Услуги по подъему глубоководных кабелей связи. Облака в океане, или краткий экскурс в жизнь подводных кабелей. Под водой Интернет уязвим так же, как и под землей

25 сентября 1956 года был введен в эксплуатацию первый трансатлантический телефонный кабель. Перед вами небольшой FAQ на тему того, почему Интернет и по сей день живет не в небе, а под водой.

Почему телекоммуникационные компании не используют спутники вместо кабелей?

Спутники отлично подходят для некоторых целей: их можно использовать для той местности, где ещё нет оптоволоконных кабелей, плюс они могут транслировать информацию из одной точки в несколько других.

Однако для поразрядной передачи данных нет ничего лучше, чем оптоволокно. Такие кабели могут передавать бо льшие объёмы данных с меньшими затратами.

Сложно точно узнать объёмы международного трафика, проходящего через спутники, но можно точно сказать, что эти объёмы крайне малы. Статистика, опубликованная Федеральной комиссией по связи США, указывает, что на спутники приходится лишь 0,37% всех международных мощностей США.

Хорошо, а что насчёт моего смартфона, он же использует беспроводной обмен данных?

Когда вы используете телефон, то передаёте данные беспроводным методом только до первой вышки связи, которая передаёт данные уже наземным или подводным путём.

Сколько всего подводных кабелей?

В начале 2017 года насчитали около 428 рабочих подводных кабелей по всему миру. Число постоянно меняется, так как подключают новые кабели и списывают старые.

Как они работают?

Современные подводные кабели используют, как мы уже сказали выше, оптоволоконные технологии. Электрический сигнал превращается в свет, излучаемый микролазерами, и передается на высоких скоростях по волокну к приемнику на другом конце, который, в свою очередь, преобразует свет обратно в электрический сигнал.

Они толстые?

Сам кабель с учетом обмотки толщиной примерно с поливальный шланг. А толщина внутренних элементов кабелей, через которые передаётся сигнал, сравнима с человеческим волосом.

Внутренние волокна кабеля покрыты несколькими слоями изоляции и защитного материала. Те участки кабелей, которые пролегают в прибрежной зоне, покрывают дополнительными слоями для повышения прочности.

Подводный кабель в разрезе: 1. полиэтилен; 2. «майларовая» лента; 3. скрученная стальная проволока; 4. алюминиевая водоизолирующая перегородка; 5. поликарбонат; 6. медная или алюминиевая труба; 7. гидрофобный заполнитель; 8. оптические волокна. Спасибо Wikipedia

Кабели действительно лежат прямо на дне океанов?

Да. Ближе к береговой линии их укладывают под грунтом, чтобы избежать повреждений, собственно поэтому их и не видно на пляжах.

Разумеется, кабели должны прокладываться в наиболее безопасных зонах морского дна, где нет разломов, мест рыболовного промысла, участков для сброса якорей кораблями и прочих опасностей для кабеля. Компании, занимающиеся прокладкой подводных кабелей, открыто сообщают о том, где расположены кабели, чтобы уменьшить вероятность их непреднамеренного повреждения.

Их едят акулы?

Повреждения кабелей акулами - один из мифов СМИ. Это стало популярной темой для статей после того, как в прошлом акулы пару раз «напали» на кабель. На сегодняшний день они не являются основной угрозой для кабелей. Тем не менее кабели часто повреждаются, в среднем более 100 раз в год. Вы редко слышите о повреждениях из-за того, что многие компании, работающие в этой сфере, используют подход «безопасность в цифрах»: до тех пор, пока кабель не будет восстановлен, тот поток данных, который он должен был обслуживать, будет распределён между другими кабелями.

Какова общая длина всех кабелей?

По состоянию на 2017 год общая длина всех действующих кабелей составляет около 1,1 миллиона километров.

Некоторые кабели очень короткие: кабель компании CeltixConnect, соединяющий Ирландию и Великобританию, протянут всего на 131 километр. Другие же кабели могут быть невероятно длинными, например, кабель Asia America Gateway, длина которого составляет 20 000 километров.

Карту-то дайте

Почему между одними странами много соединений, а между другими их вообще нет?

Давайте для начала обратимся к цитате Генри Дэвида Торо:

Наши изобретения обычно похожи на привлекательные игрушки, которые отвлекают наше внимание от действительно важных вещей. Мы спешим строить магнитный телеграф от штата Мэн до Техаса, однако, возможно, Мэн и Техас не имеют никаких важных данных, которые нужно было бы передавать через этот телеграф.

Европа, Азия и Латинская Америка постоянно обмениваются большим количеством данных с Северной Америкой. Из-за того, что Австралия и Латинская Америка данными в таких количествах не обмениваются, между ними и нет никаких кабелей. Зато если кабели появятся, мы будем знать, что там происходит что-то интересное 🙂

Кому принадлежат кабели?

Традиционно кабели принадлежали телекоммуникационным агентствам, которые формировали консорциум из тех, кто заинтересован в использовании кабелей. В конце 90-х годов прошлого столетия приток новых компаний создал большое количество частных кабелей, мощности которых продавались их пользователям.

На сегодняшний день существуют и частные, и принадлежащие консорциумам кабели. Самое большое изменение в организации передачи данных через кабели произошло в типе компаний, занимающихся этим.

Поставщики контента, такие как Google, Facebook, Microsoft и Amazon - главные инвесторы в кабельный бизнес. Объём мощности, развёрнутый частными операторами вроде поставщиков контента, превысил за последние годы тот объём мощности, который обеспечивали операторы интернет-магистралей.

Кто использует эти кабели?

Вы, например. Пользователи мощностей подводных кабелей - разные люди и компании, правительства, операторы сотовой связи, транснациональные корпорации и поставщики контента. Любой человек, который вышел в Интернет, уже пользуется подводными кабелями, независимо от устройства.

Какие объёмы информации они могут передавать?

Пропускная способность у всех кабелей разная. Новые кабели могут пропускать больший объём данных, чем те, которые были проложены 15 лет назад. Готовящийся к эксплуатации кабель MAREA сможет передавать данные со скоростью 160 терабит в секунду.

Подводные коаксиальные кабели предназначены для телеграфно-телефонной связи с. уплотнением в диапазоне частот до 150 кгц. Наиболее совершенной конструкцией подводных кабелей связи в больших длинах являются коаксиальные кабели с полиэтиленовой изоляцией, вытеснившей изоляцию из гуттаперчи, парагутты и др. Кабель- с полиэтиленовой изоляцией допускает высокочастотное уплотнение цепей при сравнительно больших расстояниях между усилительными пунктами, обеспечивая длительную и надежную эксплуатацию. Разработанные в 1950-1955 гг. встроенные в кабель подводные усилители открыли возможность осуществить многоканальную связь на требуемые расстояния. Электропитание усилителей осуществляют дистанционно по внутреннему проводнику кабеля.

Основным типом подводного коаксиального кабеля с полиэтиленовой изоляцией, выпускаемого отечественной промышленностью для прокладки на прибрежных участках, является кабель марки КПЭК-5/18 (рис. 20-6).

Трансокеанические подводные кабели связи

Внутренний проводник этого кабеля изготовляют из отожженной медной проволоки диаметром 3 мм и повива из 12 проволок диаметром 1,0 мм (наружный диаметр 5± ±0,3 мм). Изоляцию кабеля накладывают из смеси полиэтилена с полиизобутиленом толщиной 6,5 мм. Внешний проводник кабеля изготовляют из отожженных прямоугольных медных проволок шириной 5,3 и толщиной 0,6 мм, обматывают медной лентой толщиной 0,08 мм, двумя стальными лентами толщиной 0,10-0,15 мм и прорезиненной лентой и накладывают оболочку из полиэтилена или поливинилхлоридного пластиката толщиной 2 мм и подушку из кабельной пряжи, пропитанной противогнилостным составом. В кабелях марки КПЭК-5/18 на подушку накладывают двухслойную броню из круглых оцинкованных стальных проволок диаметром 4 и 6 мм, наружный покров из предварительно пропитанной противогнилостным составом кабельной пряжи толщиной не менее 1,6 мм и слой битума и мелового раствора.

Для подводной прокладки на глубину до 3 500 м предназначен кабель марки КПК-5/18 только с одним слоем круглой оцинкованной стальной проволоки диаметром 2,6-6 мм.

В кабелях КПЭБ-5/18 для прокладки в земле поверх подушки применяют две стальные ленты толщиной 0,5 мм и защитные покровы из кабельной пряжи, слоя битума и мелового раствора.

Сопротивление изоляции подводных кабелей не менее 50 000 Момoкм, емкость 100 нф/км; волновое сопротивление кабеля 51-54,5 ом, затухание 13,3 — 67мнеп/км и угол фазы 0,065-3,17 рад/км.

Трансантлантический кабель между Европой и США протяженностью свыше 5 000 км (проложен на глубине до 4,2 км) имеет внутренний проводник, состоящий из медной проволоки диаметром 3,34 мм и трех медных лент толщиной по 0,368 мм (диаметр 4,1 мм), и сплошную изоляцию из полиэтилена диаметром 15,75 мм. Внешний проводник кабеля состоит из 6 медных лент толщиной 0,4 мм и медной скрепляющей ленты толщиной 0,076 мм. Поверх внешнего проводника накладывают ленту из сплава телканекс, подушку из кабельной пряжи, броню из круглых оцинкованных.стальных проволок и наружный защитный покров из кабельной пряжи, слой битума и меловое покрытие. Кабель для глубоководных участков трассы изготовляют бронированным круглой стальной проволокой диаметром 2,2 мм высокой механической прочности. Кабель для прибрежного участка изготовляют с двойной броней из круглых стальных проволок диаметром 7,6 мм. Встроенные усилители размещены на расстоянии 68,5 км один от другого.

В 1956 г. была разработана новая конструкция подводного коаксиального кабеля для глубоководных участков, в котором на несущий трос диаметром 7,4 мм накладывают внутренний проводник из медной ленты толщиной 0,6 мм со сварным швом, калиброванным на диаметр 8,4 мм, полиэтиленовую изоляцию диаметром 26,5 мм, которую калибруют до диаметра 25,4 мм. Затем продольно накладывают внешний проводник из медной ленты толщиной 0,25 мм с перекрытием и оболочку из светостабилизированного полиэтилена толщиной 3,2 мм (рис. 20-7). Кабель предназначен для уплотнения системой связи на 128 каналов с дальнейшим расширением передаваемого спектра частот до 3 Мгц и увеличением числа каналов до 720. (В последующем спектр передаваемых частот достигнет 10 Мгц.

Симметричные подводные кабели связи марок СЭПК-4 изготовляют с токоподводящими жилами из семи медных проволок диаметром 0,52 или 0,73 мм с полиэтиленовой изоляцией толщиной 2 мм. На изолированные токопроводящие жилы, предназначенные для телеграфной связи, накладывают экран из медных лент. Четыре жилы скручивают вместе, обматывают прорезиненным миткалем и кабельной пряжей, поверх которой накладывают броню из оцинкованных стальных проволок. Кабель с жилами 7×0,73 мм в диапазоне частот 0,8-30 кгц имеет волновое сопротивление 349-160 ом, затухание 45-130 мнеп/км и угол фазы 0,06- 1,20 рад/км.

Ниже приведено 10 малоизвестных фактов о подводных Интернет-кабелях.

При описании системы проводов, из которой состоит Интернет, Нил Стивенсон однажды сравнил нашу землю с материнской платой компьютера. От телефонных столбов, с которых свисают связки кабеля, до знаков, предупреждающих о погруженных в землю волоконно-оптических линий передачи, мы постоянно окружены доказательствами присутствия системы Интернет. Однако, мы видим лишь малую часть физического состава сети. Остальную часть можно найти только в самых холодных водах глубоководного океана. Ниже приведено 10 малоизвестных фактов о подводных Интернет-кабелях.

1. УСТАНОВКА КАБЕЛЯ ЯВЛЯЕТСЯ МЕДЛЕННОЙ, УТОМИТЕЛЬНОЙ И ДОРОГОСТОЯЩЕЙ РАБОТОЙ.

99% международных данных передается по проводам, находящимся на дне океана. Они называются подводными коммуникационными кабелями. В общей сложности они протягиваются на сотни тысяч миль, а глубина их расположения может быть высотою с Эверест. Кабеля по океану прокладываются специальными судами - так называемыми кабелеукладчиками. Прокладка кабеля очень трудоемкая работа - поверхность океанского дна под прокладку кабеля должна быть обязательно ровной, также нужно предусмотреть, чтобы кабель не оказался на коралловых рифах, затонувших кораблях, местности богатой окаменелыми останками рыб или другой экологической среды обитания, и других препятствий.

Диаметр мелководного кабеля примерно равен диаметру жестяной банки содового напитка. Глубоководные кабеля намного тоньше - примерно равны диаметру маркера. Разница в размере связана с элементарной уязвимостью к повреждениям - на глубине более 2000 метров мало что происходит. Следовательно, и нет такой необходимости в оцинковании экранированного кабеля. Кабели, расположенные на небольших глубинах, закапывают под океаническое дно с помощью струй воды под высоким давлением.
Цена за укладку мили подводного коммуникационного кабеля зависит от общей длины и конечного пункта назначения. Однако, в общем укладка интернет-кабеля через океан неизменно стоит сотни миллионов долларов.

2. АКУЛЫ ПЫТАЮТСЯ СЪЕСТЬ ИНТЕРНЕТ.

Существует разногласие насчет того, почему акулам так нравится грызть подводные коммуникационные кабеля. Возможно, это как-то связано с электромагнитными полями. Возможно, это просто их любопытство. А возможно, они пытаются разрушить нашу инфраструктуру связи перед тем, как начать захват мира. В любом случае акулы продолжают грызть подводные кабеля, и это является самой распространенной причиной их повреждения. Компания Google решила проблему обернув свои подводные океанские кабеля в кевраловое покрытие.

3. ПОДВОДНЫЙ ИНТЕРНЕТ КАБЕЛЬ НАСТОЛЬКО ЖЕ УЯЗВИМ К ПОВРЕЖДЕНИЯМ, КАК И ПОДЗЕМНЫЙ КАБЕЛЬ.

Каждые несколько лет какой-нибудь благонамеренный строитель, маневрируя бульдозером, отключает интернет на весь регион. На океанском дне же хоть и нет всего этого строительного оборудования, которое могло бы вызвать разрушения, все же достаточно постоянных водных угроз для повреждения кабеля. Кроме акул, подводный коммуникационный кабель могут повредить якоря лодок, рыбацкие тралы и стихийные бедствия.

Одна компания из Торонто предложила проложить кабель через Арктику для соединения Токио и Лондона. Раньше такую затею считали невыполнимой, но с изменением климата и таянием ледников, эта идея стала реальной, хоть и очень дорогостоящей.

4. СОЕДИНЕНИЕ КОНТИНЕНТОВ ПОДВОДНЫМИ КАБЕЛЯМИ НЕ ЯВЛЯЕТСЯ НОВИНКОЙ.

Первый трансатлантический телеграфный кабель, который соединял Ньюфаундленд и Ирландию, начали прокладывать еще в 1854 году. Четыре года спустя было отправлено первое сообщение, в котором говорилось: «Господи, Уайтхаус получил пятиминутный сигнал. Сигнал от катушки слишком слабый, чтобы понять. Попробуйте медленнее и регулярнее. Я установил промежуточный шкив. Отвечайте с помощью катушки.» Конечно, не самое вдохновляющее начало. (Уилдман Уайтхаус был главным электриком Атлантической телеграфной компании)

5. ПОДВОДНЫЕ КОММУНИКАЦИОННЫЕ КАБЕЛЯ ИМЕЮТ ОСОБЫЙ ИНТЕРЕС У ШПИОНОВ.

В разгар холодной войны, СССР часто передавала слабо кодированные сообщения между двумя основными военно-морскими базами по кабелю проложенному между этими двумя базами через советские территориальные воды. Чрезмерным шифрованием советские офицеры не хотели заморачиваться. Они считали, что американцы не станут рисковать вызвать третью мировую войну, пытаясь получить доступ к данным этого кабеля. Они не рассчитали, что U.S.S. Halibut, специально оборудованная подводная лодка, может проникнуть через оборону советских войск.

Американская подводная лодка нашла кабель и установила на нем мощное подслушивающее устройство, затем каждый месяц возвращалась для сбора перехваченных сообщений. Эту операцию, которая называлась IVY BELLS, позже скомпроментировал бывший аналитик Агенства национальной безопасности Рональд Пелтон, который продал информацию о миссии советским властям. На сегодняшний день, перехват сообщений, передаваемых подводными коммуникационными кабелями является обычной процедурой спецслужб.

6. ПРАВИТЕЛЬСТВА МНОГИХ СТРАН ПЕРЕХОДЯТ НА ПОДВОДНЫЕ КАБЕЛЯ, ЧТОБЫ УБЕРЕЧЬ СЕБЯ ОТ ЭТИХ ЖЕ ШПИОНОВ.

Что касается электронного шпионажа, Соединенные Штаты имеют одно большое преимущество - их ученые, инженеры и корпорации сыграли важнейшую роль в изобретении и создании инфраструктуры глобальных коммуникаций. Самые крупные линии передачи, как правило, проходят через территорию и водные пространства США. В результате чего, они с легкостью могут перехватывать пересылаемые данные.

Когда бывший аналитик АНБ Эдвард Сноуден украл и обнародовал секретные документы, многие страны были возмущены тем, сколько их информации перехватывают американские разведывательные службы. В результате, некоторые страны пересматривают инфраструктуру Интернета. Бразилия, например, запустила проект по строительству подводного коммуникационного кабеля до Португалии, который не только полностью минует границы Соединенных Штатов, но в то же время исключает американские компании в участии данного проекта.

7. ПОДВОДНЫЕ КОММУНИКАЦИОННЫЕ КАБЕЛЯ ДЕШЕВЛЕ И БЫСТРЕЕ ПЕРЕДАЮТ ДАННЫЕ ПО СРАВНЕНИЮ СО СПУТНИКАМИ.

На орбите находится более тысячи спутников.

Мы также отправляем зонды на кометы и планируем миссии на Марс. Мы живем в будущем! Казалось бы космос должен быть лучшим методом для «виртуального проложения проводов» между странами, чем нынешний метод проложения несоразмерно-длинных проводов через океанское дно. Разве спутники не лучше технологий, используемых еще даже до изобретения телефона? Как оказывается - нет, не лучше (или пока что нет). Хотя волоконно-оптические кабели и спутники связи были разработаны в 1960-х годах, у спутников существует две проблемы: большие задержки и потери сигнала. Передача и прием сигналов из космоса занимает много времени. В то же время, исследователи разработали оптические волокна, которые могут передавать информацию со скоростью равной 99,7% скорости света.

Если хотите понять каким был бы интернет без подводных коммуникационных кабелей можете посетить Антарктику - единственный континент без физического подключения к сети. Связь с миром осуществляется исключительно при помощи спутников. Интересен тот факт, что антарктические исследовательские станции производят гораздо большее количество информации, чем они могут передавать через космическое пространство.

8. ЗАБУДЬТЕ О КИБЕРВОЙНАХ - ЧТОБЫ ПАРАЛИЗОВАТЬ ИНТЕРНЕТ, НУЖНО ВСЕГО ЛИШЬ АКВАЛАНГ И ПАРА КУСАЧЕК.

Хоть перерезать подводный коммуникационный кабель и довольно трудно (тысячи вольт протекающих по каждому из них, как одна причина), как показывает практика (Египет, 2013 год), возможно.

Подводный кабель связи

К северу от Александрии было задержано несколько людей в гидрокостюмах, которые намеренно пытались прорезать кабель Юго-Восток-Азия-Ближний Восток-Запад-Европа 4, который протягивается на 12,500 мили и соединяет три континента. Эта попытка оставила 60% населения Египта без доступа к Интернету.

9. ПОДВОДНЫЕ КАБЕЛЯ ОЧЕНЬ ТРУДНО РЕМОНТИРОВАТЬ, НО 150 ЛЕТ ОПЫТА НАУЧИЛИ НАС НЕКОТОРЫМ УЛОВКАМ.

Если у вас вызывает затруднение замена одного Интернет-кабеля за вашим столом, представьте сколько труда уходит на замену твердого, сломанного кабеля на дне океана. При повреждении подводного коммуникационного кабеля на починку отправляют специальные ремонтные корабли. Если кабель находится на мелководье, активируют роботов, которые захватывают кабель и буксируют его к поверхности. Если же кабель находится на глубоководье, на глубине 2000 метров и ниже, то корабли опускают на дно специально разработанные крюки, которые также захватывают кабель и поднимают его на поверхность для починки. Чтобы упростить работу, эти крюки иногда разрезают кабель пополам. Затем ремонтный корабль по очереди поднимает на поверхность каждую часть для починки.

10. СРОК СЛУЖБЫ ПОДВОДНЫХ КОММУНИКАЦИОННЫХ КАБЕЛЕЙ СОСТАВЛЯЕТ 25 ЛЕТ.

По состоянию на 2014 года, на дне океана находится 285 подводных коммуникационных кабеля. 22 из них еще не используются. Их называют «темными кабелями» (когда их активируют, они будут считаться «включенными»). Подводные коммуникационные кабеля имеют срок службы равный 25 годам, в течение которых они считаются экономически целесообразными с точки зрения потенциала.
Однако, за последнее десятилетие, потребление Интернет-данных резко возросло. В 2013 году потребление интернет-трафика составило 5 гигабайт на душу населения; это число, как ожидается к 2018 год, достигнет 14 гигабайт на душу населения. Такое увеличение, очевидно, представит проблему нагрузки и вызовет необходимость более частого обновления кабелей.

Источник

Коммуникационная инфраструктура – это то, что помогает нам почти мгновенно узнавать новости с других стран и континентов, она тесно связано с технологиями управления и обработки данных, компьютерными и интернет технологиями.

Но задумывались ли вы о том, как к нам попадает вся эта информация. Города буквально закутаны сетью кабелей, проводов, умело спрятанных в стены зданий и под землю. Но не только города и страны, вся планета окутана своеобразной паутиной, поскольку миллионы подводных кабелей проложены по морскому дну.

Подводные оптические кабели связи

Подводная коммуникационная инфраструктура в мире существует давно и активно продолжает развиваться. На этой интерактивной карте показаны главные мировые кабели, которые позволяют интернет и другим данным попадать из одной стороны света в другую, через океаны, и, в конечном счете, в ваш дом.

Подводные коммуникации. Карта

Если навести мышку или кликнуть на любой из показанных кабелей (или выбрать его в меню сайта), то можно узнать более подробную информацию (название, длину, соединяемые страны и др.).
А для тех, кто любит позаботиться обо всем заранее, следует учесть что не за горами и год дракона 2012 который ассоциируется с водной стихией, но в тоже время относится к стихии огня, поэтому следует заранее продумать что подарить близким на этот праздник.

Принципиально новый, качественный скачок в технике подводных линий связи произошел при появлении оптических кабелей. В первой половине 1980-х годов осуществилась прокладка ОК для регулярной эксплуатации линий длиной от 300 до 10000 км на глубине до 7500 м . Коэффициент затухания кабелей с одномодовыми волокнами на длине волны 1,3 мкм составлял 1 дБ/км, длина регенерационного участка – 35 км.

В 1985 г. был проложен первый глубоководный оптический кабель связи большой емкости между двумя Канарскими островами (ОК первого поколения ).

Эта глубоководная система содержала несколько регенераторов, скорость передачи составляла 280 Мбит/с на 2 ОВ, передача осуществлялась на длине волны 1,3 мкм.

В настоящее время подводные волоконно-оптические кабели имеют протяженность более 300000 км и обеспечивают связь между 90 странами. Запущенная в 1988 г. Трансатлантическая линия ТАТ-8 между США, Францией и Англией, работала также на длине волны 1,3 мкм и обеспечивала емкость 280 Мбит/с на 2 ОВ. До этого момента 65% всех международных каналов между США и Европой обеспечивалось с помощью спутников. В настоящее время более 75% всех каналов обеспечивается с помощью ОК. Через несколько месяцев после введение ТАТ-8 была запущена Транстихоокеанская линия ТРС-3, соединяющая США и Японию.

Второе поколение ОК также использовало регенераторы, но уже работало на длине волны 1,55 мкм и на скорости передачи 560 Мбит/с на 2 ОВ. К этому поколению относятся ТАТ-9 (США – Канада – Англия, Франция – Испания), ТАТ-10 (США – Германия), ТАТ-11 (США – Англия – Франция) и ТРС-4 (США – Канада – Япония). ТАТ-9 обеспечивало электронное мультиплексирование и демультиплексирование в подводной части системы.

Третье поколение ОК (1995 г.) обеспечивало начальный сегмент первой трансокеанской кольцевой системы ТАТ-12, ТАТ-13 и ТРС-5. На пару ОВ обеспечивалась скорость 5 Гбит/с синхронной цифровой иерархии, использовались эрбиевые усилители оптических сигналов и длина волны 1,55 мкм.

Четвертое поколение ОК позволило использовать системы, которые обеспечивают прямое усиление оптических сигналов.

Прогноз роста объемов передачи информации дальней связи отмечает, что пропускная способность и скорость передачи удваивается каждые два года.

Подводные ОК должны обладать повышенной прочностью на разрыв и выдерживать давление воды – до 75 МПа. При конструировании подводных ОК приходится учитывать такие требования, как гибкость, устойчивость к шторму, необходимые при прокладке на дне и извлечении непосредственно со дна и из траншеи, подвеске к бонам при ремонте; простоту и быстроту ремонта. Необходимо учитывать, что стоимость самого ОК составляет значительную часть от стоимости всей системы.

Конструкция кабеля для подводной системы зависит от места их прокладки. Существуют: глубоководные кабели с защитой от значительного гидростатического давления; кабели для прокладки в мелководных местах с защитой от сетей и якорей; кабели для прибрежной прокладки с повышенной механической защитой и кабели для прокладки в земле, траншеях к распределительному пункту для присоединения к наземной сети.

При изготовлении кабеля необходимо добиваться минимума остаточных напряжений в ОВ. В настоящее время в лучших образцах она составляет 0,05% от допустимой. ОВ очень чувствительны к воздействию морской воды . При ремонте линии необходимо удалить куски ОК, в которых обнаружены следы воды. При наличии постоянного гидростатического давления скорость проникновения воды вдоль кабеля постоянна, но может быть уменьшена за счет применения гидрофобного заполнения. Структура заполнителя должна быть такой, чтобы он проникал во все пустоты внутри ОК, не оказывая влияния на ОВ и эффективно герметизируя кабель в продольном направлении.

Другая проблема заключается в появлении внутри кабеля водорода, который отрицательно действует на ОВ. Водород может выделяться вследствие взаимодействия материалов, из которых изготовлен ОК, с морской водой. Недавние исследования показали, что наименьшего влияния водорода на ОВ достигают за счет металлизации поверхности волокна. Начаты исследования триаксиальной конструкции ОВ, которая также повышает его стойкость к воздействию водорода.

Уменьшить влияние гидростатического давления на ОВ можно за счет использования в конструкции кабеля полой трубки, которая может быть выполнена из металла и несет на себе функции токопроводящей жилы. Сечение трубки и ее размеры часто определяет не давление, а требование по передаваемой электрической мощности. Трубку довольно часто выполняют из меди или алюминия.

Кроме этого способа защиту от гидростатического давления можно осуществлять путем применения скрутки стальными проволоками, которые образуют прочную конструкцию. Армирующие стальные элементы должны обеспечить прочность не только при воздействии статических, но и динамических нагрузок. При двухслойном расположении проволок (направление скрутки проволок в слоях противоположное) добиваются нейтрализации крутящих моментов и исключают возможность возникновения петель.

В приведенные конструкции и характеристики подводных ОК для различных условий эксплуатации и глубины водоемов зарубежных фирм и ЗАО «Севкабель-оптик», г. Санкт-Петербург. Следует отметить, что выпуск глубоководных ОК начинает осуществляться на отечественных заводах. Так, специалистами ЗАО «Севкабель-оптик» разработаны оптические кабели для подводной морской прокладки на глубину до 400 м и до 1000 м.

Кабель представляет собой аксиальную конструкцию, в центре которой расположен оптический модуль в виде герметичной трубки, изготовленной из нержавеющей стали со свободно расположенными оптическими волокнами. Поверх модуля располагается повив медных проводников дистанционного электропитания. Далее следуют промежуточная полиэтиленовая оболочка и внешние покровы, состоящие из бронеповива стальных проволок и наружной полиэтиленовой оболочки.

На рисунке 2.15 представлена конструкция подводного ОК для прокладки на глубину до 400 м марки ПОК-400.

Рис. 2.15. Конструкция подводного ОК марки ПОК-400 производства ЗАО «Севкабель-Оптик» с медными жилами для дистанционного питания: 1 – центральная трубка из полимерных композиций со свободно уложенным оптическим волокном или пучками волокон, заполненная гидрофобным компаундом; 2 – медная проволока (токопроводящая жила дистанционного электропитания); 3 – водоблокирующая лента; 4 - медная лента; 5 – промежуточная оболочка из полиэтилена высокой плотности; 6 – круглая стальная оцинкованная проволока; 7 – гидрофобный компаунд; 8 – наружная оболочка из полиэтилена высокой плотности

Основные технические характеристики подводного кабеля марки ПОК-400:

Количество оптических волокон в кабеле

Диаметр кабеля, мм

Масса кабеля, кг/км
- в воздухе;
- в воде

Не более 972
не более 625

Радиус изгиба, мм

не менее 322

Стойкость к продольному растяжению, кН

не менее 50

Стойкость к раздавливающим усилиям, кН/см

не менее 1,5

Стойкость к радиальному гидростатическому
давлению, МПа

не менее 4,0

Температурный диапазон эксплуатации, ° С

от минус 40 до плюс 40

Электрическое сопротивление токонесущего
элемента дистанционного питания (совокупности медных проволок), Ом/км

не более 1,0

Максимальная строительная длина кабеля, км
- при поставке на барабане;
- при отгрузке на судно-кабелеукладчик

8
50

В стадии разработки и испытаний находятся и более мощные подводные оптические кабели.

Уникальное географическое положение ЗАО «Севкабель-оптик» - цех по производству оптических кабелей расположен на берегу залива и имеет собственный глубоководный причал – позволяет существенно модернизировать процесс подготовки подводного кабеля к прокладке. Предприятие, обладая тенксами – емкостями для хранения больших строительных длин подводного кабеля, готово проводить комплексные работы по созданию будущих подводных ВОСП, включая монтаж муфт и оптических усилителей, накладку и тестирование линейного тракта. Причем эти работы возможно проводить в пределах кабельной секции на берегу в заводских условиях с последующей перегрузкой участка линии на борт судна – кабелеукладчика.

Описывая систему кабелей, которые поддерживают работу Интернета, Нил Стивенсон (Neal Stephenson) как-то сравнил Землю с материнской платой компьютера.

Ежедневно вы видите на улицах телефонные столбы, соединяющие сотни километров проводов, и знаки, предупреждающие о зарытых оптоволоконных линиях, но ведь на самом деле, это лишь малая часть физического облика глобальной Сети. Основные коммуникации прокладываются в самых холодных глубинах океана, и в сегодняшней статье мы перечислим 10 любопытных фактов об этих подводных кабелях.

1. Монтаж кабеля — это медленный, утомительный и дорогостоящий процесс

99% международных данных передается по проводам, лежащим на дне океана, которые называются подводными коммуникационными кабелями. В общей сложности, их длина превышает сотни тысяч миль, а прокладывают такие провода даже на глубине 9 км.

Установка кабелей производится специальными кораблями-укладчиками. Им нужно не просто сбросить на дно провод с прикрепленным грузом, но и проследить за тем, чтобы он проходил только по плоской поверхности, минуя коралловые рифы, обломки затонувших кораблей и другие распространенные препятствия.

Диаметр мелководного кабеля составляет примерно 6 см, а вот глубоководные кабели намного тоньше — толщиной с маркер. Разница в параметрах обусловлена обыкновенном фактором уязвимости — на глубине свыше 2 км практически ничего не происходит, поэтому кабель не нужно покрывать оцинкованным защитным слоем. Провода, расположенные на небольших глубинах, закапывают на дне, используя направленные струи воды под высоким давлением. Хотя стоимость прокладки одной мили подводного кабеля варьируется в зависимости от его общей длины и назначения, этот процесс всегда обходится в сотни миллионов долларов.

2. Акулы пытаются съесть Интернет

Никто не знает, почему именно акулам так нравится грызть подводные кабели. Возможно, это как-то связано с электромагнитными полями. Или же они просто любопытны. А может быть, таким образом они пытаются уничтожить нашу коммуникационную инфраструктуру перед сухопутной атакой. По сути, акулы в буквальном смысле жуют наш Интернет и иногда повреждают изоляцию проводов. В ответ на это такие компании, как Google, покрывают свои коммуникации слоем защитного кевлара.

3. Под водой Интернет уязвим так же, как и под землей

Ежегодно бульдозеры разрушают подземные коммуникационные кабели, и хотя в океане нет подобной строительной техники, под водой проводам угрожают множество других опасностей. Помимо акул, интернет-кабели могут быть повреждены корабельными якорями, рыбацкими сетями и различными стихийными бедствиями.

Одна из компаний, базирующаяся в Торонто, предложила прокладывать такие провода через Арктику, которая соединяет Токио и Лондон. Ранее это считалось невозможным, но климат изменился, и благодаря тающему ледяному покрову данный проект стал вполне реализуемой, но все еще невероятно дорогой задачей.

4. Использование подводных кабелей — это далеко не новая идея

Подводный телеграф между Америкой и Европой

В 1854 году начался монтаж первого трансатлантического телеграфного кабеля, который связывал Ньюфаундленд и Ирландию. Спустя 4 года, была отправлена первая передача с текстом: «Лоус, Уайтхаус получил пятиминутный сигнал. Сигналы катушки слишком слабы для передачи. Попробуйте отправлять медленно и размеренно. Я поставил промежуточный шкив. Ответьте катушками». Согласитесь, не очень вдохновляющая речь («Уайтхаусом» здесь называют Уилдмана Уайтхауса (Wildman Whitehouse), занимавшего на тот момент должность главного электрика Атлантической телеграфной компании).

Для исторической справки: в течение этих четырех лет конструирования кабеля Чарльз Диккенс (Charles Dickens) продолжал писать романы, Уолт Уитмен (Walt Whitman) опубликовал сборник «Листья травы» (Leaves of Grass), небольшое поселение под названием Даллас было официально присоединено к штату Техас, а Авраам Линкольн (Abraham Lincoln) — баллотирующийся в Сенат США — выступил со своей знаменитой речью о «Разделенном Доме».

5. Шпионы обожают подводные кабели

В разгар холодной войны СССР часто транслировала слабо закодированные сообщения между своими двумя основными военно-морскими базами. По мнению русских офицеров, в более мощном шифровании данных не было нужды, поскольку базы были напрямую соединены подводным коммуникационным кабелем, располагающимся в советских территориальных водах, которые кишели всевозможными датчиками. Они считали, что американцы никогда не рискнули бы начать Третью Мировую Войну, пытаясь получить доступ к этим проводам.

Советские военнослужащие не брали в расчет Halibut — специально оснащенную подводную лодку, способную проскользнуть мимо оборонных сенсоров. Эта американская лодка нашла подводный кабель и установила на него гигантское прослушивающее устройство, после чего ежемесячно возвращалась на место для сбора всех записанных сообщений. Позже эта операция под кодовым названием «Ivy bells» была скомпрометирована бывшим аналитиком АНБ, Рональдом Пелтоном (Ronald Pelton), который продал информацию о миссии «советам». В настоящее время прослушивание подводных интернет-кабелей является стандартной процедурой для большинства шпионских агентств.

6. Правительства используют подводные кабели, чтобы избежать шпионажа

В сфере электронного шпионажа Соединенные Штаты обладали одним весомым преимуществом перед другими государствами: их ученые, инженеры и корпорации принимали активное участие в построении глобальной телекоммуникационной инфраструктуры. Основные потоки данных пересекают американскую границу и территориальные воды, что позволяет перехватывать множество сообщений.

Когда документы, украденные бывшим аналитиком АНБ Едвардом Сноуденом (Edward Snowden), обнародовали, многие страны с возмущением восприняли действия американских шпионских ведомств, которые тщательно отслеживали передачу иностранных данных. В результате, некоторые государства пересмотрели саму инфраструктуру Интернета. Бразилия, к примеру, решила проложить подводный коммуникационный кабель аж до Португалии, полностью минуя территорию США. Более того, они не позволяют американским компаниям участвовать в разработке проекта.

7. Подводные интернет-кабели — быстрее и дешевле, чем спутники

Сейчас на нашей орбите находится около 1 000 спутников, мы отправляем зонды на кометы и даже планируем миссии с высадкой на Марс. Кажется, будто создавать виртуальную коммуникационную сеть нужно именно в космосе, хотя нынешний подход с использованием подводных кабелей ничем не хуже. Но разве спутники не превзошли эту устаревшую технологию? Как выясняется, нет.

Несмотря на то, что волокно-оптические кабели и спутники изобрели примерно в одно время, космические аппараты имеют два существенных недостатка: задержка и повреждение данных. Отправка сообщений в космос и обратно действительно занимает много времени.

Между тем, оптические волокна могут передавать информацию практически со скоростью света. Если вы хотите посмотреть, каким бы был Интернет без подводных кабелей, посетите Антарктиду — единственный континент, не имеющий физического подключения к Сети. Местные исследовательские станции полагаются на спутники с высокой пропускной способностью, но даже этой мощности не хватает, чтобы передать все данные.

8. Забудьте о кибервойнах — чтобы нанести Интернету реальный ущерб, вам понадобится акваланг и пара кусачек

Хорошая новость заключается в том, что перерезать подводный коммуникационный кабель довольно сложно, ведь в каждом таком проводнике напряжение может достигать нескольких тысяч вольт. Но как показал случай, произошедший в Египте в 2013 году, сделать это вполне возможно. Тогда к северу от Александрии были задержаны несколько человек в гидрокостюмах, которые намеренно перерезали подводный кабель длиной 12 500 миль, соединяющий три континента. Скорость интернет-соединения в Египте была снижена на 60% до тех пор, пока линию не восстановили.

9. Подводные кабели нелегко ремонтировать, но за 150 лет мы все-таки научились нескольким трюкам

Если вы считаете, что замена кабеля локальной сети, который находится за вашим столом — это сложный и мучительный процесс, попробуйте починить твердый садовый шланг на дне океана. Когда подводные коммуникации повреждаются, на место отправляются специальные ремонтные корабли. Если провод находится на мелководье, роботы фиксируют его и тащат на поверхность. Если же кабель расположен на большой глубине (от 1900 метров), инженеры опускают на дно специальный захват, подымают провод и ремонтируют его прямо над водой.

10. Срок службы подводных проводников Интернета — не более 25 лет

По состоянию на 2014 год, на дне океана было проложено 285 коммуникационных проводов, 22 из которых все еще не используются. Срок эксплуатации подводного кабеля не превышает 25 лет, ведь в дальнейшем он становятся экономически невыгодным с точки зрения мощности.

Тем не менее, за последние десять лет мировое потребление данных пережило настоящий «взрыв». В 2013 году на одного человека приходилось 5 гигабайт интернет-трафика, и по мнению экспертов, к 2018 году этот показатель увеличится до 14 Гб. Вполне возможно, что при таком стремительном росте мы столкнемся с проблемами мощности и будем вынуждены обновлять коммуникационные системы намного чаще. Однако в некоторых местах за счет новых методов фазовой модуляции и улучшенных автоматизированных подводных терминалов мощность удалось повысить на 8000%. Так что, судя по всему, к большим потокам трафика подводные провода более, чем готовы.

Касательно прокладки компанией Google собственного оптоволоконного кабеля связи по дну Тихого океана, который свяжет дата-центры компании в штате Орегон, США, с Японией. Казалось бы, это огромный проект стоимостью $ 300 млн. и длинной в 10 000 км. Однако, если копнуть немного глубже станет ясно, что данный проект является выдающимся только потому, что это будет делать один медийный гигант для личного использования. Вся планета уже плотно опутана кабелями связи и под водой их намного больше, чем кажется на первый взгляд. Заинтересовавшись этой темой я подготовил общеобразовательный материал для любопытствующих.

Истоки межконтинентальной связи

Практика прокладывания кабеля через океан берет начало еще с XIX века. Как сообщает википедия , первые попытки соединить два континента проводной связью были предприняты еще в 1847 году. Успешно связать Великобританию и США трансатлантическим телеграфным кабелем удалось только к 5 августа 1858 года, однако уже в сентябре связь была утеряна. Предполагается, что причиной стали нарушение гидроизоляции кабеля и последующая его коррозия и обрыв. Стабильная связь между Старым и Новым светом была установлена только в 1866 году. В 1870 году был проложен кабель в Индию, что позволило связать напрямую Лондон и Бомбей. В эти проекты были вовлечены одни из лучших умов и промышленников того времени: Уильям Томсон (будущий великий лорд Кельвин), Чарльз Уитстон, братья Сименсы. Как видно, почти 150 лет назад люди активно занимались созданием по протяженности в тысячи километров линий связи. И на этом прогресс, понятное дело, не остановился. Однако, телефонная связь с Америкой была установлена только в 1956 году, а работы длились почти 10 лет. Подробно об укладке первого трансатлантического телеграфного и телефонного кабеля можно прочитать в книге Артура Кларка «Голос через океан» .

Устройство кабеля

Несомненный интерес представляет непосредственное устройство кабеля, который будет работать на глубине в 5-8 километров включительно.
Стоит понимать, что глубоководный кабель должен иметь следующий ряд базовых характеристик:
  • Долговечность
  • Быть водонепроницаемым (внезапно!)
  • Выдерживать огромное давление водных масс над собой
  • Обладать достаточной прочностью для укладки и эксплуатации
  • Материалы кабеля должны быть подобраны так, чтобы при механических изменениях (растяжении кабеля в ходе эксплуатации/укладки, например) не изменялись его рабочие характеристики

Рабочая часть рассматриваемого нами кабеля, по большому случаю, ни чем особым от обычной оптики не отличается. Вся суть глубоководных кабелей заключена в защите этой самой рабочей части и максимального увеличения срока его эксплуатации, что видно из схематического рисунка справа. Давайте по порядку разберем назначение всех элементов конструкции.

Полиэтилен - внешний традиционный изоляционный слой кабеля. Данный материал является отличным выбором для прямого контакта с водой, так как обладает следующими свойствами:
Устойчив к действию воды, не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой.

Мировой океан содержит в себе, фактически, все элементы таблицы Менделеева, а вода является универсальным растворителем. Использование такого распространенного в хим. промышленности материала как полиэтилен является логичным и оправданным, так как в первую очередь инженерам было необходимо исключить реакцию кабеля и воды, тем самым избежать его разрушения под воздействием окружающей среды. Полиэтилен использовался в качестве изолирующего материала в ходе прокладки первых межконтинентальных линий телефонной связи в середине XX века.
Однако, в силу своей пористой структуры полиэтилен не может обеспечить полной гидроизоляции кабеля, поэтому мы переходим к следующему слою.

Майларовая пленка - синтетический материал на основе полиэтилентерефталата . Имеет следующие свойства:
Не имеет запаха, вкуса. Прозрачный, химически неактивный, с высокими барьерными свойствами (в том числе и ко многим агрессивным средам), устойчивый к разрыву (в 10 раз прочнее полиэтилена), износу, удару. Майлар (или в СССР Лавсан) широко используется в промышленности, упаковке, текстиле, космической промышленности. Из него даже шьют палатки. Однако, использование данного материала ограничено многослойными пленками из-за усадки при термосваривании.

После слоя майларовой пленки можно встретить армирование кабеля различной мощности, в зависимости от заявленных характеристик изделия и его целевого назначения. В основном используется мощная стальная оплетка для придания кабелю достаточной жесткости и прочности, а так же для противодействия агрессивным механических воздействиям из вне. По некоторым данным, блуждающим в сети, ЭМИ исходящее от кабелей может приманивать акул, которые перегрызают кабели. Так же на больших глубинах кабель просто укладывается на дно, без копания траншеи и его могут зацепить рыболовецкие суда своими снастями. Для защиты от подобных воздействий кабель и армируется стальной оплеткой. Используемая в армировании стальная проволока предварительно оцинковывается. Усиление кабеля может происходить в несколько слоев. Основной задачей производителя в ходе этой операции является равномерность усилия в ходе намотки стальной проволоки. При двойном армировании намотка происходит в разных направлениях. При не соблюдении баланса в ходе данной операции кабель может самопроизвольно скручиваться в спираль, образуя петли.

В результате этих мероприятий масса погонного километра может достигать нескольких тонн. «Почему не легкий и прочный алюминий?» - спросят многие. Вся проблема в том, что на воздухе алюминий имеет стойкую пленку окисла, но при соприкосновении с морской водой данный металл может вступать в интенсивную химическую реакцию с вытеснением ионов водорода, которые оказывают губительное влияние на ту часть кабеля, ради которой все затевалось - оптоволокно. Поэтому используют сталь.

Алюминиевый водный барьер , или слой алюмополиэтилена используется как очередной слой гидроизоляции и экранирования кабеля. Алюмополиэтилен представляет собой комбинацию из фольги алюминиевой и полиэтиленовой пленки, соединенных между собой клеевым слоем. Проклейка может быть как односторонней, так и двухсторонней. В масштабах всей конструкции алюмополиэтилен выглядит почти незаметным. Толщина пленки может варьироваться от производителя к производителю, но, к примеру, у одного из производителей на территории РФ толщина конечного продукта составляет 0.15-0.2 мм при односторонней проклейке.

Слой поликарбоната вновь используется для усиления конструкции. Легкий, прочный и стойкий к давлению и ударам, материал широко используется в повседневных изделиях, например, в велосипедных и мотоциклетных шлемах, также применяется в качестве материала при изготовлении линз, компакт-дисков и светотехнических изделий, листовой вариант используется в строительстве как светопропускающий материал. Обладает высоким коэффициентом теплового расширения . Применение ему было найдено и в производстве кабелей.

Медная, или алюминиевая трубка входит в состав сердечника кабеля и служит для его экранирования. Непосредственно в эту конструкцию укладываются другие медные трубки с оптоволокном внутри. В зависимости от конструкции кабеля, трубок может быть несколько и они могут быть переплетены между собой различным образом. Ниже четыре примера организации сердечника кабеля:

Укладка оптоволокна в медные трубки которые заполнены гидрофобным тиксотропным гелем, а металлические элементы конструкции используются для организации дистанционного электропитания промежуточных регенераторов - устройств, осуществляющих восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения.

В разрезе получается что-то похожее на это:

Производство кабеля

Особенностью производства оптических глубоководных кабелей является то, что чаще всего оно располагается вблизи портов, как можно ближе к берегу моря. Одной из основных причин подобного размещения является то, что погонный километр кабеля может достигать массы в несколько тонн, а для сокращения необходимого кол-ва сращиваний в процессе укладки производитель стремиться сделать кабель как можно более длинным. Обычной нынче длинной для такого кабеля считается 4 км, что может вылиться в, примерно, 15 тонн массы. Как можно понять из вышеуказанного, транспортировка такой бухты глубоководного ОК не самая простая логистическая задача для сухопутного транспорта. Обычные для намотки кабелей деревянные барабаны не выдерживают описанной ранее массы и для транспортировки ОК на суше, к примеру, приходится выкладывать всю строительную длину «восьмеркой» на спаренных железнодорожных платформах, чтобы не повредить оптоволокно внутри конструкции.

Укладка кабеля

Казалось бы, имея такой мощный с виду продукт можно грузить его на корабли и сбрасывать в морскую пучину. Реальность же немного иная. Прокладка маршрута кабеля - это длительный и трудоемкий процесс. Маршрут должен быть, само собой, экономически выгодным и безопасным, так как использование различных способов защиты кабеля приводит к увеличению стоимости проекта и увеличивает срок его окупаемости. В случае прокладки кабеля между разными странами, необходимо получить разрешение на использование прибрежных вод той или иной страны, необходимо получить все необходимые разрешения и лицензии на проведение кабелеукладочных работ. После проводится геологическая разведка, оценка сейсмической активности в регионе, вулканизма, вероятность подводных оползней и других природных катаклизмов в регионе, где будут проводится работы и, в последующем, лежать кабель. Так же важную роль играют прогнозы метеорологов, дабы сроки работ не были сорваны. Во время геологической разведки маршрута учитывается широкий спектр параметров: глубина, топология дна, плотность грунта, наличие посторонних объектов, типа валунов, или затонувших кораблей. Так же оценивается возможное отклонение от первоначального маршрута, т.е. возможное удлинение кабеля и увеличение стоимости и продолжительности работ. Только после проведения всех необходимых подготовительных работ кабель можно загружать на корабли и начинать укладку.

Собственно, из гифки процесс укладки становится предельно ясным.

Прокладка оптоволоконного кабеля по морскому/океаническому дну проходит непрерывно из точки А в точку Б. Кабель укладывается в бухты на корабли и транспортируется к месту спуска на дно. Выглядят эти бухты, например, так:

Если Вам кажется, что она маловата, то обратите внимание на это фото:

После выхода корабля в море остается исключительно техническая сторона процесса. Команда укладчиков при помощи специальных машин разматывает кабель с определенной скоростью и, сохраняя необходимое натяжение кабеля за счет движения корабля продвигается по заранее проложенному маршруту.

Выглядит со стороны это так:

При каких-либо проблемах, обрывах, или повреждениях на кабеле предусмотрены специальные якоря, которые позволяют поднять его к поверхности и отремонтировать проблемный участок линии.

И, в итоге, благодаря всему этому мы можем с комфортом и на высокой скорости смотреть в интернете фото и видео с котиками со всего мира.

В комментариях к статье о проекте Google пользователь