Охарактеризуйте особенности отдельных отраслей пищевой промышленности. Пищевая промышленность. Структура пищевой промышленности

Изучать облака, да и просто наблюдать за ними любят учёные, природоведы и мечтатели. При виде того или иного небесного явления появляется желание назвать его «большим, тяжёлым или дождливым», но гораздо интереснее (и полезнее) было бы использовать научную терминологию для более конкретного описания.

Впервые воздушные нимбы (nimbus - облако лат.) начал классифицировать английский учёный Люк Говард, и основными критериями, которыми он пользовался, были высота яруса, форма и, собственно, погода их создавшая.

Виды облаков весьма разнообразны и являются интересным «предметом для коллекционирования» и просто для наблюдения. Знание о небесных переменах может быть отличной темой для разговора как на светском ужине, так и на простой вечеринке.

Кроме всего прочего, все нюансы, касающиеся перемены погоды, крайне необходимы людям, занимающимся экстремальными видами спорта типа плавания на лодках или скалолазания. Виды облаков, их чтение и анализ помогут избежать серьёзной опасности и узнать о переменах климатических условий без дополнительных метрологических инструментов.

  • Высота нимбуса расскажет о приближающемся шторме.
  • Форма - о стабильности атмосферы.
  • В совокупности эти факторы предупредят о критичных изменениях в погоде (град, снег или дождь).

Несмотря на колоссальное разнообразие и виды облаков, классифицировать их не так уж и сложно, даже по внешнему виду.

Перистые облака

Своим внешним видом они напоминают хрупкие ниточки или клочки. Форма перистых облаков похожа на вытянутые гряды. Это одно из самых высоких воздушных соединений в тропосфере примерно от 5 до 20 км над уровнем моря в зависимости от широты.

Перистые аномалии примечательным тем, что они могут растягиваться на несколько сотен километров. Видимость внутри облака весьма невысока и колеблется в пределах 200-300 метров. Это обуславливается тем, что нимбус состоит из крупных кристалликов льда, которые быстро падают.

Из-за порывистого ветра мы наблюдаем не чёткие вертикальные полоски, а искривлённые причудливым образом нити перистых облаков.

Такие изменения свидетельствовуют о приближающемся проливном дожде или антициклоне примерно через сутки.

Перисто-кучевые облака

Так же как и предыдущий вид, перисто-кучевые аномалии располагаются в верхних слоях тропосферы. Они никогда не дают осадков, но можно чётко сказать, что такие виды облаков являются предвестниками грозы и сильных ливней, а иногда даже и шторма.

Эти нимбусы очень часто называют «барашками» за их причудливую форму в виде групп шариков и окружностей. Высота нижней границы облаков немного ниже простых перистых и колеблется в пределах 5-9 км с протяжённостью по вертикали примерно в километр. Видимость, в отличие от предыдущего вида, значительно лучше - от 5 до 10 километров.

Интересной особенностью перисто-кучевых видов является иризация, когда края окрашиваются в радужный цвет, что выглядит весьма впечатляюще и красиво.

Перисто-слоистые облака

Этот вид нимбуса состоит почти целиком из кристалликов льда и его довольно легко узнать. Он выглядит как однородная плёнка, заволакивающая небо. Появляется он после того, как «ушли» вышеописанные виды облаков. Зимой их протяжённость может колебаться до 6 км, а в летнее время - от 2 до 4 км.

Видимость внутри самой аномалии крайне маленькая: примерно от 30 до 150 метров. Как и в случае с предыдущими видами, перисто-слоистые потоки сулят скорое изменение погоды в виде дождей и грозовых фронтов.

Какие виды облаков предшествуют дождю? Все перистые нимбусы всегда движутся впереди тёплых воздушных масс, где очень большая влажность, которая и является источником дождей с ливнями. Поэтому можно сказать, что все перистые соединения - это предвестники плохой погоды.

Даже несмотря на то, что аномалии поглощают солнечный и лунный свет, иногда могут возникать очень красочные явления (гало) и появляются редкие виды облаков в форме светящихся и переливающихся колец вокруг света луны или солнца.

Высоко-слоистые облака

Своим видом они напоминают мрачно-серую пелену, через которую лишь изредка проглядывает солнечный свет. Высоко-слоистые соединения располагаются на высоте не более 5 км над уровнем моря и имеют протяжённость до 4 км по вертикали.

Видимость в таком облаке очень маленькая - 20-30 метров. Состоят они из кристалликов льда и переохлаждённой воды. Эти аномалии могут поливать небольшим дождём или снегом, но в летнее время дождь просто не доходит до земли, поэтому мы по ошибке считаем их не дождливыми.

Высоко-кучевые облака

Эти соединения могут быть началом скорейших ливней. По своей форме они напоминают небольшие шары, собирающиеся в отдельные группы. Цветовая гамма весьма разнообразна: от белого до тёмного синего цвета. Очень часто можно увидеть причудливые формы: облако в виде сердца, животного, цветка и прочих интересных вещей.

Протяжённость высоко-кучевых облаков невелика и редко достигает километра. Видимость, так же как и в слоистых соединениях, небольшая - 50-70 метров. Располагаются они в средних слоях стратосферы и отдалены от земли на 4-5 км. Помимо дождевых фронтов, могут нести с собой похолодание.

Слоисто-дождевые облака

Это виды грозовых облаков тёмно-серого цвета с очень «хмурым» характером. Они представляют собой сплошную облачную пелену, которой не видно ни конца ни края, с постоянно льющимся дождём. Продолжаться это может очень долгое время.

Они намного темнее всех остальных слоистых соединений и расположены в нижней части стратосферы, поэтому витают практически над землёй (100-300 метров). Их толщина достигает нескольких километров и весь процесс прохождения фронта сопровождается холодным ветром и пониженной температурой.

Кучево-дождевые облака

Это самые мощные нимбусы, которые подарила нам природа. Они могут достигать 14 км в ширину. Появление кучево-дождевого облака - это гроза, ливень, град и шквальный ветер. Именно эти аномалии и называют «тучей».

Иногда они могут выстраиваться в целую череду шквальных фронтов. Состав кучево-дождевых соединений может разниться и зависит от высоты. Нижний слой состоит в основном из капелек воды, а верхний - из кристалликов льда. Развивается этот вид нимбов из слоисто-дождевых собратьев и их появление ничего хорошего предвещать не может.

Виды осадков, выпадающих из облаков, могут быть весьма разнообразными: ливневые, снежные, крупяные, ледяные и игловые, поэтому лучше переждать непогоду под крышей или в любом другом укрытии.

Туман

Туман также относится к низколежащим соединениям. Он густой и влажный, а когда вы проходите через туманное облако, вы можете почувствовать его тяжесть. Туман может появиться в местах большого водного скопления при слабом ветре.

Очень часто он возникает на поверхности озёр и рек, но если поднимается ветер, то туман очень быстро рассеивается без следа.

Облако как явление природы (Реферат, сделанный школьником 10 класса)

В толковом словаре В. Даля дано короткое и в то же время достаточно точное определение облака: «Облако - туман в высоте». Как и туман, облако представляет собой взвесь в воздухе мелких и мельчайших капелек воды. Наряду с водяными капельками в облаке могут находиться также мелкие кристаллики льда. Облако может целиком состоять из таких кристалликов.

Различаются облака между собой ещё и своей видимой толщиной, высотой над землёй, площадью распространения и окраской. Словом, разнообразие их велико.

Классификация облаков

Согласно международной классификации облака по внешнему виду делятся на 10 основных форм, а по высотам – на 4 класса.

1. Облака верхнего яруса – располагаются на высоте от 6 км и выше, представляют собой тонкие белые облака, состоят из ледяных кристаллов, имеют маленькую водность, поэтому осадков не дают. Мощность мала – 200 – 600 м. К ним относятся:

    перистые облака, имеющие вид белых нитей, крючков. Являются предвестниками ухудшения погоды, приближения теплого фронта (рис.2г);

    перисто-кучевые облака – мелкие барашки, мелкие белые хлопья, рябь;

    перисто-слоистые имеют вид голубоватой однородной пелены, которая покрывает все небо, виден расплывчатый диск солнца, а ночью - вокруг луны возникает круг гало.

2. Облака среднего яруса – располагаются на высоте от 2 до 6 км, состоят из переохлажденных капель воды в смеси со снежинками и ледяными кристаллами. К ним относятся:

    высоко-кучевые , имеющие вид хлопьев, пластин, волн, гряд, разделенных просветами. Вертикальная протяженность 200 - 700 м., осадки не выпадают (рис.2 в);

    высоко-слоистые представляют собой сплошную серую пелену, тонкие высоко-слоистые имеют мощность – 300 - 600 м, а плотные – 1 - 2 км. Зимой из них выпадают обложные осадки.

3. Облака нижнего яруса располагаются от 50 до 2000 м, имеют плотную структуру. К ним относятся:

    слоисто-дождевые , имеющие темно-серый цвет, большую водность, дают обильные обложные осадки. Под ними в осадках образуются низкие разорванно-дождевые облака. Высота нижней границы слоисто-дождевых облаков зависит от близости линии фронта и составляет от 200 до 1000 м, вертикальная протяженность 2 - 3 км, сливаясь часто с высоко-слоистыми и перисто-слоистыми облаками;

    слоисто-кучевые состоят из крупных гряд, волн, пластин, разделенных просветами. Нижняя граница 200 - 600 м, а толщина облаков 200 - 800 м, иногда 1 - 2 км. Это облака внутримассовые, в верхней части слоисто-кучевых облаков наибольшая водность. Осадки из этих облаков, как правило, не выпадают (рис 2 б);

    слоистые облака представляют собой сплошной однородный покров, низко нависший над землей с неровными размытыми краями. Высота бывает 100-150 м и ниже 100 м, а верхняя граница – 300-800 м. Могут опускаться до земли и переходить в туман (рис 2 а);

    разорванно-слоистые облака имеют нижнюю границу 100 м и ниже 100 м, образуются в результате рассеивания тумана. Осадки из них не выпадают.

4. Облака вертикального развития. Нижняя граница их лежит в нижнем ярусе, верхняя достигает тропопаузы. К ним относятся:

    кучевые облака – плотные облачные массы, развитые по вертикали с белыми куполообразными вершинами и с плоским основанием. Нижняя граница их порядка 400 - 600 м и выше, верхняя граница 2 - 3 км, осадков не дают (рис 2,д);

    мощно -кучевые облака представляют собой белые куполообразные вершины с вертикальным развитием до 4 - 6 км, осадков не дают;

    кучево-дождевые (грозовые) являются самыми опасными облаками, представляют собой мощные массы клубящихся облаков с вертикальным развитием до 9 - 12 км. С ними связаны грозы, ливни, град (рис 2 е, ж).

Облака переносятся ветрами на огромные расстояния, в результате чего осуществляется постоянный влагообмен между различными областями нашей планеты. Крайне упрощенная схема влагообмена такова: вода из моря попадает в облака, образующиеся над поверхностью моря, затем ветры переносят эти облака на материк, где они изливаются дождями, наконец, через реки вода возвращается обратно в море.

Облачный покров нашей планеты достаточно велик. Облака покрывают в среднем около половины всего небосвода. В них содержится во взвешенном состоянии 10 12 кг воды (льда).

В зависимости от причин возникновения различают следующие виды облачных форм:

    Кучевообразные . Причина их возникновения - термическая, динамическая конвекция и вынужденные вертикальные движения. К ним относятся: а) кучевые б) кучево-дождевые в) мощно-кучевые г) высоко-кучевые д) перисто-кучевые

    Слоистообразные возникают в результате восходящих скольжений теплого влажного воздуха по наклонной поверхности холодного вдоль пологих фронтальных разделов. К этому виду относятся облака: а) слоисто-дождевые б) высоко-слоистые в) перисто-слоистые г) перистые

    Волнистые возникают при волновых колебаниях на слоях инверсии и в слоях с небольшим вертикальным градиентом температуры. К ним относятся: а) слоисто-кучевые б) высоко-кучевые, волнистые в) слоистые г) разорванно-слоистые.

Существует еще одна важная характеристика – облачность , т.е. количество облаков – число условных частей неба, закрытых облаками. Раньше такое число выражалось в баллах (от 0 до 10), сейчас принято выражать в октантах (от 0 до 8).

На рисунке 1 перечисленные типы облаков схематически изображены все вместе, что позволяет представить себе в целом структуру облачного покрова. Все эти облака образуются в пределах нижнего слоя атмосферы, называемого тропосферой. В более высоких слоях атмосферы облаков почти нет; лишь на высотах около 30 км можно обнаружить перламутровые облака да на высотах около 80 км - серебристые облака. Перламутровые облака очень тонкие, они просвечивают; в сумерки вблизи солнца они окрашиваются в красный, золотистый и зеленоватый цвета. Серебристые облака также очень тонкие. Они светятся серебристым цветом ночью, вскоре после захода солнца или незадолго до восхода. Это рассеянный облаками солнечный свет.

Строение земной атмосферы. В известном смысле земную атмосферу можно уподобить слоеному пирогу, она состоит из ряда слоев или, точнее говоря, ряда вложенных одна в другую сфер. Разделение на слои (сферы) проводят, учитывая характер изменения температуры атмосферного воздуха с высотой. На рисунке 3 выделены четыре слоя атмосферы тропосфера, стратосфера, мезосфера, гермосфера - и изображена кривая, отражающая изменение температуры воздуха с высотой.

По мере подъема от поверхности земли температура воздуха сначала убывает. Это известно всем - ведь вершины высоких гор круглый год покрыты снегом и льдами. Тот, кто летал на авиалайнерах, неоднократно слышал сообщения бортпроводниц о том, что температура воздуха за бортом самолета 60-70 градусов мороза. Напомним, что современные авиалайнеры летают на высотах 8-10 км.

Оказывается, уменьшение температуры воздуха с высотой происходит лишь до определенных высот до 17 км над тропиками и 10 км над полярными областями. Эти числа как раз и определяют высоту верхней границы тропосферы (она зависит от географической широты). Температура воздуха на границе тропосферы составляет над тропиками около -75°С, а над полюсами около -60°С.

К тропосфере примыкает стратосфера. В стратосфере температура воздуха при подъеме сначала остается постоянной (до высот 25- 30 км), а затем начинает возрастать - вплоть до высоты 55 км, отвечающей верхней границе стратосферы; при этом температура достигает значений, близких к 0°С. В следующем атмосферном слое- мезосфере температура снова начинает уменьшаться по мере подъема; она падает до -100°С и даже до -150°С на уровне верхней границы мезосферы, имеющей высоту около 80 км. Еще выше начинается термосфера; здесь температура по мере подъема возрастает.

Итак, в тропосфере температура воздуха с высотой уменьшается, в стратосфере температура сначала не меняется, а затем растет, в мезосфере она снова уменьшается и, наконец, в термосфере снова начинает расти. Заметим, что слово «тропосфера» происходит от греческого «тропос», означающего «поворот»; над тропосферой совершается первый поворот температуры. Атмосфера действительно напоминает слоеный пирог: слои, где температура понижается, чередуются со слоями, где она повышается.

Происхождение такого «слоеного пирога» нетрудно объяснить. Ведь снизу атмосфера подогревается земной поверхностью, а сверху солнечным излучением; поэтому ее температура должна возрастать при приближении как к поверхности земли, так и к верхней границе атмосферы. В результате температурная кривая должна, казалось бы, иметь вид, показанный на рисунке 3 пунктиром. В действительности же температура изменяется с высотой не по пунктирной, а по непрерывной линии и обнаруживает некоторое увеличение в области стратосферы. Это повышение температуры вызвано поглощением ультрафиолетовой составляющей солнечного излучения в слое озона (О 3), который занимает интервал высот примерно от 20 до 60 км.

Для образования облаков надо, чтобы воздух был влажным (или, во всяком случае, не слишком сухим) и чтобы происходило достаточно сильное понижение температуры воздуха. Наиболее влажен воздух вблизи земной поверхности, в тропосфере. К тому же в тропосфере температура воздуха с высотой уменьшается. Поэтому неудивительно, что почти весь облачный покров Земли сосредоточен в пределах тропосферы. Серебристые облака образуются значительно выше тропосферы - вблизи верхней границы мезосферы. Существенно, что на этих высотах температурная кривая проходит через очередной и притом относительно сильный минимум. Отметим, что на высотах вблизи максимума температурной кривой (на границе стратосферы и мезосферы) облака никогда не наблюдаются.

Адиабатическое расширение газа

Одним из главных процессов, приводящих к образованию облака, является процесс адиабатического расширения воздуха при его подъеме над поверхностью земли.

Предположим, что некоторая масса газа (в частности, воздуха) расширяется. При этом газ совершает работу А против сил внешнего давления. Пусть Q - теплота, которую газ получает извне в процессе расширения. Совершенная газом работа А и полученная им теплота Q определяют изменение внутренней энергии газа U :

U = Q - A . (1)

Это есть первое начало термодинамики; оно представляет собой не что иное, как закон сохранения энергии для рассматриваемой массы газа.

Изменение внутренней энергии газа связано с изменением его температуры. Пусть Т 1 и Т 2 - соответственно начальная и конечная температуры газа. Будем полагать, что газ состоит из двухатомных молекул и что его молярная масса есть М (для воздуха можно принять М =0.029 кг/моль). Для такого газа

где m - масса газа, кг; R - универсальная газовая постоянная, R =8,3 · Дж/(моль·К); М – молярная масса, кг/моль.

Если Q > A , то U > 0. В этом случае Т 2 > Т 1 , следовательно, газ при расширении нагревается. Если Q = A , то U = 0. В этом случае Т 2 = Т 1 - температура расширяющегося газа остается неизменной (изотермическое расширение).

Для нас интересен случай, когда можно принять Q = 0, т.е. когда можно пренебречь теплообменом между газом и окружающей его средой. В данном случае соотношение (1) принимает вид

U = - А. (3)

Видно, что теперь U < 0 и, следовательно, Т 2 < T 1 -газ при расширении охлаждается.

Рассматриваемый процесс называют адиабатическим расширением газа. При таком расширении газ не получает теплоты извне и поэтому совершает работу только за счет собственной внутренней энергии (в результате чего и охлаждается). Подставляя (2) в (3), получаем формулу, связывающую уменьшение температуры адиабатически расширяющегося двухатомного газа и работу, совершенную газом:

Приведем без вывода формулу для работы адиабатически расширяющегося двухатомного газа:

Здесь p 1 и Т 1 - начальное давление и начальная температура газа, а p 2 - его конечное давление.

Используя две последние формулы найдем, что при адиабатическом расширении воздух при подъеме на 1 км охлаждается на 6 градусов. Адиабатический температурный градиент воздуха

γ а = 0.6 о С/100 м.

О бразование облаков.

Процесс образования облака начинается с того, что некоторая масса достаточно влажного воздуха поднимается вверх. По мере подъема будет происходить расширение воздуха. Это расширение можно считать адиабатным, так как воздух поднимается относительно быстро, и при достаточно большом его объеме (а в образовании облака принимает участие действительно большой объем воздуха) теплообмен между рассматриваемым воздухом и окружающей средой за время подъема попросту не успевает произойти.

Как мы уже знаем, при адиабатном расширении газа его температура понижается. Значит, поднимающийся вверх влажный воздух будет охлаждаться. Когда температура охлаждающегося воздуха понизится до точки росы, станет возможным процесс конденсации пара, содержащегося в воздухе. При наличии в атмосфере достаточного количества ядер конденсации (пылинок, ионов) этот процесс действительно начинается. Если ядер конденсации в атмосфере мало, конденсация начинается не при температуре, равной точке росы, а при более низких температурах.

Итак, достигнув некоторой высоты Н , поднимающийся влажный воздух охладится (в результате адиабатного расширения) настолько, что начнется конденсация водяных паров. Высота Н есть нижняя граница формирующегося облака (рис. 4а). Продолжающий поступать снизу воздух проходит сквозь эту границу, и процесс конденсации паров будет происходить уже выше указанной границы - облако начнет развиваться в высоту (рис. 4б). Вертикальное развитие облака прекратится тогда, когда воздух перестанет подниматься; при этом сформируется верхняя граница облака (рис. 4в).

Теперь рассмотрим, что же заставляет воздух подниматься вверх .

Во-первых , подъем воздушных масс может происходить вследствие конвекции - когда в жаркий день солнечные лучи сильно прогреют земную поверхность, и она передаст теплоту приземным слоям воздуха (рис.5,а). В этом случае говорят об облаках конвекционного происхождения. Кучевые облака имеют чаще всего именно такое происхождение.

Во-вторых , дующий по горизонтальному направлению, вдоль поверхности земли ветер может встретить на своем пути горы или иные природные возвышения. Обтекая их, ветер переместит вверх воздушные массы (рис.5,б). Это тоже внутримассовые облака. Такое происхождение могут иметь слоистые и слоисто-дождевые облака.

В-третьих , облака образуются на теплых и холодных фронтах. Если массы теплого воздуха, перемещаясь в горизонтальном направлении, теснят холодный воздух, возникает так называемый теплый фронт. Если же наступает холодный воздух, то говорят о холодном фронте. Теплый фронт изображен схематически на рисунке 6,а, где красными стрелками показаны перемещения теплого воздуха, а черными - холодного. Вблизи границы между теплой и холодной воздушными массами возникают восходящие потоки воздуха (как теплого, так и холодного). В результате могут образоваться облака горизонтального развития всех ярусов - слоисто-дождевые, высококучевые, перистые. На рисунке 6б показан холодный фронт. Здесь образуются восходящие потоки только теплого воздуха. При этом формируются, как и на теплом фронте, облака всех ярусов. Итак, на теплом фронте наступающий теплый воздух как бы «наваливается» на стелющийся понизу холодный воздух и по нему поднимается вверх. На холодном же фронте наступающий холодный воздух проникает под теплый воздух и как бы приподнимает его.


В-четвертых , вертикальные перемещения воздушных масс могут быть связаны с циклонической деятельностью, которая, в свою очередь, связана с взаимодействием теплых и холодных фронтов.

Циклоны и антициклоны представляют собой мощные атмосферные вихри диаметром до нескольких тысяч километров и высотой 10...20 км.

Циклоны. Вблизи поверхности земли ветры направляются от периферии к центру циклона, поскольку в центре циклона давление воздуха меньше, чем на его периферии. В Северном полушарии ветры «закручиваются» к центру циклона против часовой стрелки, а в Южном - по часовой стрелке. На рисунке 7а красным изображены изобары циклона у поверхности земли; синими стрелками показано направление ветров (для Северного полушария). Стекающиеся к центру циклона воздушные массы устремляются затем вертикально вверх (рис.76). Это приводит к образованию мощных слоистых и слоисто-дождевых облаков, выпадают осадки. В верхней тропосфере возникают горизонтальные ветры, направленные по спирали от центра циклона; они выносят к его периферии воздушные массы, захваченные циклоном. Зарождение или приход уже сформировавшегося циклона всегда приводит к значительному ухудшению погоды, сопровождается длительными дождями.

Приближение центральной области циклона мы чувствуем по понижению атмосферного давления. Мы говорим: «Давление упало - пойдут дожди, будет пасмурно».

Антициклоны. Для антициклонов характерна обратная картина процессов. В центре антициклона давление выше, чем на периферии. В верхней тропосфере ветры «закручиваются» к центру антициклона, а вблизи земной поверхности - от центра; в центре возникают мощные нисходящие потоки воздуха. Опускающийся вниз воздух нагревается, относительная влажность уменьшается, облачность исчезает - устанавливается ясная погода. Недаром повышение атмосферного давления мы справедливо связываем с улучшением погоды.

Физическая природа кучевого облака .

Остановимся немного подробнее на физике процессов, приводящих к образованию обычного кучевого облака конвекционного происхождения. Такое облако имеет значительные вертикальные размеры, указывающие на то, что конвекционные потоки могут подниматься на большую высоту - значительно выше нижней границы облака. Для объяснения обратимся к рисунку 8. На нем приведены (качественно) три зависимости температуры воздуха от высоты. Зависимость 1 относится к воздуху, не участвующему в образовании облака. Этот воздух окружает облако с боков; будем считать, что в нем нет вертикальных потоков. Падение температуры с высотой отражает в данном случае естественный ход температурной кривой в пределах тропосферы. Зависимость 2 относится к поднимающемуся (и, следовательно, адиабатически расширяющемуся) сухому воздуху. При адиабатическом расширении воздух охлаждается, поэтому температурная кривая 2 опускается более круто, чем кривая 1. Следует, однако, иметь в виду, что в действительности вверх поднимается не сухой, а влажный воздух; в результате охлаждения воздуха содержащийся в нем пар будет конденсироваться (начиная с некоторой высоты Н, фиксирующей нижнюю границу облака). При конденсации пара выделяется скрытая теплота парообразования. Количество выделившейся теплоты оказывается довольно заметным. Это приводит к тому, что температура поднимающегося влажного воздуха будет понижаться с высотой медленнее, чем даже температура неподвижного воздуха (температурная кривая 3). Данное обстоятельство является весьма важным. В самом деле, с учетом конденсации пара температура поднимающегося воздуха понижается, оставаясь в то же время выше температуры окружающего неподвижного воздуха. Тот факт, что охлаждающийся воздух остается более нагретым, чем окружающая его среда, обеспечивает способность продолжать подъем все выше и выше. В результате и происходит существенное развитие облака в вертикальном направлении.

Конечно, такое развитие не может быть неограниченным. По мере того как конденсируются водяные пары, воздух становится все менее влажным; он все более подсушивается. Поэтому температурная зависимость 3 уже не реализуется; происходит переход к зависимости 2, отвечающей сухому воздуху (этот переход условно показан на рисунке 8 штриховой стрелкой). Вследствие такого перехода температура поднимающегося воздуха на какой-то высоте сравняется с температурой окружающего воздуха и даже окажется немного ниже ее. В результате вертикальное развитие облака прекратится; холодные массы воздуха, отдавшего свою влагу в облако, начнут растекаться в стороны и опускаться вниз вокруг кучевого облака, формируя характерные для таких облаков барашки.

Макрофизика и микрофизика облаков

Различают макрофизику и микрофизику облаков. Макрофизика изучает перемещения воздушных масс, приводящие к образованию, росту и испарению облака в целом. Микрофизика рассматривает микроструктуру облака, исследует процессы образования, слияния, испарения водяных капель. В частности, микрофизика изучает условия формирования тех или иных осадков.

Облака могут состоять из капелек воды (водяные, или капельные облака), ледяных кристалликом (ледяные или кристаллические облака), а также одновременно из капель и из кристалликов (смешанные облака). Водяные облака существуют не только при плюсовой температуре, но и при температурах ниже нуля (примерно до -20 о С) это переохлажденные водяные облака. Например, при -10°С облака в 50% случаев водяные, в 30% смешанные и только в 20% ледяные.

Водяные капли в облаке имеют различные диаметры - от долей микрометра до нескольких миллиметров. Ледяные кристаллики облака чаще всего имеют форму шестигранных призм-столбиков длиной порядка 0,1 мм и шестиугольных пластинок размером 0,1...0,5 мм.

Как бы ни была мала ледяная капля, она все же существенно тяжелее воздуха. Поэтому возникает вопрос: каким образом водяные капли (а вместе с тем и облако в целом) удерживаются в воздухе? Одновременно возникает и другой вопрос: при каких условиях водяные капли перестают удерживаться в воздухе и падают на землю в виде дождя?

Начнем с наиболее мелких капелек, радиус которых составляет доли микрометра. Таким капелькам не дают падать вниз беспорядочные удары со стороны молекул воздуха, находящихся в хаотичном тепловом движении. Эти удары вынуждают капельку отскакивать в самых различных направлениях; в итоге она движется по причудливо изломанной траектории (броуновское движение).

Чем массивнее капля, тем труднее молекулам воздуха отбросить ее и, следовательно, тем меньше роль броуновского движения, но больше влияние земного притяжения. Когда радиус капли становится больше микрометра, ее движение перестает быть броуновским; капля начинает падать под действием силы тяжести. И тогда «вступает в игру» новый фактор, препятствующий падению капли вниз,- сопротивление воздушной среды.

Пусть в некоторой точке пространства водяная капля радиусом R (пусть, например, R =10 мкм). В этот момент времени на каплю действует только сила тяжести Р

где ρ 0 - плотность воды, g - ускорение свободного падения (– объем капли). Под действием силы тяжести капля начинает падать вниз, ее скорость начинает расти. Одновременно возникает и начинает расти действующая на каплю сила сопротивления воздухаF . Она направлена противоположно силе тяжести и пропорциональна скорости капли u :

F = 6πη Ru , (7)

где η - коэффициент вязкости воздуха. (Вязкость , или, иначе, внутреннее трение - свойство газов и жидкостей оказывать сопротивление перемещению одной их части относительно другой; по этой причине, например, скорость газового или жидкого потока в трубе уменьшается при переходе от оси трубы к ее стенкам.) По мере возрастания силы сопротивления F уменьшается разность Р - F , поэтому скорость падающей капли нарастает все медленнее. Когда сила сопротивления воздуха сравняется по модулю с силой тяжести, дальнейшее увеличение скорости капли прекратится, и далее капля будет падать равномерно (ведь теперь равнодействующая сила, приложенная к капле, равна нулю: Р - F = 0) . Скорость равномерного движения капли u определяется из условия Р - F = 0 с учетом (6) и (7):

Равномерно падающая капля может быть остановлена и даже подброшена вверх восходящим потоком воздуха, если вертикальная скорость потока больше скорости падения капли.

Совсем не просто ответить на вопрос, почему облако не падает на землю. Здесь надо учитывать многое: тепловое движение молекул воздуха, сопротивление воздуха, испарение капель. Надо принимать во внимание также и ряд других факторов. Так, следует иметь в виду, что с увеличением радиуса капли сила сопротивления воздуха начинает играть все более существенную роль из-за того, что относительно большие капли (радиусом более 100 мкм) при своем падении вызывают турбулентные движения в воздушной среде. Надо учитывать также, что в процессе падения радиус капли вовсе не остается неизменным: наряду с испарением происходит дополнительная конденсация пара на поверхности капли, увеличивающая ее радиус. Возможно также слияние данной капли с другими каплями или, напротив, раздробление ее на несколько более мелких капель. Одним словом, микрофизика облака оказывается достаточно сложной.

Вопросом «Что такое облако?» люди задавались ещё в те далёкие времена, когда по небу летали только птицы и сами облака. Википедия тогда ещё не существовала, да и «Детской энциклопедии» ещё никто не придумал, и не издал. Поэтому что только не придумывали некоторые фантазёры, чтобы объяснить это явление природы.

Из-за того, что снизу облака кажутся такими мягкими и пушистыми, было время, когда люди думали, что они состоят из пуха.

Встречались и более забавные предположения о том из чего сделаны эти небесные образования. Говорили даже, что строительным материалом белых громадин, плывущих по небу, является сладкая вата.

Конечно же, это выдумки. Из чего состоит облако, учёные узнали в конце XVIII века. Произошло это, когда человечество нашло способ подняться в небо. Тогда-то и удалось ответить на вопрос: из чего состоит облако? Выяснилось, что кажущиеся снизу белыми и плотными облака – это на самом деле обычный туман. Так что прогулки в туманную погоду представляют собой путешествие сквозь облако.
В те же годы люди узнали из чего состоят тучи. Ведь до этого их природу объясняли тоже по-разному. Но обо всём этом будет рассказано чуть позже.

Вообще облака могут состоять не только из капелек воды, как обычный туман, но и из кристалликов льда. Всё зависит от того, на какой высоте они образуются.

Чаще всего появляются облака на высоте от 6 до 20 км от поверхности нашей планеты. Эта часть атмосферы носит название тропосфера. Как раз здесь и образуются облака, состоящие из водяных капелек. Температура внутри таких образований обычно выше -10 0 С. Облака, которые образуются на этой высоте, могут иметь разную структуру и форму.

Есть и такие облака, которые появляются на свет значительно выше. Например, так называемые, перламутровые облака рождаются в 20-25 км от Земли. Однако рекордсменами являются практически невидимые без специального оборудования серебристые облака. Их колыбель находится на высоте от 70 до 80 км над уровнем моря.

Отчего и как появляются облака?

Но как образуются облака? Для детей это очень важный вопрос. Чтобы на него ответить, надо познакомиться с ещё одним интересным физическим явлением – конденсацией. Что же это такое?

Все мы не раз видели, как из носика кипящего чайника идёт пар. Если же подставить под эту струйку холодное блюдечко, то на его поверхности появятся капельки воды. Это явление и называется конденсацией.

В верхних слоях атмосферы происходят примерно такие же процессы. Водяной пар, поднимаясь всё выше и выше, охлаждается и начинает конденсироваться в капельки жидкости, из которых и формируются облака. Размер этих капелек невероятно мал – в 100, а иногда и в 1000 раз меньше 1 мм. Если же пару удастся подняться очень высоко, то он перейдёт не в жидкое, а в твёрдое состояние. Поэтому в самых верхних слоях атмосферы облака и состоят из мельчайших кусочков льда.

Но чтобы пар начал конденсироваться только понижения температуры недостаточно. Центром каждой капельки или кристаллика является мельчайшая пылинка, вокруг которой и собралась влага.

Кстати, именно по этой причине над городами, где много машин или больших заводов часто можно наблюдать очень большие облака. Ведь в таких местах разных загрязняющих воздух частиц в атмосфере значительно больше, чем в малозаселённых районах нашей планеты.

Почему облака летают?

С поверхности Земли облака кажутся такими лёгкими и воздушными. На самом деле они могут весить много тонн. Как же целое облако воды, состоящее из огромного скопления водяных капелек держаться в воздухе? Всё очень просто. Размер каждой капельки настолько мал, что даже небольшого поток воздуха, поднимающийся от Земли, останавливает их падение.

Учёные подсчитали, что скорость восходящего потока для удержания облака может быть всего 50 см в секунду. Если перевести это число в более понятную форму, то получится очень маленькая величина – 1,8 км/ч. А это гораздо меньше скорости пешехода.

Какие бывают облака?

Красивые белые горы, плывущие по ярко-голубому небу, всегда радуют глаз. Но почему они кажутся именно такими?
Оказывается, чем больше солнечного света проходит сквозь облака, тем белее они кажутся нам с Земли. Серое пасмурное небо означает только то, что облачный слой очень плотный и лучи солнца сквозь него практически не проходят. А вот чёрные тучи чаще всего просто содержат много пыли. Облачные образования такого цвета часто появляются опять же над промышленными районами, где загрязнение воздуха наиболее сильное.

Но облака различаются не только по цвету, но и по форме. Общепринятое название облаков, как правило, и описывает их внешний вид. Хотя учёные и придумали очень сложную классификацию облачности, чётко можно выделить только три вида облаков.

Именно этот вид скопления водяных паров в небе мы чаще всего и называем облаками. Это те самые ослепительно белые громадины, плавно меняющие свою форму. Именно за ними люди любят наблюдать, представляя, на кого они похожи. Такая облачность совершенно не напрягает. И это не удивительно, ведь кучевые облака – спутники хорошей погоды.


Однако именно этот вид облаков периодически превращается в тучи, которые учёные так и называют кучево-дождевые облака. Из чего состоит туча? Собственно из того же, что и все облака. Как правило, её нижние слои представляют собой капельки воды. А вот верхняя часть дождевых облаков состоит из ледяных кристалликов. Из-за этой многослойности высота туч может быть очень большой, достигая иногда 10 км.

Слоистые облака уже не так прекрасны. Чаще всего они серого цвета самых разных оттенков. Такие облака достаточно плотны и состоят исключительно из готовых к падению на Землю капель. Плавают они не так уж и высоко над поверхностью. В этом случае высота облаков над землей примерно 1-2 км.


Если небо покрыли слоистые облака вперемешку с кучевыми, то ничего страшно – погода вряд ли испортится. Такой вид облачности часто ещё называют слоисто-кучевые облака. Кстати, именно подобный вид облаков предстаёт перед мысленным взором, когда нужно ответить на вопрос: «Что такое облачность?». А вот сплошное серое покрывало всегда наводит на мысль о долгом и нудном дожде.

А этот вид облаков располагается достаточно высоко. Их можно наблюдать примерно на семи километровой высоте. Похожи они на барашки или размазанные в небе мазки масляной краски.

Такая облачность говорит о скорой перемене погоды не в лучшую сторону. Кстати, наиболее фотогеничны именно перистые облака. Фото, на которых они присутствуют, выглядят невероятно эффектно.

Облака очень тяжёлые. В среднем их вес составляет около 10 тонн. Кроме того, они ещё имеют и огромные размеры. Одно облако может тянуться на расстояние более 10 км, а грозовые облака могут простираться на такое же расстояние в высоту.

Продолжительность «жизни» облаков зависит от влажности воздуха. При нормальной влажности облако может существовать очень продолжительное время. А вот при низкой, капельки воды, из которой состоит облако, начнут быстро испаряться и прожить оно может не более 15 минут.

Трудно представить, глядя на проплывающие по небу облака, что это чудо природы можно создать в домашних условиях. Хотя на самом деле настоящее облако можно сделать искусственно. Правда, для этого понадобится специальное оборудование. Придумал, как сделать облака голландский художник Бернднаут Смильде. Его самодельные облака живут недолго, около 10 секунд. Но за это время их можно сфотографировать или снять момент рождения маленького облачка на видео.

Такое явление как облачность наблюдается не только на Земле, но и на нескольких других планетах Солнечной системы. Облака были обнаружены в атмосфере Венеры и Марса, а также на спутниках Сатурна – Титане и Нептуна – Тритоне.

В 2004 году несколько метеорологов и физиков объединились в составе международной организации «Общество любителей облаков». Они не только сами любуются этими причудливыми созданиями земной атмосферы, но и призывают всех поднять глаза к небу, чтобы полюбоваться прекрасными и разнообразными облаками.

Удивительно, но все про облака не знают даже учёные. Их изучение продолжается до сих пор. И в России, и в США до сих пор работают программы по выяснению всех свойств этих красивых, белоснежных, воздушных островов.

ОГОУ НПО «Профессиональный лицей № 21 р. п. Сапожок, имени »

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

УРОКА ПО ГЕОГРАФИИ

«ПИЩЕВАЯ ПРОМЫШЛЕННОСТЬ МИРА»

преподаватель биологии и географии

2007 год
Группа: специальность «Технология продукции общественного питания»

Тема урока:

Пищевая промышленность мира

Цель урока: активизировать познавательный интерес обучающихся на основе использования профессионально значимых знаний о пищевой промышленности мира

Задачи урока

Образовательные: изучить общие черты, отраслевую структуру и особенности размещения предприятий пищевой промышленности мира

Воспитательные: воспитание профессионального отношения к получаемым знаниям, ответственности при работе в коллективе

Развивающие: развивать умения анализировать и делать вывод используя различные данные, таблицы

Тип урока : изучения нового материала

Методы и методические приемы обучения : географический диктант, лекция, коллективная работа, работа с географическим атласом и контурной картой

Средства обучения (оборудование) : географические атласы 10 кл., карандаши, контурные карты, упаковки пищевых продуктов, карточки с домашним заданием

План урока

Оргмомент - 2мин Контроль достижений обучающихся - 7 мин Актуализация приобретаемых знаний – 1 мин Изучение нового материала – 20 мин Закрепление – 10 мин Обобщение и подведение итогов уроков – 3 мин Домашнее задание – 2 мин

Ход урока

1. Оргмомент. Приветствие, проверка присутствующих. Настрой на рабочий лад

2. Контроль достижений учащихся.

Географический диктант

3. Актуализация приобретаемых знаний

Вы – будущие технологи общественного питания. Постоянно будете иметь дело с продуктами питания. А откуда берутся эти продукты? Какая отрасль промышленности их производит?

Правильно, пищевая промышленность.

Это и будет темой нашего урока

4. Изучение нового материала

Тема нашего сегодняшнего урока – пищевая промышленность мира

Лекция по вопросам:

1. Общая характеристика пищевой промышленности

2. Отраслевая структура пищевой промышленности

3. Особенности отдельных отраслей пищевой промышленности

4. География отраслей пищевой промышленности мира

Общая характеристика пищевой промышленности

Основное назначение пищевой промышленности - производство продуктов питания. Практически все потребляемое людьми продовольствие проходит промышленную обработку. Поэтому роль пищевой промышленности постоянно возрастает. Ее развитие позволяет устойчиво обеспечивать людей пищевыми продуктами в течение всего года. Пищевые концентраты, консервы, замороженные овощи и фрукты не портятся при перевозке и долгом хранении. Без их производства освоение территорий со сложными природными условиями, неблагоприятными для сельского хозяйства , было бы невозможно. Пищевая промышленность теснейшим образом связана с сельским хозяйством, которое является основным источником сырья отрасли. Переработка сельскохозяйственного сырья в продукцию длительного хранения, большие мощности холодильников пищевых предприятий обеспечивают постоянное равномерное снабжение рынка продовольствием, в частности скоропортящимися продуктами. Отходы производства отрасли используются как в сельском хозяйстве, так и в других отраслях промышленности (легкой, фармацевтической и т. д.).

Пищевая промышленность удовлетворяет ежедневные потребности населения в очень разнообразном ассортименте продукции (например, только сортов сыра или пива -- сотни). Это обусловило формирование множества предприятий отрасли (в мире производством только кондитерской продукции занято около 50 тыс. фирм), специализирующихся на получении тех или иных пищевых или пищевкусовых продуктов. При этом ассортимент продукции постоянно обновляется, ему придаются новые потребительские качества.

Структура пищевой промышленности

Пищевая промышленность имеют сложную структуру, включающую десятки различных по использованию сырья и технологии процессов. В настоящее время сложилось несколько их групп.

Особенности отдельных отраслей пищевой промышленности

Мясная промышленность. Производство мясных продуктов растет быстрее, чем численность жителей планеты. Различия в производстве мяса на душу населения очень велики - от 365 до 5 кг в отдельных странах (в мире - 36кг). В географии мясной промышленности к концу XX в. произошли большие изменения: впервые развивающиеся страны дают более половины продукции. Главным регионом отрасли стала Азия, а в ней КНР - лидер в производстве мяса, опередивший США. Сев. Америка производит его, как и Зап. Европа, вдвое меньше. Сильно упало получение мяса в России и других странах СНГ. На мировой рынок поступает небольшое количество этого продукта.

Рыбная промышленность. Рыбы и морепродуктов в мире получают в 2 раза меньше, чем мяса. Созданы мощный рыболовный флот и специальные порты с предприятиями по глубокой переработке морепродуктов, хотя часть их подвергается обработке на рыбоконсервных плавучих базах прямо в местах лова. В географии отрасли произошли глубокие изменения. Тихий океан стал ведущей акваторией рыбного промысла, а страны этого бассейна дают более 70 % продукции в мире. Таким образом, произошел сдвиг отрасли из Западной Европы в Азию. Изменился и состав лидеров рыболовства: в 50-х гг. ими были Япония, США и СССР, а в 2000 г. - КНР, Перу, Чили. Сильно сократились уловы в России.

Маслосыродельная промышленность обеспечивает наиболее ценные продукты питания на основе глубокой переработки молока. Производство сыров в мире уже в 1,5 раза превысило изготовление животного масла. Его душевое потребление сильно различается по странам: от 5 кг в России до 50 кг в Новой Зеландии или Дании. Зап. Европа остается главным его продуцентом, Сев. Америка - вторым (самое большое количество в мире дают США). На эти два региона приходится более 70 % сыра в мире. Другое важное изменение в отрасли: выпуск маргарина уже вдвое превышает получение животного масла, лидером по пр-ву являются США.

Сахарная промышленность. Главный вид сырья - сахарный тростник. Это обусловило географию отрасли: более 1/3 продукта дает Азия, немногим меньше - Юж. Америка (суммарно их доля в мире - 60 %). Главные продуценты- Индия и Бразилия.

География пищевой промышленности мира

Пищевая промышленность мира в экономически развитых и развивающихся странах многообразна. Постоянно растет производство продукции данной отрасли, обеспечивающей население продуктами питания.

Производство определенных видов продукции обусловливается спросом на нее.

Некоторые отрасли пищевой промышленности испытывают кризис перепроизводства , но в это же время появляются новые отрасли.

В экономически развитых странах в связи с изменением структуры питания с целью улучшения состояния здоровья формируются новые производства пищевой промышленности, которые производят специальные товары.

Производство продуктов питания имеет прямую связь с одной из глобальных проблем человечества – продовольственной проблемой.

Пищевая промышленность состоит из отраслей двух категорий, различных по масштабам и характеру размещения.

Первая категория – это отрасли, которые работают на привозном сырье. Они ориентированы на порты ввоза продукции, железнодорожные узлы, крупные промышленные центры, столицы. Производимая продукция обладает высокой транспортабельностью. Это производство кондитерских изделий, напитков, мукомольные предприятия, табачная промышленность и т. д. Ко второй группе предприятий относятся:

1) отрасли, которые ориентируются на сырье (сахарные, мясоперерабатывающие заводы, маслоделие, сыроварение и пр.);

2) отрасли, которые ориентируются на потребителя (хлебопекарная промышленность, производство полуфабрикатов и пр.).

5. Закрепление

Работа по группам.

Каждой группе (всего 3) я предлагаю изучить упаковки продуктов питания, определить страны, в которой эти продукты были произведены, отметить их на контурной карте, назвать столицы этих стран, а затем рассказать о своей работе другим обучающимся.

Задания для групп

6. Обобщение и подведение итогов урока

Итак, пищевая промышленность – одна из отраслей промышленности. Она в виде своей продукции – продуктов питания – каждый день присутствует в жизни любого человека. А для технологов предприятий общественного питания является, можно сказать, важной частью трудовой деятельности.

Вы хорошо поработали на уроке.

7. Домашнее задание:

– Конспект лекции

– Задание

Задание . Проанализировать таблицу «Потребление продуктов питания населением России и развитых стран» и определить продукты, которые в России потребляются в соответствии с медицинскими нормами и недостаточно.

Задание . Проанализировать таблицу «Потребление продуктов питания населением России и развитых стран» и определить продукты, которые в России потребляются в соответствии с медицинскими нормами и недостаточно.

Пищевая промышленность призвана удовлетворять основные по­требности населения в важнейших продуктах питания. Она тесней­шим образом связана с сельским хозяйством, которое является ос­новным источником сырья отрасли. Переработка сельскохозяйствен­ного сырья в продукцию длительного хранения, большие мощности холодильников пищевых предприятий обеспечивают постоянное рав­номерное снабжение рынка продовольствием, в частности скоропор­тящимися продуктами. Отходы производства отрасли используются как в сельском хозяйстве, так и в других отраслях промышленности (легкой, фармацевтической и т.д.).
Параллельно с пищевой функционирует пищевкусовая промышлен­ность, использующая пищевое сырье для изготовления алкогольных напитков, соков, а также поставляющая различные пряности и специи как для пищевой промышленности, так и для непосредственного по­требления населением. Важную роль в отрасли играет переработка табака, чая, кофе, какао и других видов продукции сельского хозяйства в готовые изделия после прохождения соответствующих техно­логических операций (например, ферментация чайного, табачного сырья и т.д.).

Пищевая и пищевкусовая промышленность имеют сложную структуру, включающую десятки различных по использованию сырья и технологии процессов. В настоящее время сложилось несколько их групп. Среди них особо выделяются базовые производства, продукция которых требует дальнейшей глубокой переработки (на­пример, мукомольная, получение сахара-сырца, пастеризация молока с последующим изготовлением из них соответственно хлебобулочных, кондитерских и кисломолочных изделий). К базовым производствам относятся и первичные процессы убоя скота, улова рыбы, продукция которых может направляться непосредственно на рынок. Однако все чаще такая продукция подвергается облагораживанию для получения более квалифицированных полупродуктов (полуфабрикатов для бы­строго приготовления в домашних условиях) или готовых конечных продуктов отрасли (колбасные, рыбные изделия, консервы, презервы, деликатесные продукты и т.д.)- Эти процессы повышения потреби­тельских качеств продукции базовых производств становятся основ­ными в отрасли, так как дают наиболее высокую по стоимости то­варную продукцию.



Пищевая и пищевкусовая промышленность удовлетворяют еже­дневные потребности населения в очень разнообразном ассортименте продукции (например, только сортов сыра или пива - сотни). Это обу­словило формирование множества предприятий отрасли (в мире про­изводством только кондитерской продукции занято около 50 тыс. фирм), специализирующихся на получении тех или иных пищевых или пищевкусовых продуктов. При этом ассортимент продукции постоян­но обновляется, ему придаются новые потребительские качества.

Особенность пищевой и пищевкусовой промышленности, выра­батывающей сотни миллионов тонн изделий, - необходимость их расфасовки в мелкую тару, соответствующую физическим свойствам продукта. Отсюда эта отрасль стала крупным потребителем стеклян­ной, бумажной, металлической, полимерной тары. Это обусловило связи отрасли с соответствующими производствами: стекольной, бу­мажной, металлургической, химической и др. Расфасовка продукции отрасли потребовала разработки упаковочных машин-автоматов для предприятий разных производств. Велики затраты на высококачест­венную полиграфическую продукцию для оформления тары.

В пищевой и пищевкусовой промышленности сложились мощные национальные фирмы и международные корпорации в сфере про­изводства разной продукции, например, всем известные «Нестле», «Кока-Кола», «Юнилевер» и многие другие. Каждая владеет сотнями предприятий в разных странах мира, их обороты одни из самых вы­соких в индустрии. Они контролируют практически все рынки сбыта аналогичной продукции.

Научные исследования в области питания способствовали изме­нению его структуры. Особое внимание уделено повышению доли овощей и фруктов, снижению калорийности пищи (использование обезжиренного молока, употребление растительных масел вместо жи­вотных жиров, сокращение потребления сахара и кондитерских из­делий с ним, отказ от алкогольных напитков в пользу безалкогольных: минеральных вод, соков и т.д.), безусловный отказ от курения и т.д. Все это призвано сохранить здоровье человека. Однако возникают и проблемы развития соответствующих отраслей промышленности, где ТНК сопротивляются этим тенденциям введения здорового образа жизни (особенно табачные компании). Вместе с тем проблемы пита­ния - это и социально-экономические, и национальные, решение которых индивидуально для разных стран и регионов.
О тенденциях и традициях в потреблении продуктов питания в мире можно судить но производству пшеничной муки и потреблению хлебобулочных изделий. Получение муки за период 1960-1988 гг. уве­личилось более чем вдвое и достигло 205 млн т. Однако в конце 80-х гг. началось сокращение ее выпуска и к середине 90-х гг. оно составляло около 130 млн т. Потребление изделий из нее также сократилось, но еще сильно различалось по странам: от 6-10 кг на человека в год в Японии и Республике Корея, до 100-150 кг в государствах бывшего СССР и Болгарии (США - 30 кг в 1993 г.).