода.  

Электронный пучок после прохождения точки фокусировки расходится под большим углом. Электронная линза с большой апертурой отклоняет электронные пучки так, чтобы они падали на плоскость растровой линзы перпендикулярно. Каждая микролинза в растровой линзе формирует свой электронный луч. Если считать, что плотность тока в основном электронном луче распределена по закону Гаусса, то.  

Электронный пучок, разряжая по очереди все элементарные емкости, создает в цепи сигнальной пластинки импульсы тока - видеосигнал.  

Электронный пучок, состоящий по длине из отдельных групп электронов - электронных сгустков, можно рассматривать как ток, содержащий высшие гармонические составляющие. Такой электронный пучок называется сгруппированным или промодулированным.  

Электронный пучок характеризуется геометрической формой сечения. В подавляющем большинстве случаев пучки имеют сечение в виде круга и называются цилиндрическими. Для значительного увеличения тока пучка могут применяться трубчатые пучки с сечением в виде кольца, а также ленточные пучки, у которых сечение представляет собой прямоугольник.  


Электронный пучок применяется для сварки металлов, сварки металла с керамикой и др. Отличительной особенностью сварного шва при сварке двух металлов является большая глубина шва при малой его ширине (так называемый кинжальный шов) и высокая однородность шва. Требующиеся диаметры пучка разнообразны и лежат в пределах от 0 01 до 5 - 10 мм. Так как резко очерченный по диаметру пучок обычно не нужен, то допуски на ширину спектра менее жесткие, чем для процессов обработки пучком.  

Электронный пучок фокусируется положительным объемным зарядом прямого ионного пучка с круглым сечением.  


Электронный пучок, ускоряемый от анода к катоду, не будет распространяться в область за анодом, если его ток больше, предельного; накопление пространств, заряда электронов за анодом, запирающее пучок (виртуальный катод), создает потенц. Глубина ямы достигает значений, больших 1 MB. Ионы могут создаваться за счет ионизации электронами атомов остаточного газа или вводиться специально сформированными струями газа. При образовании ионов происходит частичная нейтрализация электронного заряда, запирающее действие накопленного электронного заряда ослабляется и электронный пучок распространяется дальше за анод.  

ЭЛЕКТРОННЫЙ ПУЧОК

ЭЛЕКТРОННЫЙ ПУЧОК

- поток электронов, движущихся по близким траекториям в одном направлении, имеющий размеры, значительно большие в направлении движения, чем в поперечной плоскости. Поскольку Э. п. является совокупностью одноимённых заряж. частиц, внутри него имеется пространственный заряд электронов, создающий собств. электрич. . С др. стороны, движущиеся по близким траекториям электроны можно рассматривать как линейные токи, создающие собств. магн. поле. Электрич. поле пространств. заряда создаёт силу, стремящуюся расширить пучок ("кулоновское расталкивание"), магн. поле линейных токов создаёт силу Лоренца, стремящуюся сжать пучок. Расчёт показывает, что пространств. заряда начинает заметно сказываться (при энергиях электронов в неск. кэВ) при токах в неск. десятых мА, тогда как "стягивающее" действие собств. магн. поля заметно проявляется только при скоростях электронов, близких к скорости света-энергии электронов порядка МэВ. Поэтому при рассмотрении Э. п., используемых в разл. электронных приборах, техн. установках, в первую очередь необходимо принимать во внимание действие собств. пространств. заряда, а действие собств. магн. поля учитывать только для релятивистских пучков.

Интенсивность Э. п. Осн. критерием условного разделения Э. п. на неинтенсивные и интенсивные является необходимость учёта действия поля собств. пространств. заряда электронов пучка. Очевидно, чем больше пучка, тем больше пространств. заряда, сильнее расталкивание. С др. стороны, чем больше электронов, тем меньше скажется на характере движения электронов собств. электрич. поле пучка - чем выше электронов, тем "жёстче" пучок. Количественно действие поля пространств. заряда характеризуется коэф. пространственного заряда - п е р в е а н с о м, определяемым как

где I -ток пучка; U- ускоряющее , определяющее энергию электронов пучка.

Заметное влияние пространств. заряда на электронов в пучке начинает проявляться при P>=P* = = 10 -8 А/В 3/2 = 10 -2 мкА/В 3/2 . Поэтому к интенсивным пучкам принято относить Э. п. с Р>P*.

Неинтенсивные пучки (с Р<Р* )малого сечения, часто называемые электронными лучами, рассчитываемые по законам геом. электронной оптики без учёта действия поля собств. пространств. заряда, формируются с помощью электронных прожекторов и используются в основном в разл. электронно-лучевых приборах.

В интенсивных пучках действие собств. пространств. заряда существенно влияет на характеристики Э. п. Во-первых, интенсивный Э. п. в пространстве, свободном от внеш. электрич. и магн. полей, за счёт кулоновского расталкивания неограниченно расширяется; во-вторых, за счёт отрицат. электрич. заряда электронов пучка происходит падение потенциала в пучке. Если с помощью внеш. электрич. или магн. полей ограничить расширение интенсивного пучка, то при достаточно большом токе внутри пучка может понизиться до нуля, пучок "оборвётся". Поэтому для интенсивных пучков существует понятие предельного (максимального) первеанса. Практически при ограничении расширения пучка внеш. полями удаётся сформировать протяжённые устойчивые интенсивные пучки с P 5 . 10 мкА/В 3/2 .

Полное матем. описание интенсивных Э. п. затруднительно, поскольку реальный электронный поток состоит из множества движущихся электронов, учесть между к-рыми практически невозможно. При введении нек-рых упрощающих предположений, в частности, заменяя сумму сил, действующих на выбранный со стороны соседних электронов, силой действия на этот электрон нек-рой электрически заряженной среды с непрерывно распределённой плотностью пространств. заряда и разбивая весь пучок на совокупность "трубок тока", удаётся с помощью рассчитать с достаточной для практич. целей точностью осн. параметры интенсивного пучка: форму пучка (огибающую), плотности тока и потенциала по сечению пучка.

Геометрия Э. п. Практически применяются пучки трёх конфигураций: ленточные (плоские), имеющие в поперечном сечении вид прямоугольника с "толщиной", значительно меньшей "ширины", осесимметричные, имеющие в поперечном сечении форму круга, и трубчатые, имеющие в поперечном сечении форму кольца. Для формирования Э. п. таких типов разработаны соответствующие электронные пушки и системы ограничения.

Влияние пространств. заряда неодинаково в пучках разл. конфигурации. Наиб. влияние на характер движения электронов на границе Э. п. имеет составляющая напряжённости электрич. поля, создаваемого пространств. зарядом, направленная перпендикулярно оси осесимметричных пучков и широкой стороне ленточных.

Радиальная составляющая напряжённости электрич. поля на границе осесимметричного пучка прямо пропорциональна току пучка и обратно пропорциональна радиусу его сечения и скорости электронов пучка. Это создаёт силу, направленную от оси, стремящуюся расширить пучок. Расталкивающая тем больше, чем больше ток, меньше скорость и радиус пучка. Теоретически в осесимметричных пучках траектории электронов не могут пересечь ось, а пучка нельзя свести в точку, т. к. при уменьшении сечения расталкивающая сила неограниченно возрастает.


Огибающие осесимметричных электронных пучков: g 0 -угол входа пучка в свободное от полей прост ранство; r 0 - начальный радиус; 1 - расходящийся пучок (g 0 >0); 2-цилиндрический пучок (g 0 =0); 3, 4, 5-сходящиеся пучки (g 0 <0). Пучок 4 - опти мальный, так как кроссовер (наименьшее сечение) пучка находится на самом удалённом расстоянии (z/l =0,5) от исходной плоскости.

Огибающая интенсивного осесимметричного пучка в пространстве, свободном от электрич. и магн. полей, описывается зависимостью, близкой к экспоненциальной. На рис. показаны огибающие осесимметричных пучков, имеющих до входа в свободное цилиндрическую (кривая 2, g 0 = 0), расходящуюся (кривая 1, g 0 >0) и сходящуюся (кривые 3-4, g 0 <0) формы (g 0 - угол наклона касательной к огибающей пучка, угол входа). Как видно на рис., пучки, первоначально сформированные как цилиндрические (g 0 = 0) и расходящиеся (g 0 >0), в свободном от полей пространстве неограниченно расширяются; пучки, сформированные как сходящиеся, вначале сжимаются (r /r 0 <1), проходят плоскость наименьшего сечения (плоскость кроссовера), затем также начинают расширяться. Радиус мин. сечения пучка - радиус кроссовера-определяется выражением

где r 0 - радиус Э. п. до входа в свободное .

Радиус кроссовера тем меньше, чем меньше первеанс и больше | g 0 |. С ростом (по абс. величине) угла входа пучка в свободное от полей пространство (g 0) плоскость кроссовера сначала удаляется от исходной плоскости, за-

тем начинает приближаться к ней (последовательно кривые 3, 4, 5). Для каждого значения первеанса существует оптимальный "угол влёта" g 0 , при к-ром кроссовер наиб. удалён от исходной плоскости, то есть Э. п. с данным первеансом может быть проведён на наибольшее расстояние с радиусом, не превышающим исходный.

Ленточные интенсивные пучки в свободном от электрич. и магн. полей пространстве также неограниченно расширяются (становятся "толще"), контур огибающей пучка описывается параболич. законом. В отличие от осесимметричного пучка, ленточный пучок при оптимальном входном угле теоретически может быть сведён в линию, т. е. может быть получен линейный . Пучки др. конфигураций в свободном пространстве также неограниченно расширяются; трубчатый Э. п. расширяется несколько меньше, чем сплошной осесимметричный.

Эксперим. проверка полученных расчётных соотношений затруднена, поскольку само понятие границы (огибающей) интенсивного пучка условно, т. к. в реальных пучках плотность тока при удалении от оси осесимметричного или от ср. плоскости ленточного пучков спадает постепенно, и границей пучка условно считается окружность или прямая, вдоль к-рой плотность тока составляет нек-рую малую долю (~0,1) её макс. величины на оси.

Потенциал Э. п. Падение потенциала внутри интенсивного пучка ограничивает возможность формирования протяжённого интенсивного пучка с высоким первеансом. Тео-ретич. исследования показывают, что в интенсивном неограниченном потоке, заполняющем пространство между двумя плоскими параллельными проводящими поверхностями с одинаковым потенциалом, определяющим энергию электронов потока, с увеличением тока в ср. плоскости образуется минимум потенциала. При достижении P= 18,64 мкА/В 3/2 потенциал спадает до нуля, образуется виртуальный , часть электронов проходит через плоскость минимума, часть отражается к исходной плоскости, токопрохождение нарушается. Эксперим. проверка подтверждает это, именно при приближении P к 18,64 мкА/В 3/2 в потоке возникают неустрйчивости, электронных слоев, прохождение тока нарушается.

В реальных Э. п., ограниченных внеш. электрич. и магн. полями, также происходит падение потенциала, но т. к. в большинстве приборов, где используются интенсивные Э. п., протяжённый пучок пропускается через трубу с положит. потенциалом, на поверхности пучка удаётся поддерживать потенциал, близкий к потенциалу трубы. Но и при наличии проводящей трубы потенциал на оси осесимметричного или в ср. плоскости ленточного пучков заметно понижается, и по достижении достаточно большого первеанса (большего, чем в случае неограниченного потока) возникает неустойчивость, пучок обрывается.

Формирование Э. п. Поскольку Э. п. в свободном пространстве неограниченно расширяется, при практич. использовании интенсивных пучков кроме системы, формирующей пучок,- электронной пушки-необходима система, ограничивающая расхождение пучка. Расширение Э. п. ограничивается с помощью внеш. электрич. и магн. полей. Классич. пример протяжённого интенсивного Э. п.- т. н. п о т о к Б р и л л ю э н а - цилиндрич. пучок, ограниченный продольным однородным магн. полем. При определ. соотношении четырёх величин - нач. радиуса r 0 , тока пучка I , напряжения U 0 , определяющего энергию электронов до входа в магн. поле, и магн. индукции продольного однородного магн. поля B 0 - теоретически возможно получить устойчивый цилиндрич. Э. п. При оптимальном соотношении r 0 , I , U 0 и B 0 макс. первеанс бриллюэновского потока достигает 25,4 мкА/В 3/2 . При макс. первеансе потенциал на оси пучка составляет всего 1/3 значения на границе. При ограничении магн. полем трубчатых пучков можно получить ещё большие значения первеанса.

ЭЛЕКТРОННЫЙ ПУЧОК - поток электронов, движущихся по близким траекториям в одном направлении, имеющий размеры, значительно большие в направлении движения, чем в поперечной плоскости. Поскольку Э. п. является совокупностью одноимённых заряж. частиц, внутри него имеется пространственный заряд электронов, создающий собств. электрич. поле. С др. стороны, движущиеся по близким траекториям электроны можно рассматривать как линейные токи, создающие собств. магн. поле. Электрич. поле пространств. создаёт силу, стремящуюся расширить пучок ("кулоновское расталкивание"), магн. поле линейных токов создаёт силу Лоренца, стремящуюся сжать пучок. Расчёт показывает, что действие пространств. заряда начинает заметно сказываться (при энергиях электронов в неск. кэВ) при токах в неск. десятых мА, тогда как "стягивающее" действие собств. магн. поля заметно проявляется только при скоростях электронов, близких к скорости света-энергии электронов порядка МэВ. Поэтому при рассмотрении Э. п., используемых в разл. электронных приборах, техн. установках, в первую очередь необходимо принимать во внимание действие собств. пространств. заряда, а действие собств. магн. поля учитывать только для релятивистских пучков.

Интенсивность Э. п . Осн. критерием условного разделения Э. п. на неинтенсивные и интенсивные является необходимость учёта действия поля собств. пространств. заряда электронов пучка. Очевидно, чем больше ток пучка, тем больше пространств. заряда, сильнее расталкивание. С др. стороны, чем больше скорость электронов, тем меньше скажется на характере движения электронов собств. электрич. поле пучка - чем выше энергия электронов, тем "жёстче" пучок. Количественно действие поля пространств. заряда характеризуется коэф. пространственного заряда - п е р в е а н с о м, определяемым как

где I -ток пучка; U -ускоряющее напряжение, определяющее энергию электронов пучка .

Заметное влияние пространств. заряда на движение электронов в пучке начинает проявляться при P>=P* = = 10 -8 А/В 3/2 = 10 -2 мкА/В 3/2 . Поэтому к интенсивным пучкам принято относить Э. п. с Р>P* .

Неинтенсивные пучки (с Р<Р* )малого сечения, часто называемые электронными лучами, рассчитываемые по законам геом. электронной оптики без учёта действия поля собств. пространств. заряда, формируются с помощью электронных прожекторов и используются в основном в разл. электронно-лучевых приборах .

В интенсивных пучках действие собств. пространств. заряда существенно влияет на характеристики Э. п. Во-первых, интенсивный Э. п. в пространстве, свободном от внеш. электрич. и магн. полей, за счёт кулоновского расталкивания неограниченно расширяется; во-вторых, за счёт отрицат. электрич. заряда электронов пучка происходит падение потенциала в пучке. Если с помощью внеш. электрич. или магн. полей ограничить расширение интенсивного пучка, то при достаточно большом токе потенциал внутри пучка может понизиться до нуля, пучок "оборвётся". Поэтому для интенсивных пучков существует понятие предельного (максимального) первеанса. Практически при ограничении расширения пучка внеш. полями удаётся сформировать протяжённые устойчивые интенсивные пучки с P 5 . 10 мкА/В 3/2 .

Полное матем. описание интенсивных Э. п. затруднительно, поскольку реальный электронный поток состоит из множества движущихся электронов, учесть взаимодействие между к-рыми практически невозможно. При введении нек-рых упрощающих предположений, в частности, заменяя сумму сил, действующих на выбранный электрон со стороны соседних электронов, силой действия на этот электрон нек-рой электрически заряженной среды с непрерывно распределённой плотностью пространств. заряда и разбивая весь пучок на совокупность "трубок тока", удаётся с помощью ЭВМ рассчитать с достаточной для практич. целей точностью осн. параметры интенсивного пучка: форму пучка (огибающую), распределение плотности тока и потенциала по сечению пучка.

Геометрия Э. п . Практически применяются пучки трёх конфигураций: ленточные (плоские), имеющие в поперечном сечении вид прямоугольника с "толщиной", значительно меньшей "ширины", осесимметричные, имеющие в поперечном сечении форму круга, и трубчатые, имеющие в поперечном сечении форму кольца. Для формирования Э. п. таких типов разработаны соответствующие электронные пушки и системы ограничения.

Влияние пространств. заряда неодинаково в пучках разл. конфигурации. Наиб. влияние на характер движения электронов на границе Э. п. имеет составляющая напряжённости электрич. поля, создаваемого пространств. зарядом, направленная перпендикулярно оси осесимметричных пучков и широкой стороне ленточных.

Радиальная составляющая напряжённости электрич. поля на границе осесимметричного пучка прямо пропорциональна току пучка и обратно пропорциональна радиусу его сечения и скорости электронов пучка. Это создаёт силу, направленную от оси, стремящуюся расширить пучок. Расталкивающая сила тем больше, чем больше ток, меньше скорость и радиус пучка. Теоретически в осесимметричных пучках траектории электронов не могут пересечь ось, а сечение пучка нельзя свести в точку, т. к. при уменьшении сечения расталкивающая сила неограниченно возрастает.


Огибающие осесимметричных электронных пучков: g 0 -угол входа пучка в свободное от полей прост ранство; r 0 - начальный радиус; 1 - расходящийся пучок (g 0 >0); 2-цилиндрический пучок (g 0 =0); 3 , 4, 5-сходящиеся пучки (g 0 <0). Пучок 4 - опти мальный, так как кроссовер (наименьшее сечение ) пучка находится на самом удалённом расстоянии (z/l =0,5) от исходной плоскости .

Огибающая интенсивного осесимметричного пучка в пространстве, свободном от электрич. и магн. полей, описывается зависимостью, близкой к экспоненциальной. На рис. показаны огибающие осесимметричных пучков, имеющих до входа в свободное пространство цилиндрическую (кривая 2, g 0 = 0), расходящуюся (кривая 1, g 0 >0) и сходящуюся (кривые 3-4, g 0 <0) формы (g 0 - угол наклона касательной к огибающей пучка, угол входа). Как видно на рис., пучки, первоначально сформированные как цилиндрические (g 0 = 0) и расходящиеся (g 0 >0), в свободном от полей пространстве неограниченно расширяются; пучки, сформированные как сходящиеся, вначале сжимаются (r /r 0 <1), проходят плоскость наименьшего сечения (плоскость кроссовера), затем также начинают расширяться. Радиус мин. сечения пучка - радиус кроссовера-определяется выражением

где r 0 - радиус Э. п. до входа в свободное пространство.

Радиус кроссовера тем меньше, чем меньше первеанс и больше | g 0 |. С ростом (по абс. величине) угла входа пучка в свободное от полей пространство (g 0) плоскость кроссовера сначала удаляется от исходной плоскости, за-

тем начинает приближаться к ней (последовательно кривые 3, 4, 5). Для каждого значения первеанса существует оптимальный "угол влёта" g 0 , при к-ром кроссовер наиб. удалён от исходной плоскости, то есть Э. п. с данным первеансом может быть проведён на наибольшее расстояние с радиусом, не превышающим исходный.

Ленточные интенсивные пучки в свободном от электрич. и магн. полей пространстве также неограниченно расширяются (становятся "толще"), контур огибающей пучка описывается параболич. законом. В отличие от осесимметричного пучка, ленточный пучок при оптимальном входном угле теоретически может быть сведён в линию, т. е. может быть получен линейный фокус. Пучки др. конфигураций в свободном пространстве также неограниченно расширяются; трубчатый Э. п. расширяется несколько меньше, чем сплошной осесимметричный.

Эксперим. проверка полученных расчётных соотношений затруднена, поскольку само понятие границы (огибающей) интенсивного пучка условно, т. к. в реальных пучках плотность тока при удалении от оси осесимметричного или от ср. плоскости ленточного пучков спадает постепенно, и границей пучка условно считается окружность или прямая, вдоль к-рой плотность тока составляет нек-рую малую долю (~0,1) её макс. величины на оси.

Потенциал Э. п . Падение потенциала внутри интенсивного пучка ограничивает возможность формирования протяжённого интенсивного пучка с высоким первеансом. Тео-ретич. исследования показывают, что в интенсивном неограниченном потоке, заполняющем пространство между двумя плоскими параллельными проводящими поверхностями с одинаковым потенциалом, определяющим энергию электронов потока, с увеличением тока в ср. плоскости образуется минимум потенциала. При достижении P= 18,64 мкА/В 3/2 потенциал спадает до нуля, образуется виртуальный катод ,часть электронов проходит через плоскость минимума, часть отражается к исходной плоскости, нормальное токопрохождение нарушается. Эксперим. проверка подтверждает это, именно при приближении P к 18,64 мкА/В 3/2 в потоке возникают неустрйчивости, электронных слоев, прохождение тока нарушается.

В реальных Э. п., ограниченных внеш. электрич. и магн. полями, также происходит падение потенциала, но т. к. в большинстве приборов, где используются интенсивные Э. п., протяжённый пучок пропускается через трубу с положит. потенциалом, на поверхности пучка удаётся поддерживать потенциал, близкий к потенциалу трубы. Но и при наличии проводящей трубы потенциал на оси осесимметричного или в ср. плоскости ленточного пучков заметно понижается, и по достижении достаточно большого первеанса (большего, чем в случае неограниченного потока) возникает неустойчивость, пучок обрывается.

Формирование Э. п . Поскольку Э. п. в свободном пространстве неограниченно расширяется, при практич. использовании интенсивных пучков кроме системы, формирующей пучок,- электронной пушки-необходима система, ограничивающая расхождение пучка. Расширение Э. п. ограничивается с помощью внеш. электрич. и магн. полей. Классич. пример протяжённого интенсивного Э. п.- т. н. п о т о к Б р и л л ю э н а - цилиндрич. пучок, ограниченный продольным однородным магн. полем. При определ. соотношении четырёх величин - нач. радиуса r 0 , тока пучка I , U 0 , определяющего энергию электронов до входа в магн. поле, и магн. индукции продольного однородного магн. поля B 0 - теоретически возможно получить устойчивый цилиндрич. Э. п. При оптимальном соотношении r 0 , I , U 0 и B 0 макс. первеанс бриллюэновского потока достигает 25,4 мкА/В 3/2 . При макс. первеансе потенциал на оси пучка составляет всего 1/3 значения на границе. При ограничении магн. полем трубчатых пучков можно получить ещё большие значения первеанса.

Практически сформировать протяжённые Э. п. с первеансом, близким к теоретически максимально возможному, не удаётся из-за ряда причин: разброса нач. скоростей электронов, эмитированных катодом, трудности создания ограничивающих полей строго заданной конфигурации, практич. невозможностью строго выполнить нач. условия ввода пучка в систему ограничения и др. Реальные Э. п. имеют волнистую и пульсирующую границы, форма пучка не остаётся неизменной. Поэтому для предупреждения оседания электронов пучка на поверхности пролётного канала радиус проводящей трубки, сквозь к-рую пропускается интенсивный пучок, выбирается на 20-30% больше радиуса пучка.

Лит.: Алямовский И. В., Электронные пучки и электронные пушки, M., 1966; Молоковский С. И., Сушков А. Д., Интенсивные электронные и ионные пучки, 2 изд., M., 1991.

А. А. Жигарев .