Химическая характеристика меди. Металлическая медь: описание элемента, свойства и применение

Медь - это пластичный золотисто-розовый металл с характерным металлическим блеском. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Сu (Cuprum) и находится под порядковым номером 29 в I группе (побочной подгруппе), в 4 периоде.

Латинское название Cuprum произошло от имени острова Кипр. Известны факты, что на Кипре ещё в III веке до нашей эры находились медные рудники и местные умельцы выплавляли медь. Купить медь можно в комании «КуПрум».

По данным историков, знакомству общества с медью около девяти тысячелетий. Самые древние медные изделия найдены во время археологических раскопок на местности современной Турции. Археологи обнаружили маленькие медные бусинки и пластинки для украшения одежды. Находки датируются рубежом VIII-VII тыс. до нашей эры. Из меди в древности изготавливали украшения, дорогую посуду и различные инструменты с тонким лезвием.

Великим достижением древних металлургов можно назвать получение сплава с медной основой - бронзы.

Основные свойства меди

1. Физические свойства.

На воздухе медь приобретает яркий желтовато-красный оттенок за счёт образования оксидной плёнки. Тонкие же пластинки при просвечивании зеленовато-голубого цвета. В чистом виде медь достаточно мягкая, тягучая и легко прокатывается и вытягивается. Примеси способны повысить её твёрдость.

Высокую электропроводность меди можно назвать главным свойством, определяющим её преимущественное использование. Также медь обладает очень высокой теплопроводностью. Такие примеси как железо, фосфор, олово, сурьма и мышьяк влияют на базовые свойства и уменьшают электропроводность и теплопроводность. По данным показателям медь уступает лишь серебру.

Медь обладает высокими значениями плотности, температуры плавления и температуры кипения. Важным свойством также является хорошая стойкость по отношению к коррозии. К примеру, при высокой влажности железо окисляется значительно быстрее.

Медь хорошо поддаётся обработке: прокатывается в медный лист и медный пруток , протягивается в медную проволоку с толщиной, доведённой до тысячных долей миллиметра. Этот металл является диамагнетиком, то есть намагничивается против направления внешнего магнитного поля.

Медь является сравнительно малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. Она легко реагирует с галогенами, селеном и серой. Кислоты без окислительных свойств не оказывают воздействия на медь. С водородом, углеродом и азотом химических реакций нет. На влажном воздухе происходит окисление с образованием карбоната меди (II) - верхнего слоя платины.
Медь обладает амфотерностью, то есть в земной коре образует катионы и анионы. В зависимости от условий, соединения меди проявляют кислотные или основные свойства.

Способы получения меди

В природе медь существует в соединениях и в виде самородков. Соединения представлены оксидами, гидрокарбонатами, сернистыми и углекислыми комплексами, а также сульфидными рудами. Самые распространённые руды - это медный колчедан и медный блеск. Содержание меди в них составляет 1-2%. 90% первичной меди добывают пирометаллургическим способом и 10% гидрометаллургическим.

1. Пирометаллургический способ включает в себя такие процессы: обогащение и обжиг, плавка на штейн, продувка в конвертере, электролитическое рафинирование.
Обогащают медные руды методом флотации и окислительного обжига. Сущность метода флотации заключается в следующем: частицы меди, взвешенные в водной среде, прилипают к поверхности пузырьков воздуха и поднимаются на поверхность. Метод позволяет получить медный порошкообразный концентрат, который содержит 10-35% меди.

Окислительному обжигу подлежат медные руды и концентраты со значительным содержанием серы. При нагреве в присутствии кислорода происходит окисление сульфидов, и количество серы снижается почти в два раза. Обжигу подвергаются бедные концентраты, в которых содержится 8-25% меди. Богатые концентраты, содержащие 25-35% меди, плавят, не прибегая к обжигу.

Следующий этап пирометаллургического способа получения меди - это плавка на штейн. Если в качестве сырья используется кусковая медная руда с большим количеством серы, то плавку проводят в шахтных печах. А для порошкообразного флотационного концентрата применяют отражательные печи. Плавка происходит при температуре 1450 °С.

В горизонтальных конвертерах с боковым дутьём медный штейн продувается сжатым воздухом для того, чтобы произошли процессы окисления сульфидов и феррума. Далее образовавшиеся окислы переводят в шлак, а серу в оксид. В конвертере образуется черновая медь, которая содержит 98,4-99,4% меди, железо, серу, а также незначительное количество никеля, олова, серебра и золота.

Черновая медь подлежит огневому, а далее электролитическому рафинированию. Примеси удаляют с газами и переводят в шлак. В результате огневого рафинирования образуется медь с чистотой до 99,5%. А после электролитического рафинирования чистота составляет 99,95%.

2. Гидрометаллургический способ заключается в выщелачивании меди слабым раствором серной кислоты, а затем выделении металлической меди непосредственно из раствора. Такой способ применяется для переработки бедных руд и не допускает попутного извлечения драгоценных металлов вместе с медью.

Применение меди

Благодаря ценным качествам медь и медные сплавы используются в электротехнической и электромашиностроительной отрасли, в радиоэлектронике и приборостроении. Существуют сплавы меди с такими металлами, как цинк, олово, алюминий, никель, титан, серебро, золото. Реже применяются сплавы с неметаллами: фосфором, серой, кислородом. Выделяют две группы медных сплавов: латуни (сплавы с цинком) и бронзы (сплавы с другими элементами).

Медь обладает высокой экологичностью, что допускает её использование в строительстве жилых домов. К примеру, медная кровля за счёт антикоррозионных свойств, может прослужить больше ста лет без специального ухода и покраски.

Медь в сплавах с золотом используется в ювелирном деле. Такой сплав увеличивает прочность изделия, повышает стойкость к деформированию и истиранию.

Для соединений меди характерна высокая биологическая активность. В растениях медь принимает участие в синтезе хлорофилла. Поэтому её можно увидеть в составе минеральных удобрений. Недостаток меди в организме человека может вызвать ухудшение состава крови. Она есть в составе многих продуктов питания. К примеру, этот металл содержится в молоке. Однако важно помнить, что избыток соединений меди может вызвать отравление. Именно поэтому нельзя готовить пищу в медной посуде. Во время кипячения в пищу может попасть большое количество меди. Если же посуда внутри покрыта слоем олова, то опасности отравления нет.

В медицине медь используют, как антисептическое и вяжущее средство. Она является компонентом глазных капель от конъюнктивита и растворов от ожогов.

В большей части промышленных отраслей используется такой металл, как медь. Благодаря высокой электропроводности без этого материала не обходится ни одна область электротехники. Из нее образуются проводники, обладающими отличными эксплуатационными особенностями. Помимо этих особенностей медь обладает пластичностью и тугоплавкостью, устойчивостью к коррозии и агрессивным средам. И сегодня мы рассмотрим металл со всех сторон: укажем цену за 1 кг лома меди, поведаем о ее использовании и производстве.

Понятие и особенности

Медь представляет собой химический элемент, носящийся к первой группы периодической системы имени Менделеева. Этот пластичный металл имеет золотисто – розовый цвет и является одним из трех металлов с ярко выраженным окрашиванием. С давних времен активно используется человеком во многих областях промышленности.

Главной особенностью металла является его высокая электро- и теплопроводность. Если сравнивать с другими металлами, то проведение электрического тока через медь выше в 1,7 раз, чем у алюминия, и почти в 6 раз выше, чем у железа.

Медь имеет ряд отличительных особенностей перед остальными металлами:

  1. Пластичность . Медь представляет собой мягкий и пластичный металл. Если брать во внимание медную проволоку, она легко гнется, принимает любые положения и при этом не деформируется. Сам же металл достаточно немного надавить, чтобы проверить эту особенность.
  2. Устойчивость к коррозии . Этот фоточувствительный материал отличается высокой устойчивостью к возникновению коррозии. Если медь на длительный срок оставить во влажной среде, на ее поверхности начнет появляться зеленая пленка, которая и защищает металл от негативного влияния влаги.
  3. Реакция на повышение температуры . Отличить медь от других металлов можно путем ее нагревания. В процессе медь начнет терять свой цвет, а затем становиться темнее. В результате при нагреве металла он достигнет черного цвета.

Благодаря таким особенностям можно отличить данный материал от , и других металлов.

Видео ниже расскажет вам про полезные свойства меди:

Плюсы и минусы

Преимуществами данного металла являются:

  • Высокий показатель теплопроводности;
  • Устойчивость к влиянию коррозии;
  • Достаточно высокая прочность;
  • Высокая пластичность, которая сохраняется до температуры -269 градусов;
  • Хорошая электропроводность;
  • Возможность легирования с различными добавочными компонентами.

Про характеристики, физические и химические свойства вещества-металла меди и ее сплавов читайте ниже.

Свойства и характеристики

Медь, как малоактивный металл, не вступает во взаимодействие с водой, солями, щелочами, а также со слабой серной кислотой, но при этом подвержена растворению в концентрированной серной и азотной кислоте.

Физические свойства метала:

  • Температура плавления меди составляет 1084°C;
  • Температура кипения меди составляет 2560°C;
  • Плотность 8890 кг/м³;
  • Электрическая проводимость 58 МОм/м;
  • Теплопроводность 390 м*К.

Механические свойства:

  • Предел прочности на разрыв при деформированном состоянии составляет 350-450 МПа, при отожженном – 220-250 МПа;
  • Относительное сужение в деформированном состоянии 40-60%, в отожженном – 70-80%;
  • Относительное удлинение в деформированном состоянии составляет 5-6 δ ψ%, в отожженном – 45-50 δ ψ%;
  • Твердость составляет в деформированном состоянии 90-110 НВ, в отожженном – 35-55 НВ.

При температуре ниже 0°С этот материал обладает более высокой прочностью и пластичностью, чем при +20°С.

Структура и состав

Медь, имеющая высокий коэффициент электропроводности, отличается наименьшим содержанием примесей. Доля их в составе может приравниваться 0,1%. С целью увеличения прочности меди в нее добавляют различные примеси: сурьма, и прочее. В зависимости от ее состава и степени содержания чистой меди различают несколько ее марок.

Структурный тип меди может включать в себя также кристаллы серебра, кальция, алюминий, золота и других компонентов. Все они отличаются сравнительной мягкостью и пластичностью. Частичка самой меди имеет кубическую форму, атому которой расположены на вершинах F –ячейки. Каждая ячейка состоит из 4 атомов.

О том, где брать медь, смотрите в этом видеоролике:

Производство материалов

В природных условиях данный металл содержится в самородной меди и сульфидных рудах. Широкое распространение при производстве меди получили руды под названием «медный блеск» и «медный колчедан», которые содержат до 2% необходимого компонента.

Большую часть (до 90%) первичного металла благодаря пирометаллургическому способу, который включает в себя массу этапов: процесс обогащения, обжиг, плавка, обработка в конвертере и рафинирование. Оставшаяся часть получается гидрометаллургическим способом, который заключается в ее выщелачивании разведенной серной кислоты.

Области применения

в следующих областях:

  • Электротехническая промышленность , которая заключается, в первую очередь, в производстве электропроводов. Для этих целей медь должна быть максимально чистой, без посторонних примесей.
  • Изготовление филигранных изделий . Медная проволока в отожженном состоянии отличается высокой пластичностью и прочностью. Именно поэтому, она активно используется при производстве различных шнуров, орнаментов и прочих конструкций.
  • Переплавка катодной меди в проволоку . Самые разнообразные медные изделия переплавляются в слитки, которые идеально подходят для дальнейшей прокатки.

Медь активно используется в самых различных сферах промышленности. Она может входить в состав не только проволоки, но и оружия и даже бижутерии. Ее свойства и широкая сфера применения благоприятно повлияли на ее популярность.

Видео ниже расскажет о том, как медь может изменить свои свойства:

§1. Химические свойства простого вещества (ст. ок. = 0).

а) Отношение к кислороду .

В отличие от своих соседей по подгруппе – серебра и золота, - медь непосредственно реагирует с кислородом. Медь проявляет к кислороду незначительную активность, но во влажном воздухе постепенно окисляется и покрывается пленкой зеленоватого цвета, состоящей из основных карбонатов меди:

В сухом воздухе окисление идет очень медленно, на поверхности меди образуется тончайший слой оксида меди:

Внешне медь при этом не меняется, так как оксид меди (I) как и сама медь, розового цвета. К тому же слой оксида настолько тонок, что пропускает свет, т.е. просвечивает. По-иному медь окисляется при нагревании, например, при 600-800 0 C. В первые секунды окисление идет до оксида меди (I), которая с поверхности переходит в оксид меди (II) черного цвета. Образуется двухслойное окисное покрытие.

Q образования (Cu 2 O) = 84935 кДж.

Рисунок 2. Строение оксидной пленки меди.

б) Взаимодействие с водой .

Металлы подгруппы меди стоят в конце электрохимического ряда напряжений, после иона водорода. Следовательно, эти металлы не могут вытеснять водород из воды. В то же время водород и другие металлы могут вытеснять металлы подгруппы меди из растворов их солей, например:

Эта реакция окислительно-восстановительная, так как происходит переход электронов:

Молекулярный водород вытесняет металлы подгруппы меди с большим трудом. Объясняется это тем, что связь между атомами водорода прочная и на ее разрыв затрачивается много энергии. Реакция же идет только с атомами водорода.

Медь при отсутствии кислорода с водой практически не взаимодействует. В присутствии кислорода медь медленно взаимодействует с водой и покрывается зеленой пленкой гидроксида меди и основного карбоната:

в) Взаимодействие с кислотами .

Находясь в ряду напряжений после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислота на медь не действуют.

Однако в присутствии кислорода медь растворяется в этих кислотах с образованием соответствующих солей:

Исключение составляет только иодоводородная кислота, которая вступает в реакцию с медью с выделением водорода и образованием очень устойчивого комплекса меди (I):

2 Cu + 3 HI → 2 H [ CuI 2 ] + H 2

Медь так же реагирует с кислотами – окислителями, например, с азотной:

Cu + 4HNO 3( конц .) → Cu(NO 3 ) 2 +2NO 2 +2H 2 O

3Cu + 8HNO 3( разбав .) → 3Cu(NO 3 ) 2 +2NO+4H 2 O

А так же с концентрированной холодной серной кислотой:

Cu + H 2 SO 4(конц.) → CuO + SO 2 + H 2 O

C горячей концентрированной серной кислотой:

Cu + 2H 2 SO 4( конц ., горячая ) → CuSO 4 + SO 2 + 2H 2 O

C безводной серной кислотой при температуре 200 0 С образуется сульфат меди (I):

2Cu + 2H 2 SO 4( безводн .) 200 °C → Cu 2 SO 4 ↓ + SO 2 + 2H 2 O

г) Отношение к галогенам и некоторым другим неметаллам .

Q образования (CuCl) = 134300 кДж

Q образования (CuCl 2) = 111700 кДж

Медь хорошо реагирует с галогенами, дает два вида галогенидов: CuX и CuX 2 .. При действии галогенов при комнатной температуре видимых изменений не происходит, но на поверхности вначале образуется слой адсорбированных молекул, а затем и тончайший слой галогенидов. При нагревании реакция с медью происходит очень бурно. Нагреем медную проволочку или фольги и опустим ее в горячем виде в банку с хлором – около меди появятся бурые пары, состоящие из хлорида меди (II) CuCl 2 с примесью хлорида меди (I) CuCl. Реакция происходит самопроизвольно за счет выделяющейся теплоты. Одновалентные галогениды меди получают при взаимодействии металлической меди с раствором галогенида двухвалентной меди, например:

При этом монохлорид выпадает из раствора в виде белого осадка на поверхности меди.

Медь так же достаточно легко ступает в реакции с серой и селеном при нагревании (300-400 °C):

2Cu +S→Cu 2 S

2Cu +Se→Cu 2 Se

А вот с водородом, углеродом и азотом медь не реагирует даже при высоких температурах.

д) Взаимодействие с оксидами неметаллов

Медь при нагревании может вытеснять из некоторых оксидов неметаллов (например, оксид серы (IV) и оксиды азота (II, IV)) простые вещества, образуя при этом термодинамически более устойчивый оксид меди (II):

4Cu+SO 2 600-800°C →2CuO + Cu 2 S

4Cu+2NO 2 500-600°C →4CuO + N 2

2 Cu +2 NO 500-600° C →2 CuO + N 2

§2. Химические свойства одновалентной меди (ст.ок. = +1)

В водных растворах ион Cu + очень неустойчив и диспропорционирует:

Cu + Cu 0 + Cu 2+

Однако медь в степени окисления (+1) может стабилизироваться в соединениях с очень низкой растворимостью или за счет комплексообразовния .

а) Оксид меди (I ) Cu 2 O

Амфотерный оксид. Кристаллическое вещество коричнево-красного цвета. В природе встречается в виде минерала куприта. Исскуственно может быть получен нагреванием раствора соли меди (II) с щелочью и каким-нибудь сильным восстановителем, например, формалином или глюкозой . Оксид меди(I) не реагирует с водой. Оксид меди(I) переводится в раствор концентрированной соляной кислотой с образованием хлоридного комплекса:

Cu 2 O +4 HCl →2 H [ CuCl 2]+ H 2 O

Так же растворим в концентрированном растворе аммиака и солей аммония:

Cu 2 O+2NH 4 + →2 +

В разбавленной серной кислоте диспропорционирует на двухвалентную медь и металлическую медь:

Cu 2 O+H 2 SO 4(разбав.) →CuSO 4 +Cu 0 ↓+H 2 O

Также оксид меди(I) вступает в водных растворах в следующие реакции:

1. Медленно окисляется кислородом до гидроксида меди(II):

2 Cu 2 O +4 H 2 O + O 2 →4 Cu (OH ) 2

2. Реагирует с разбавленными галогенводородными кислотами с образованием соответствующих галогенидов меди(I):

Cu 2 O +2 H Г→2 Cu Г↓ + H 2 O (Г= Cl , Br , J )

3.Восстанавливается до металлической меди типичными восстановителями, например, гидросульфитом натрия в концентрированном растворе:

2 Cu 2 O +2 NaSO 3 →4 Cu ↓+ Na 2 SO 4 + H 2 SO 4

Оксид меди(I) восстанавливается до металлической меди в следующих реакциях:

1. При нагревании до 1800 °C (разложение):

2 Cu 2 O - 1800 ° C →2 Cu + O 2

2. При нагревании в токе водорода, монооксида углерода, с алюминиеми прочими типичными восстановителями:

Cu 2 O + H 2 - >250°C →2Cu +H 2 O

Cu 2 O + CO - 250-300°C →2Cu +CO 2

3 Cu 2 O + 2 Al - 1000° C →6 Cu + Al 2 O 3

Также, при высоких температурах оксид меди(I) реагирует:

1. C аммиаком (образуется нитрид меди(I))

3 Cu 2 O + 2 NH 3 - 250° C →2 Cu 3 N + 3 H 2 O

2. С оксидами щелочных металлов:

Cu 2 O+M 2 O- 600-800°C →2 М CuO (M= Li, Na, K)

При этом образуются купраты меди (I).

Оксид меди (I) заметно реагирует с щелочами :

Cu 2 O +2 NaOH (конц.) + H 2 O ↔2 Na [ Cu (OH ) 2 ]

б) Гидроксид меди (I ) CuOH

Гидроксид меди(I) образует жёлтое вещество, не растворяется в воде.

Легко разлагается при нагревании или кипячении:

2 CuOH Cu 2 O + H 2 O

в) Галогениды CuF , Cu С l , CuBr и CuJ

Все эти соединения – белые кристаллические вещества, плохо растворимые в воде, но хорошо растворимые в избытке NH 3 , цианидных ионов, тиосульфатных ионов и иных сильных комплексообразователей. Иод образует только соединение Cu +1 J. В газообразном состоянии образуются циклы типа (CuГ) 3 . Обратимо растворимы в соответствующих галогенводородных кислотах:

Cu Г + HГ ↔ H [ Cu Г 2 ] (Г= Cl , Br , J )

Хлорид и бромид меди (I) неустойчивы во влажном воздухе и постепенно превращаются в основные соли меди (II):

4 Cu Г +2 H 2 O + O 2 →4 Cu (OH )Г (Г=Cl, Br)

г) Прочие соединения меди (I )

1. Ацетат меди (I) (СН 3 СООСu) - соединение меди, имеет вид бесцветных кристаллов. В воде медленно гидролизуется до Сu 2 О, на воздухе окисляется до ацетата двухвалентной меди; Получают СН 3 СООСu восстановлением (СН 3 СОО) 2 Сu водородом или медью, сублимацией (СН 3 СОО) 2 Сu в вакууме или взаимодействием (NH 3 OH)SO 4 с (СН 3 СОО) 2 Сu в р-ре в присутствии Н 3 СООNH 3 . Вещество токсично.

2. Ацетиленид меди(I) - красно-коричневые, иногда черные кристаллы. В сухом виде кристаллы детонируют при ударе или нагреве. Устойчивы во влажном состоянии. При детонации в отсутствие кислорода не образуется газообразных веществ. Под действием кислот разлагается. Образуется в виде осадка при пропускании ацетилена в аммиачные растворы солей меди(I):

С 2 H 2 +2[ Cu (NH 3 ) 2 ](OH ) → Cu 2 C 2 ↓ +2 H 2 O +2 NH 3

Данная реакция используется для качественного обнаружения ацетилена.

3. Нитрид меди - неорганическое соединение с формулой Cu 3 N, тёмно-зелёные кристаллы.

Разлагается при нагревании:

2 Cu 3 N - 300° C →6 Cu + N 2

Бурно реагирует с кислотами:

2 Cu 3 N +6 HCl - 300° C →3 Cu ↓ +3 CuCl 2 +2 NH 3

§3. Химические свойства двухвалентной меди (ст.ок. = +2)

Наиболее устойчивая степень окисления у меди и самая характерная для нее.

а) Оксид меди (II ) CuO

CuO - основный оксид двухвалентной меди. Кристаллы чёрного цвета, в обычных условиях довольно устойчивые, практически нерастворимые в воде. В природе встречается в виде минерала тенорита (мелаконита) чёрного цвета. Оксид меди(II) реагирует с кислотами с образованием соответствующих солей меди(II) и воды:

CuO + 2 HNO 3 Cu (NO 3 ) 2 + H 2 O

При сплавлении CuO со щелочами образуются купраты меди (II):

CuO +2 KOH - t ° K 2 CuO 2 + H 2 O

При нагревании до 1100 °C разлагается :

4CuO- t ° →2 Cu 2 O + O 2

б) Гидроксид меди (II) Cu (OH ) 2

Гидроксид меди(II) - голубое аморфное или кристаллическое вещество, практически не растворимое в воде. При нагревании до 70-90 °C порошка Cu(ОН) 2 или его водных суспензий разлагается до CuО и Н 2 О:

Cu (OH ) 2 CuO + H 2 O

Является амфотерным гидроксидом. Реагирует с кислотами с образованием воды и соответствующей соли меди:

С разбавленными растворами щелочей не реагирует, в концентрированных растворяется, образуя ярко-синие тетрагидроксокупраты (II):

Гидроксид меди(II) со слабыми кислотами образует основные соли . Очень легко растворяется в избытке аммиака с образованием аммиаката меди:

Cu(OH) 2 +4NH 4 OH→(OH) 2 +4H 2 O

Аммиакат меди имеет интенсивный сине-фиолетовый цвет, поэтому его используют в аналитической химии для определения малых количеств ионов Cu 2+ в растворе.

в) Соли меди (II )

Простые соли меди (II) известны для большинства анионов, кроме цианида и иодида, которые при взаимодействии с катионом Cu 2+ образуют ковалентные соединения меди (I), нерастворимые в воде.

Соли меди (+2), в основном, растворимы в воде. Голубой цвет их растворов связан с образованием иона 2+ . Они часто кристаллизуются в виде гидратов. Так, из водного раствора хлорида меди (II) ниже 15 0 С кристаллизуется тетрагидрат, при 15-26 0 С – тригидрат, свыше 26 0 С – дигидрат. В водных растворах соли меди (II) в небольшой степени подвержены гидролизу, и из них часто осаждаются основные соли .

1. Пентагидрат сульфата меди (II) (медный купорос)

Наибольшее практическое значение имеет CuSO 4 *5H 2 O, называемый медным купоросом. Сухая соль имеет голубую окраску, однако при несильном нагревании (200 0 С) она теряет кристаллизационную воду. Безводная соль белого цвета. При дальнейшем нагревании до 700 0 С она превращается в оксид меди, теряя триоксид серы:

CuSO 4 ­-- t ° CuO + SO 3

Готовят медный купорос растворением меди в концентрированной серной кислоте. Эта реакция описана в разделе «Химические свойства простого вещества». Медный купорос применяют при электролитическом получении меди, в сельском хозяйстве для борьбы с вредителями и болезнями растений, для получения других соединений меди .

2. Дигидрат хлорида меди (II).

Это темно-зеленые кристаллы, легкорастворимые в воде. Концентрированные растворы хлорида меди имеют зеленый цвет, а разбавленные – голубой. Это объясняется образованием хлоридного комплекса зеленого цвета:

Cu 2+ +4 Cl - →[ CuCl 4 ] 2-

И его дальнейшим разрушением и образованием голубого аквакомплекса.

3. Тригидрат нитрата меди (II).

Кристаллическое вещество синего цвета. Получается при растворении меди в азотной кислоте. При нагревании кристаллы сначала теряют воду, затем разлагаются с выделением кислорода и диоксида азота, переходя в оксид меди (II):

2Cu(NO 3 ) 2 -- →2CuO+4NO 2 +O 2

4. Карбонат гидроксомеди (II).

Карбонаты меди малоустойчивы и в практике почти не применяются. Некоторое значение для получения меди имеет лишь основной карбонат меди Cu 2 (OH) 2 CO 3 , который встречается в природе в виде минерала малахита. При нагревании легко разлагается с выделением воды, оксида углерода (IV) и оксида меди (II):

Cu 2 (OH) 2 CO 3 -- →2CuO+H 2 O+CO 2

§4. Химические свойства трехвалентной меди (ст.ок. = +3)

Эта степень окисления является наименее стабильной для меди, и поэтому соединения меди (III) являются скорее исключениями, чем «правилами». Тем не менее, некоторые соединения трехвалентной меди существуют.

а) Оксид меди (III) Cu 2 O 3

Это кристаллическое вещество, темно-гранатового цвета. Не растворяется в воде.

Получается окислением гидроксида меди(II) пероксодисульфатом калия в щелочной среде при отрицательных температурах:

2Cu(OH) 2 +K 2 S 2 O 8 +2KOH -- -20°C →Cu 2 O 3 ↓+2K 2 SO 4 +3H 2 O

Это вещество разлагается при температуре 400 0 С:

Cu 2 O 3 -- t ° →2 CuO + O 2

Окисид меди (III) – сильный окислитель. При взаимодействии с хлороводородом хлор восстанавливается до свободного хлора :

Cu 2 O 3 +6 HCl -- t ° →2 CuCl 2 + Cl 2 +3 H 2 O

б) Купраты меди (Ш)

Это черные или синие вещества, в воде не устойчивы, диамагнитны, анион – ленты квадратов (dsp 2). Образуются при взаимодействии гидроксида меди(II) и гипохлорита щелочного металла в щелочной среде :

2 Cu (OH ) 2 + М ClO + 2 NaOH →2М CuO 3 + NaCl +3 H 2 O (M = Na - Cs )

в) Калия гексафторкупрат(III)

Зеленое вещество, парамагнитно. Октаэдрическое строение sp 3 d 2 . Комплекс фторида меди CuF 3 , который в свободном состоянии разлагается при -60 0 С. Образуется нагреванием смеси хлоридов калия и меди в атмосфере фтора:

3KCl + CuCl + 3F 2 → K 3 + 2Cl 2

Разлагает воду с образованием свободного фтора.

§5. Соединения меди в степени окисления (+4)

Пока науке известно лишь одно вещество, где медь в степени окисления +4, это гексафторкупрат(IV) цезия – Cs 2 Cu +4 F 6 - оранжевое кристаллическое вещество, стабильное в стеклянных ампулах при 0 0 С. Бурно реагирует с водой. Получается фторированием при высоком давлении и температуре смеси хлоридов цезия и меди :

CuCl 2 +2CsCl +3F 2 -- t ° р → Cs 2 CuF 6 +2Cl 2

ОПРЕДЕЛЕНИЕ

Медь - двадцать девятый элемент Периодической таблицы. Обозначение - Cu от латинского «cuprum». Расположен в четвертом периоде, IB группе. Относится к металлам. Заряд ядра равен 29.

Важнейшими минералами, входящими в состав медных руд, являются: халькозин, или медный блеск Cu 2 S; халькопирит, или медный колчедан CuFeS 2 ; малахит (CuOH) 2 CO 3 .

Чистая медь - тягучий вязкий металл светло-розового цвета (рис. 1), легко прокатываемый в тонкие листы. Она очень хорошо проводит теплоту и электрический ток, уступая в этом отношении только серебру. В сухом воздухе медь почти не изменяется, так как образующаяся на её поверхности тончайшая пленка оксидов (придающая меди боле темный цвет) служит хорошей защитой от дальнейшего окисления. Но в присутствии влаги и диоксида углерода поверхность меди покрывается зеленоватым налетом карбоната гидроксомеди (CuOH) 2 CO 3 .

Рис. 1. Медь. Внешний вид.

Атомная и молекулярная масса меди

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии хром существует в виде одноатомных молекул Cu, значения его атомной и молекулярной масс совпадают. Они равны 63,546.

Изотопы меди

Известно, что в природе медь может находиться в виде двух стабильных изотопов 63 Cu (69,1%) и 65 Cu (30,9%). Их массовые числа равны 63 и 65 соответственно. Ядро атома изотопа меди 63 Cu содержит двадцать девять протонов и тридцать четыре нейтрона, а изотоп 65 Cu - столько же протонов и тридцать шесть нейтронов.

Существуют искусственные нестабильные изотопы меди с массовыми числами от 52-х до 80-ти, а также семь изомерных состояний ядер, среди которых наиболее долгоживущим является изотоп 67 Cu с периодом полураспада равным 62 часа.

Ионы меди

Электронная формула, демонстрирующая распределение по орбиталям электронов меди выглядит следующим образом:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 .

В результате химического взаимодействия медь отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Cu 0 -1e → Cu + ;

Cu 0 -2e → Cu 2+ .

Молекула и атом меди

В свободном состоянии медь существует в виде одноатомных молекул Cu. Приведем некоторые свойства, характеризующие атом и молекулу меди:

Сплавы меди

Важнейшими сплавами меди с другими металлами являются латуни (сплавы меди с цинком), медноникелевые сплавы и бронзы.

Медноникелевые сплавы подразделяются на конструкционные и электротехнические. К конструкционным относятся мельхиоры и нейзильберы. Мельхиоры содержат 20-30% никеля и небольшие количества железа и марганца, а нейзильберы содержат 5-35% никеля и 13-45% цинка. К электротехническим медноникелевым сплавам относятся константан (40% никеля, 1,5% марганца), манганин (3% никеля и 12% марганца) и копель (43% никеля и 0,5% марганца).

Бронзы подразделяются по основному входящему в их состав компоненту (кроме меди) на оловянные, алюминиевые, кремнистые и т.д.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание В водный раствор хлорида меди (II) опустили медные электроды по 20 г каждый и подключили их к источнику постоянного тока. Через некоторое время катод вынули и растворили при нагревании в концентрированной серной кислоте, а затем добавили в раствор избыток гидроксида натрия, в результате чего выпал осадок массой 49 г. Определите массу анода после электролиза.
Решение Запишем уравнения реакций:

катод: Cu 2+ +2e→ Cu 0 ; (1)

анод: Cu 0 — 2e→ Cu 2+ . (2)

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O; (3)

CuSO 4 + 2NaOH = Cu(OH) 2 ↓ + Na 2 SO 4 ; (4)

Рассчитаем количество вещества гидроксида меди (II) (осадка) (молярная масса равна 98г/моль):

n (Cu(OH) 2) = m (Cu(OH) 2) / M (Cu(OH) 2);

n (Cu(OH) 2) = 49 / 98 = 0,5 моль.

Определим количество вещества и массу меди (катода) по окончании реакции (молярная масса - 64 г/моль):

m final (Cu) = n (Cu(OH) 2) =0,5 моль;

m final (Cu) = n (Cu) × M (Cu);

m final (Cu)= 0,5 × 64 = 32 г.

Найдем массу меди, осажденной на катоде:

m(Cu) = m final (Cu) - m parent (Cu);

m(Cu) = 32 - 20 = 12 г.

Вычислим массу анода по окончании реакции. Масса анода уменьшилась ровно настолько, насколько увеличилась масса катода:

m anode = m parent (anode) — m(Cu);

m anode = 20 - 12 = 8 г.

Ответ Масса анода равна 8 г