Какие механические свойства характеризуют прочность материала. Механические свойства металлов и способы их определения. Показатели упругого и пластического состояния

Механические свойства характеризуют способность материала сопротивляться деформации и разрушению под действием приложенных нагрузок.

По характеру изменения во времени действующей нагрузки механические испытания делятся на статические (на растяжение, сжатие, изгиб, кручение); динамические (на ударный изгиб) и циклические (на усталость).

По воздействию температуры на процесс их делят на испытания при комнатной температуры, низкотемпературные и высокотемпературные (на длительную прочность, ползучесть).

Статические испытания проводятся при воздействии на образец с определенной скоростью постоянно действующей нагрузки. Скорость деформации составляет 10 -4 –10 -1 с -1 . Статические испытания на растяжение относятся к наиболее распространенным. Свойства, определяемые при этих испытаниях, приведены в многочисленных стандартах по техническим условиям на материалы. К статическим испытаниям относятся: растяжение, сжатие, изгиб, кручение.

Динамические испытания характеризуются приложением к образцу ударной нагрузки и значительной скоростью деформации. Длительность испытания не превышает сотен долей секунды. Скорость деформации составляет около 10 2 с -1 . Динамические испытания чаще всего проводят по схеме ударного изгиба образцов с надрезом.

Циклические испытания характеризуются многократными изменениями нагрузки по величине и по направлению. Примером испытаний являются испытания на усталость , они длительны и по их результату определяют число циклов до разрушения при разных значениях напряжения. В конечном итоге находят предельные напряжения, которые образец выдерживает без разрушения в течение определенного числа циклов нагружения.

Простейшим механическим свойством является твердость. Способы определения твердости делятся, в зависимости от скорости приложения нагрузки, на статические и динамические а по способу ее приложения – на методы вдавливания и царапания. Методы определения твердости по Бринеллю, Роквеллу, Виккерсу относятся к статическим методам испытания.

Твердость это способность материала сопротивляться вдавливанию в него более твердого тела (индентора) под действием внешних сил.

При испытании на твердость в поверхность материалов вдавливают пирамиду, конус или шарик (индентор), в связи с чем различают методы испытаний, соответственно, по Виккерсу, Роквеллу и Бринеллю. Кроме того, существуют менее распространенные методы испытания твердости: метод упругого отскока (по Шору), метод сравнительной твердости (Польди) и некоторые другие.

При испытании материалов на твердость не изготавливают стандартных специальных образцов, однако к размерам, поверхности образцов и изделий предъявляются определенные требования.

Твердость по Виккерсу (ГОСТ 2999-75) определяют путем вдавливания в металл индентора алмазной пирамиды с углом при вершине 136° под действием постоянной нагрузки (Р): 1; 2; 2,5; 3; 5; 10; 20; 30; 50 или 100 кгс и выдержки под нагрузкой 10–15 с. Для определения твердости черных металлов и сплавов используют нагрузки от 5 до 100 кгс, медных сплавов – от 2,5 до 50 кгс, алюминиевых сплавов – от 1 до 100 кгс. После снятия нагрузки определяют длину диагонали отпечатка с помощью микроскопа прибора, а твердость HV рассчитывают по формуле

где Р – нагрузка, кгс; d – диагональ отпечатка, мм.

В стандарте на испытание имеется таблица зависимости твердости от величины нагрузки и длины диагонали. Поэтому на практике расчетов не производят, а пользуются готовой расчетной таблицей. Твердость по Виккерсу HV измеряется в кгс/мм2, Н/мм2 или в МПа. Значение твердости по Виккерсу может изменяться от HV 2060 до HV 5 при нагрузке 1 кгс.

По методу Бринелля вдавливают в образец или изделие стальной закаленный шарик диаметром 10, 5 или 2,5 мм под действием нагрузок 3 000, 1 000, 750, 500, 250, 62,5 кгс и других (ГОСТ 9012-59). Схема определения твердости по Бринеллю показана на рис. 1.20. Полученный круглый отпечаток на образце измеряют лупой и по таблицам находят величину твердости по Бринеллю, значение которой не превышает 450 НВ. Твердость по Бринеллю почти совпадает со значениями твердости по Виккерсу.

Твердость НВ – это также величина напряжений сопротивления вдавливанию, т.е. физическая величина:

где Р – нагрузка, кгс; D – диаметр шарика, мм; t – глубина сегмента отпечатка; d – диаметр отпечатка, мм.

Рис. 1.20. Схема определения твердости по Бринеллю.

Твердость по Бринеллю НВ (по умолчанию) имеет размерность кгс/мм 2 , например, твердость алюминиевого сплава равна 70 НВ. При нагрузке, определяемой в ньютонах, твердость по Бринеллю измеряется в МПа.

Например, твердость отожженной стали равна 207 НВ при нагрузке 3 000 кгс, диаметре шарика 10 мм, диаметре отпечатка 4,2 мм или, учитывая коэффициент перевода: 1 ньютон = 9,8 кгс, НВ = 2028 МПа.

По методу Роквелла (ГОСТ 9013-59) вдавливают алмазный конус с углом при вершине 120о (шкалы А и С) или стальной шарик диаметром 1,5875 мм (шкала В). При этом определяют твердость, соответственно, HRA, HRC и HRB. В настоящее время измерение твердости по методу Роквелла является наиболее распространенным методом, потому что при использовании твердомеров Роквелла не требуется измерять отпечаток, число твердости считывается со шкалы прибора сразу после снятия основной нагрузки.

Метод заключается во вдавливании в испытуемый образец индентора под действием двух последовательно прикладываемых нагрузок – предварительной Р 0 и основной P 1 , которая добавляется к предварительной, так что общая нагрузка Р = Р0 + Р1. После выдержки в течение нескольких секунд основную нагрузку снимают и измеряют остаточную глубину проникновения индентора, который при этом продолжает находиться под действием предварительной нагрузки. Перемещение основной стрелки индикатора на одно деление шкалы соответствует перемещению индентора на 0,002 мм, которое принимается за единицу твердости.

На рис. 1.21 представлена схема измерения твердости по методу Роквелла алмазным или твердосплавным конусом. При испытаниях измеряют глубину восстановленного отпечатка. Шкалы А и С между собой совпадают, поскольку испытания проводят одним и тем же индентором – алмазным конусом, но при разных нагрузках: 60 и 150 кгс соответственно. Твердость в этом случае определяется как

Рис. 1.21. Схема определения твердости по Роквеллу (индентор – конус).

На практике значения твердости по Роквеллу не рассчитываются по формулам, а считываются с соответствующей (черной или красной) шкалы прибора. Шкалы HRC и HRA используются для высокой твердости, HRB – для низкой. Число твердости по Роквеллу измеряют в условных единицах, оно является мерой глубины вдавливания индентора под определенной нагрузкой.

Механические свойства металлов при растяжении . Испытание на растяжение материалов проводят в соответствии с ГОСТ 1497-84 «Методы испытаний на растяжение». Стандарт устанавливает методы статических испытаний на растяжение черных и цветных металлов для определения при температуре 20 °С пределов пропорциональности, упругости, текучести, временного сопротивления разрыву, относительного удлинения и относительного сужения, модуля упругости.

Для испытаний применяют плоские и цилиндрические образцы, вырезанные из детали или специально изготовленные. Размеры образцов регламентированы указанным стандартом, они подчиняются геометрическому подобию и могут быть короткими и длинными. Для цилиндрического образца берется соотношение начальной рабочей длины l 0 и исходного диаметра d0: l 0 = 5d 0 – короткий образец, l 0 = 10d 0 – длинный образец. Для плоского образца берется соотношение рабочей длины l 0 и площади поперечного сечения F 0: l 0 = 5,65 F 0 – короткий образец, l 0 = 11,3 F 0 – длинный образец. Цилиндрические образцы изготавливаются диаметром 3 мм и более. Образцы состоят из рабочей части длиной l 0 , и головок, форма и размер которых соответствует захватам машины (рис. 1.22).

Рис. 1.22. Цилиндрические и плоские образцы до и после испытания на растяжение.

Рис. 1.23. Первичная диаграмма растяжения.

Растяжение образца проводят на специальных машинах, фиксирующих величину прилагаемой нагрузки и изменение длины образца при растяжении.

Эти же машины позволяют записывать изменение длины образца при увеличении нагрузки (рис. 1.23), т.е. первичную диаграмму испытания на растяжение в координатах: нагрузка (Р), в Н, кН и абсолютное удлинение образца Δl в мм.

Измеряя величину нагрузки в характерных точках диаграммы испытаний на растяжение (рис. 1.23), определяют следующие характеристики механических свойств материалов:

σ пц – предел пропорциональности, точка р ;

σ 0,05 – предел упругости, точка е ;

σ т – предел текучести физический, точка s;

σ 0,2 – предел текучести условный;

σ в – временное сопротивление разрыву или предел прочности, точка b.

Значения 0,05 и 0,2 в записи предела упругости и текучести соответствуют величине остаточной деформации Δl в процентах от l 0 при растяжении образца. Напряжения при испытании на растяжение определяют путем деления нагрузки Р, соответствующей характерной точке на диаграмме, на площадь первоначального поперечного сечения F 0 рабочей части испытуемого образца:

Площадь поперечного сечение F 0 определяется следующим образом:

для цилиндрического образца

для плоского образца F 0 = a 0 × b 0 , где a 0 – первоначальная толщина, а b 0 – первоначальная ширина образца. В точке k определяют напряжение сопротивления разрушению материала.

Предел пропорциональности и предел упругости определяют с помощью тензометра (прибор для определения величины деформации). Предел текучести физический и условный рассчитывают, определяя нагрузку по диаграмме растяжения. Если на диаграмме нет площадки текучести, то для вычисления условного предела текучести необходимо провести графические построения на диаграмме (рис. 1.24). Вначале находят величину остаточной деформации, равную 0,2 % от l 0 , далее отмечают отрезок на оси деформации, равный 0,2 % от l 0, и проводят линию, параллельную пропорциональному участку диаграммы растяжения до пересечения с кривой растяжения. Нагрузка Р 0,2 соответствует точке их пересечения. Физический или условный предел текучести характеризует способность материала к началу пластической деформации, т.е. сопротивление малой пластической деформации.

Рис. 1.24. Определение предела текучести.

Предел прочности можно подсчитать, используя показание силоизмерителя, по максимальной нагрузке P max при разрыве; либо найти P max (P в) по первичной диаграмме растяжения. Характер деформации при растяжении вязких и хрупких материалов существенно различается.

Хрупкие материалы после достижения максимальной нагрузки быстро разрушаются без значительной пластической деформации, поэтому σ в для хрупких материалов является характеристикой сопротивления разрушению, а для пластичных – характеристикой сопротивления деформации.

Напряжение разрушения определяют как истинное. При этом нагрузку разрушения делят на конечную площадь поперечного сечения образца после разрушения (F к):

Все рассчитанные таким образом величины являются характеристиками прочности материала.

Пластичность, т.е. способность деформироваться без разрушения, характеризуется изменениями размеров образца. При испытании на разрыв определяют характеристики пластичности: относительное удлинение

и относительное сужение

где l к и F к – соответственно, длина рабочей части и площадь поперечного сечения образца после разрыва.

Рассчитанные характеристики механических свойств после испытания а растяжение заносят в протокол.

Механические свойства металлов при сжатии . Для хрупких материалов с низким сопротивлением разрыву проводят испытание на сжатие по ГОСТ 25.503-97. Для испытания используют цилиндрические образцы с гладкими торцами и торцовыми выточками.

При сжатии находят следующие характеристики сопротивления деформации: предел пропорциональности
, предел упругости
, физический предел текучести
, условный предел текучести
, предел прочности
. Напряжения рассчитываются как отношение соответствующей нагрузки к площади сечения образца до деформации. Предел прочности можно рассчитать без записи диаграммы сжатия, для остальных расчетов необходима первичная диаграмма испытания.

Диаграмма сжатия пластичных образцов отличается от диаграммы хрупких образцов. Высокопластичные материалы не удается разрушить при сжатии, и они сплющиваются. Поэтому временное сопротивление сжатию пластичных образцов можно определить лишь условно, т.к. после участка упрочнения происходит быстрое нарастание сплющивания образца. Хрупкие материалы разрушаются при незначительных деформациях и предел прочности находят по отношению максимальной нагрузки к первоначальной площади сечения образца. У хрупких материалов, например чугуна, сопротивление сжатию выше, чем сопротивление растяжению. Многие хрупкие материалы при сжатии разрушаются вследствие среза или скалывания по плоскостям под углом 45° к оси образца.

К характеристике пластичности при сжатии относят ε – относительное укорочение образца:
где h 0 , h k – начальная и конечная высота образца.

Испытания на изгиб . Испытание на изгиб проводят по ГОСТ 14019-80 по двум схемам: сосредоточенной нагрузкой, приложенной в середине пролета, и при чистом изгибе (рис. 1.25).

Рис. 1.25. Схема изгиба сосредоточенной силой (а ) и двумя симметричными нагрузками (б ).

В результате испытания находят предел пропорциональности, предел упругости, предел текучести с точным замером величины деформации. Предел прочности при изгибе рассчитывают σ изг:
где М изг – наибольший изгибающий момент, равный при первой схеме нагружения М изг = Рl /4, а по второй схеме – М изг =Ра; W – момент сопротивления, характеристика поперечного сечения бруса, для образцов круглого сечения W = πd 3 /32; для образцов прямоугольного сечения W = bh 2 /6, где h – высота бруса.

Пластичность характеризует f разр (величина прогиба), деформация, которая зависит от материала, длины образца, момента инерции и т.д.

Динамические испытания . Испытания на ударный изгиб . Важной характеристикой механических свойств является ударная вязкость, характеризующая удельную работу, затрачиваемую на разрушение при ударе образца с надрезом. Ударная вязкость определяется при испытании на маятниковом копре с постоянным запасом работы маятника по ГОСТ 9454-78 «Метод испытания на ударный изгиб при пониженной, комнатной и повышенной температурах». Стандарт распространяется на черные и цветные металлы и сплавы и устанавливает метод испытания от –100 до +1 000 °С. Метод основан на разрушении ударом маятникового копра образца с концентратором напряжений. В результате испытания определяют полную работу, затраченную при ударе К или ударную вязкость КС.

Используют образцы прямоугольной формы с концентратором типа U, V, T (усталостная трещина). Наиболее распространенными образцами являются образцы размерами 55×10×10 мм с U концентратом 2×2 мм (рис. 1.26).

Рис. 1.26. Стандартный образец с U-образным надрезом для испытаний на ударный изгиб.

На разрушение ударом образца затрачивается только часть энергии маятника, в связи с чем маятник после разрушения образца продолжает двигаться, отклоняясь на определенный угол. Чем больше величина работы, затрачиваемой на разрушение образца, тем на меньший угол он отклоняется от вертикали после разрушения. Величиной этого угла и определяют работу удара К или работу, затраченную на разрушение образца. Работу разрушения K относят к площади поперечного сечения образца S0 в месте излома, и тем самым определяют KC ударную вязкость: КС = К/S 0 , где К измеряется в Дж (кгс·м), S 0 в м 2 (см 2).

В зависимости от вида концентратора ударная вязкость обозначается KCU, KCV, KCT и имеет размерность МДж/м 2 (МДж/см 2) или кгс·м/см 2 .

Контрольные вопросы и задания

1. Какие типы кристаллических решеток характерны для чистых металлов?

2. Изобразите решетки кристаллов ОЦК, ГЦК, ГПУ, укажите их координационное число и плотность упаковки.

3. Какие типы связей характерны для металлов Al, Cu, Fe; полуметаллов Bi, Si и неметаллических материалов?

4. Опишите типичные признаки металлического состояния.

5. Какие дефекты кристаллического строения присутствуют в реальных кристаллах?

6. Опишите строение пластмасс и других неметаллических материалов.

7. Охарактеризуйте основные методы исследования материалов.

8. В чем заключается макроанализ материалов?

9. Что можно определить при исследовании микроструктуры?

10. Как приготовить объекты исследования для макро- и микроанализа?

11. Опишите преимущества электронной микроскопии при исследовании материалов.

11. Какие задачи можно решать, применяя рентгеновские методы анализа для изучения материалов?

12. Какие требования предъявляют к выбору материала при изготовлении изделий?

13. Опишите химические свойства материалов.

14. Какие виды коррозии возможны в материалах при их эксплуатации в агрессивных средах?

15. Опишите физические и теплофизические свойства материалов.

16. Охарактеризуйте механические свойства материалов.

17. Как определяют твердость по Бринеллю, Роквеллу и Виккерсу?

18. Запишите единицы измерения твердости по Бринеллю, Роквеллу и Виккерсу.

19. Какие методы испытаний механических свойств относят к статическим, динамическим и циклическим?

20. Изобразите первичную диаграмму растяжения для пластичного материала.

21. Как по диаграмме растяжения определить предел прочности и предел текучести?

22. Какие типы образцов используют для нахождения относительного удлинения и относительного сужения?

23. Какие характеристики определяют при испытании на сжатие и на изгиб?

24. Какие характеристики вычисляют при испытании на ударный изгиб?

25. Чем различается ударная вязкость, обозначаемая КСU , КСV, КСТ?

Глава XIV
ДЕФОРМАЦИИ И НАПРЯЖЕНИЯ ПРИ СВАРКЕ

§ 72. Механические свойства металлов и сплавов


Металлы в отличие от неметаллов имеют следующие характерные признаки: внешний блеск, хорошую проводимость теплоты и электрического тока, достаточно высокую прочность, хорошую ковкость и свариваемость, кристаллическое строение тела, определенную температуру плавления и кристаллизации.
Металлы и сплавы классифицируют по числу, содержанию и характеру легирующих компонентов и по степени чистоты. Компонентом называют химический элемент, входящий в состав металла или сплава. Компоненты подразделяют на основные и легирующие. Основным называют компонент, который преобладает в металле или сплаве, легирующим - компонент, вводимый в состав сплава для получения необходимых свойств.
По числу компонентов металлы разделяют на простые металлы и металлические сплавы. Простым металлом называют металл, не содержащий в себе легирующих компонентов, металлическим сплавом называют сложное кристаллическое вещество, в составе которого имеется несколько металлов и металлоидов. Сплавы бывают двух-, трех- и более компонентными.
По содержанию легирующих компонентов сплавы делят на низко-, средне- и высоколегированные. Низколегированным называют сплав, содержащий в своем составе легирующих компонентов менее 2,5%, среднелегированным - 2,5-10%, высоколегированным - более 10%.
По степени чистоты металлы и сплавы делят на металлы пониженной, средней, повышенной, высокой чистоты и особо чистые.
К механическим свойствам металлов и сплавов относятся: прочность, твердость, упругость, пластичность, ударная вязкость, ползучесть и усталость.

Рис. 76. Виды нагрузок, вызывающих изменение формы металла или cплава


Прочность - это способность металла или сплава противостоять деформации и разрушению под действием приложенных нагрузок - растягивающих, сжимающих, изгибающих, скручивающих и срезающих (рис. 76). Нагрузки бывают внешними (вес, давление и др.) и внутренними (изменение размеров тела от нагревания и охлаждения, изменение структуры металла и т. д.), а также статическими, т. е. постоянными по величине и направлению действия, или динамическими, т. е. переменными по величине, направлению и продолжительности действия. Методы определения прочности рассмотрены отдельно.
Твердостью называется способность металла или сплава оказывать сопротивление проникновению в него другого, более твердого тела. Применяют следующие способы испытания твердости металлов и сплавов вдавливанием в поверхность образца:
стального закаленного шарика диаметром 2,5; 5 или 10 мм - определение твердости по Бринеллю;
стального закаленного шарика диаметром 1,588 мм или алмазного конуса с углом 120° - определение твердости по Роквеллу;
правильной четырехгранной алмазной пирамиды – определение твердости по Виккерсу.
Упругостью называется способность металла или сплава восстанавливать первоначальную форму после прекращения действия внешней нагрузки (рис. 77).


Рис. 77. Деформация, характеризующая упругость (после снятия нагрузки образец возвращается в исходное положение)


Пластичностью называется способность металла или сплава, не разрушаясь, изменять форму под действием нагрузки и сохранять эту форму после ее снятия.
Ударной вязкостью называется способность металла или сплава сопротивляться действию ударных нагрузок. Ударная вязкость измеряется в кгс м/см 2 (Дж/м 2).
Ползучестью называется свойство металла или сплава медленно и непрерывно пластически деформироваться под действием постоянной нагрузки (особенно при повышенных температурах).
Усталостью называется постепенное разрушение металла или сплава при большом числе повторно-переменных нагрузок; свойство выдерживать эти нагрузки называется выносливостью.
Испытания образцов металлов и сплавов на растяжение. При испытании образцов на растяжение определяют предел прочности (временное сопротивление) σв, предел текучести (физический) σ т, предел текучести условный (технический) σ 0,2 , предел пропорциональности σпц, истинное сопротивление разрыву S к и относительное удлинение и сужение δ, φ.


Рис. 78. Диаграмма растяжения (зависимость удлинения ∆l от нагрузки Р)


Рассмотрим показанную на рис. 78 диаграмму, на которой по вертикальной оси отложена приложенная нагрузка Р в килограммах (чем выше точка по оси, тем больше нагрузка), а по горизонтальной оси - абсолютное удлинение ∆l образца. Такие диаграммы строят по результатам растяжения образцов на специальных испытательных разрывных машинах. Полученная кривая позволяет судить о прочности образца на растяжение.
Начальный прямолинейный участок 0-Р пц характеризует упругость образца, пропорциональность между удлинением материала и нагрузкой (Р пц - нагрузка при пределе пропорциональности).
Точка Р׳ т резкого перегиба кривой определяет величину нагрузки при верхнем пределе текучести. Участок Р׳ т -Р т (площадка текучести), параллельный горизонтальной оси 0-∆l, в пределах которого образец удлиняется при постоянной внешней нагрузке.
Точка Р в отмечает наибольшую растягивающую силу - нагрузку при пределе прочности, по которой рассчитывают предел прочности материала образца.
Точка Р к определяет величину растягивающей силы в момент разрушения образца.
Предел прочности при растяжении (временное сопротивление) - это напряжение, отвечающее наибольшей нагрузке, предшествовавшей разрушению образца: σ в =P в /F 0 , где F 0 - площадь поперечного сечения образца перед испытанием, мм 2 (м 2); Р в - наибольшая растягивающая сила, кгс (Н).
Предел текучести (физический) - это наименьшее напряжение, при котором происходит деформация испытуемого образца без увеличения нагрузки (нагрузка не увеличивается, а образец удлиняется): σт=P т /F 0 , где Р т – нагрузка растяжения, вызывающая удлинение образца на площадке текучести, кгс (Н).
Предел текучести условный (технический) σ 0,2 – это напряжение, при котором остаточная деформация образца достигает 0,2%: σ 0,2 = Р׳ т /F 0 , где Р т - нагрузка растяжения в начале площадки текучести, кгс (Н).
Предел пропорциональности σ пц - условное напряжение, при котором отступление от линейной зависимости между напряжениями и деформациями достигает определенной степени, устанавливаемой техническими условиями: σ пц =Р пц /F 0 , где Р пц - нагрузка в конце площадки упругости, кгс (Н).
Истинное сопротивление разрыву - это напряжение в шейке растягиваемого образца, определяемое как отношение растягивающей силы, действующей на образец непосредственно перед его разрывом, к площади поперечного сечения образца в шейке: Sк=P к /F, где Р к - нагрузка в момент разрыва образца, кгс (Н); F - истинное сечение образца в момент разрыва, мм 2 (м 2).
Относительное удлинение δ и относительное сужение – φ определяются по формулам: δ=∆l/l 0 ∙100%, φ=(F 0 -F)/F∙100%, где ∆l=l 1 -l 0 - абсолютное удлинение образца при разрыве; l 1 - длина образца в момент разрыва; l 0 - первоначальная длина образца; F 0 – первоначальная площадь поперечного сечения образца; F - площадь образца после разрыва.

§ 4. МЕХАНИЧЕСКИЕ СВОЙСТВА


Способность металла сопротивляться воздействию внешних сил характеризуется механическими свойствами. Поэтому при выборе материала для изготовления деталей машин необходимо прежде всего учитывать его механические свойства: прочность, упругость, пластичность, ударную вязкость, твердость и выносливость. Эти свойства определяют по результатам механических испытаний, при которых металлы подвергают воздействию внешних сил (нагрузок). Внешние силы могут быть статическими, динамическими или циклическими (повторно-переменными). Нагрузка вызывает в твердом теле напряжение и деформацию.
Напряжение - величина нагрузки, отнесенная к единице площади поперечного сечения испытуемого образца. Деформация – изменение формы и размеров твердого тела под влиянием приложенных внешних сил. Различают деформации растяжения (сжатия), изгиба, кручения, среза (рис. 8). В действительности материал может подвергаться одному или нескольким видам деформации одновременно.

Рис. 8. Виды деформаций:
а - сжатие, б - растяжение, в - кручение, г - срез, д - изгиб



Рис. 9. Диаграмма растяжения:
а - условная диаграмма в координатах Р-∆l, б – условная диаграмма напряжений и диаграмма истинных напряжений


Для определения прочности, упругости и пластичности металлы в виде образцов круглой или плоской формы испытывают на статическое растяжение (ГОСТ 1497-73). Испытания проводят на разрывных машинах. В результате испытаний получают диаграмму растяжения (рис. 9). По оси абсцисс этой диаграммы откладывают значения деформации, а по оси ординат - нагрузки, приложенные к образцу.
Прочность - способность материала сопротивляться разрушению под действием нагрузок оценивается пределом прочности и пределом текучести. Важным показателем прочности материала является также удельная прочность – отношение предела прочности материала к его плотности. Предел прочности σ в (временное сопротивление) - это условное напряжение в Па (Н/м 2), соответствующее наибольшей нагрузке, предшествующей разрушению образца: σ в =P max /F 0 , где P max - наибольшая нагрузка, Н; F 0 - начальная площадь поперечного сечения рабочей части образца, м 2 . Истинное сопротивление разрыву S к - это напряжение, определяемое отношением нагрузки Р к в момент разрыва к площади минимального поперечного сечения образца после разрыва F к (S к = Р к / F к).
Предел текучести (физический) σ т - это наименьшее напряжение (в МПа), при котором образец деформируется без заметного увеличения нагрузки: σ т =Р т /F 0 , где Р т - нагрузка, при которой наблюдается площадка текучести, Н.
Площадку текучести имеют в основном только малоуглеродистая сталь и латуни. Другие сплавы площадки текучести не имеют. Для таких материалов определяют предел текучести (условный), при котором остаточное удлинение достигает 0,2% от расчетной длины образца: σ 0,2 =Р 0,2 /F 0 .
Упругость - способность материала восстанавливать первоначальную форму и размеры после прекращения действия нагрузки Р уп оценивают пределом пропорциональности σ пц и пределом упругости σ уп.
Предел пропорциональности σ пц - напряжение (МПа), выше которого нарушается пропорциональность между прилагаемым напряжением и деформацией образца σ пц =Р пц /F 0 .
Предел упругости (условный) σ 0,05 - это условное напряжение в МПа, соответствующее нагрузке, при которой остаточная деформация впервые достигает 0,05% от расчетной длины образца l0: σ 0,05 =P 0,05 /F 0 , где P 0,05 - нагрузка предела упругости, Н.
Пластичность , т. е. способность материала принимать новую форму и размеры под действием внешних сил, не разрушаясь, характеризуется относительным удлинением и относительным сужением.
Относительное удлинение (после разрыва) δ - это отношение приращения (l к -l 0) расчетной длины образца после разрыва к его первоначальной расчетной длине l 0 , выраженное в процентах: δ=[(l к -l 0)/l 0 ]100%.
Относительное сужение (после разрыва) φ - это отношение разности начальной и минимальной площадей (F 0 -F к) поперечного сечения образца после разрыва к начальной площади F 0 поперечного сечения, выраженное в процентах: φ=[(F 0 -F к)/F 0 ]100%.
Чем больше значения относительного удлинения и сужения для материала, тем он более пластичен. У хрупких материалов эти значения близки к нулю. Хрупкость конструкционного материала является отрицательным свойством.
Ударная вязкость , т. е. способность материала сопротивляться динамическим нагрузкам, определяется как отношение затраченной на излом образца работы W (в МДж) к площади его поперечного сечения F (в м 2) в месте надреза КС=W/F.
Для испытания (ГОСТ 9454-78) изготовляют специальные стандартные образцы, имеющие форму квадратных брусочков с надрезом. Испытывают образец на маятниковых копрах. Свободно падающий маятник копра ударяет по образцу со стороны, противоположной надрезу. При этом фиксируется работа.
Определение ударной вязкости особенно важно для некоторых металлов, работающих при минусовых температурах и проявляющих склонность к хладноломкости. Чем ниже порог хладноломкости, т. е. температура, при которой вязкое разрушение материала переходит в хрупкое, и больше запас вязкости материала, тем больше ударная вязкость материала. Хладноломкость - снижение ударной вязкости при низких температурах.
Циклическая вязкость - это способность материалов поглощать энергию при повторнопеременных нагрузках. Материалы с высокой циклической вязкостью быстро гасят вибрации, которые часто являются причиной преждевременного разрушения. Например, чугун, имеющий высокую циклическую вязкость, в некоторых случаях (для станин и других корпусных деталей) является более ценным материалом, чем углеродистая сталь.
Твердостью называют способность материала сопротивляться проникновению в него другого, более твердого тела. Высокой твердостью должны обладать металлорежущие инструменты: резцы, сверла, фрезы, а также поверхностноупрочненные детали. Твердость металла определяют способами Бринелля, Роквелла и Виккерса (рис. 10).
Способ Бринелля (ГОСТ 9012-59) основан на том, что в плоскую поверхность металла вдавливают под постоянной нагрузкой стальной закаленный шарик. Диаметр шарика и величину нагрузки устанавливают в зависимости от твердости и толщины испытываемого металла. Твердость по Бринеллю определяют на твердомере ТШ (твердомер шариковый). Испытание проводят следующим образом. На поверхности образца, твердость которого нужно измерить, напильником или абразивным кругом зачищают площадку размером 3-5 см 2 . Образец ставят на столик прибора и поднимают до соприкосновения со стальным шариком, который укреплен в шпинделе прибора. Груз опускается и вдавливает шарик в испытываемый образец. На поверхности металла образуется отпечаток. Чем больше отпечаток, тем металл мягче.
За меру твердости НВ принимают отношение нагрузки к площади поверхности отпечатка диаметром d и глубиной t, который образуется при вдавливании силой Р шарика диаметра D (см. рис. 10, а).


Рис. 10. Определение твердости металла методами Бринелля (а), Роквелла (б) и Виккерса (в)


Числовое значение твердости определяют так: измеряют диаметр отпечатка с помощью оптической лупы (с делениями) и по полученному значению находят в таблице, приложенной к ГОСТу, соответствующее число твердости.
Преимущество способа Бринелля заключается в простоте испытания и точности получаемых результатов. Способом Бринелля не рекомендуется измерять твердость материалов с НВ>450, например закаленной стали, так как при измерении шарик деформируется и показания искажаются.
Для испытания твердых материалов применяют способ Роквелла (ГОСТ 9013-59). В образец вдавливают алмазный конус с углом при вершине 120° или стальной закаленный шарик диаметром 1,59 мм. Твердость по Роквеллу измеряется в условных единицах. Условная величина единицы твердости соответствует осевому перемещению наконечника на 0,002 мм. Испытание проводят на приборе ТК. Значение твердости определяется по глубине отпечатка h и отсчитывают по циферблату индикатора, установленному на приборе. Во всех случаях предварительная нагрузка Р 0 равна 100 Н.
При испытании металлов с высокой твердостью применяют алмазный конус и общую нагрузку P=P 0 +P 1 =1500 Н. Твердость отсчитывают по шкале «С» и обозначают HRC.
Если при испытании берется стальной шарик и общая нагрузка 1000 Н, то твердость отсчитывается по шкале «В» и обозначается HRB.
При испытании очень твердых или тонких изделий используют алмазный конус и общую нагрузку 600 Н. Твердость отсчитывается по шкале «А» и обозначается HRA. Пример обозначения твердости по Роквеллу: HRC 50 - твердость 50 по шкале «С».
При определении твердости способом Виккерса (ГОСТ 2999-75) в качестве вдавливаемого в материал наконечника используют четырехгранную алмазную пирамиду с углом при вершине 136°. При испытаниях применяют нагрузки от 50 до 1000 Н (меньшие значения нагрузки для определения твердости тонких изделий и твердых, упрочненных поверхностных слоев металла). Числовое значение твердости определяют так: замеряют длины обеих диагоналей отпечатка после снятия нагрузки и с помощью микроскопа и по полученному среднему арифметическому значению длины диагонали находят в таблице соответствующее число твердости. Пример обозначения твердости по Виккерсу – HV 500.
Для оценки твердости металлов в малых объемах, например, на зернах металла или его структурных составляющих применяют способ определения микротвердости . Наконечник (индентор) прибора представляет собой алмазную четырехгранную пирамиду (с углом при вершине 136°, таким же, как и у пирамиды при испытании по Виккерсу). Нагрузка на индентор невелика и составляет 0,05-5 Н, а размер отпечатка 5-30 мкм. Испытание проводят на оптическом микроскопе ПМТ-3, снабженном механизмом нагружения. Микротвердость оценивают по величине диагонали отпечатка.
Усталостью называют процесс постепенного накопления повреждений материала под действием повторно-переменных напряжений, приводящий к образованию трещин и разрушению. Усталость металла обусловлена концентрацией напряжений в отдельных его объемах, в которых имеются неметаллические включения, газовые пузыри, различные местные дефекты и т. д. Характерным является усталостный излом, образующийся после разрушения образца в результате многократного нагружения (рис. 11) и состоящий из двух разных по внешнему виду частей. Одна часть излома 1 с ровной (затертой) поверхностью образуется вследствие трения поверхностей в области трещин, возникших от действия повторно-переменных нагрузок, другая часть 2 с зернистым изломом возникает в момент разрушения образца. Испытания на усталость проводят на специальных машинах. Наиболее распространены машины для повторно-переменного изгибания вращающегося образца, закрепленного одним или обоими концами, а также машины для испытаний на растяжение – сжатие и на повторно-переменное кручение. В результате испытаний определяют предел выносливости, характеризующий сопротивление усталости.

Содержание статьи

МЕТАЛЛОВ МЕХАНИЧЕСКИЕ СВОЙСТВА. Когда на металлический образец действует сила или система сил, он реагирует на это, изменяя свою форму (деформируется). Различные характеристики, которыми определяются поведение и конечное состояние металлического образца в зависимости от вида и интенсивности сил, называются механическими свойствами металла.

Интенсивность силы, действующей на образец, называется напряжением и измеряется как полная сила, отнесенная к площади, на которую она действует. Под деформацией понимается относительное изменение размеров образца, вызванное приложенными напряжениями.

УПРУГАЯ И ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ, РАЗРУШЕНИЕ

Если напряжение, приложенное к металлическому образцу, не слишком велико, то его деформация оказывается упругой – стоит снять напряжение, как его форма восстанавливается. Некоторые металлические конструкции намеренно проектируют так, чтобы они упруго деформировались. Так, от пружин обычно требуется довольно большая упругая деформация. В других случаях упругую деформацию сводят к минимуму. Мосты, балки, механизмы, приборы делают по возможности более жесткими. Упругая деформация металлического образца пропорциональна силе или сумме сил, действующих на него. Это выражается законом Гука, согласно которому напряжение равно упругой деформации, умноженной на постоянный коэффициент пропорциональности, называемый модулем упругости: s = e Y , где s – напряжение, e – упругая деформация, а Y – модуль упругости (модуль Юнга). Модули упругости ряда металлов представлены в табл. 1.

Пользуясь данными этой таблицы, можно вычислить, например, силу, необходимую для того, чтобы растянуть стальной стержень квадратного поперечного сечения со стороной 1 см на 0,1% его длины:

F = Y ґ A ґD L /L = 200 000 МПа ґ 1 см 2 ґ 0,001 = 20 000 Н (= 20 кН)

Когда к металлическому образцу прикладываются напряжения, превышающие его предел упругости, они вызывают пластическую (необратимую) деформацию, приводящую к необратимому изменению его формы. Более высокие напряжения могут вызвать разрушение материала.

Важнейшим критерием при выборе металлического материала, от которого требуется высокая упругость, является предел текучести. У самых лучших пружинных сталей практически такой же модуль упругости, как и у самых дешевых строительных, но пружинные стали способны выдерживать гораздо большие напряжения, а следовательно, и гораздо большие упругие деформации без пластической деформации, поскольку у них выше предел текучести.

Пластические свойства металлического материала (в отличие от упругих) можно изменять путем сплавления и термообработки. Так, предел текучести железа подобными методами можно повысить в 50 раз. Чистое железо переходит в состояние текучести уже при напряжениях порядка 40 МПа, тогда как предел текучести сталей, содержащих 0,5% углерода и несколько процентов хрома и никеля, после нагревания до 950° С и закалки может достигать 2000 МПа.

Когда металлический материал нагружен с превышением предела текучести, он продолжает деформироваться пластически, но в процессе деформирования становится более твердым, так что для дальнейшего увеличения деформации требуется все больше повышать напряжение. Такое явление называется деформационным или механическим упрочнением (а также наклепом). Его можно продемонстрировать, скручивая или многократно перегибая металлическую проволоку. Деформационное упрочнение металлических изделий часто осуществляется на заводах. Листовую латунь, медную проволоку, алюминиевые стержни можно холодной прокаткой или холодным волочением довести до уровня твердости, который требуется от окончательной продукции.

Растяжение.

Соотношение между напряжением и деформацией для материалов часто исследуют, проводя испытания на растяжение, и при этом получают диаграмму растяжения – график, по горизонтальной оси которого откладывается деформация, а по вертикальной – напряжение (рис. 1). Хотя при растяжении поперечное сечение образца уменьшается (а длина увеличивается), напряжение обычно вычисляют, относя силу к исходной площади поперечного сечения, а не к уменьшенной, которая давала бы истинное напряжение. При малых деформациях это не имеет особого значения, но при больших может приводить к заметной разнице. На рис. 1 представлены кривые деформация – напряжение для двух материалов с неодинаковой пластичностью. (Пластичность – это способность материала удлиняться без разрушения, но и без возврата к первоначальной форме после снятия нагрузки.) Начальный линейный участок как той, так и другой кривой заканчивается в точке предела текучести, где начинается пластическое течение. Для менее пластичного материала высшая точка диаграммы, его предел прочности на растяжение, соответствует разрушению. Для более пластичного материала предел прочности на растяжение достигается тогда, когда скорость уменьшения поперечного сечения при деформировании становится больше скорости деформационного упрочнения. На этой стадии в ходе испытания начинается образование «шейки» (локальное ускоренное уменьшение поперечного сечения). Хотя способность образца выдерживать нагрузку уменьшается, материал в шейке продолжает упрочняться. Испытание заканчивается разрывом шейки.

Типичные значения величин, характеризующих прочность на растяжение ряда металлов и сплавов, представлены в табл. 2. Нетрудно видеть, что эти значения для одного и того же материала могут сильно различаться в зависимости от обработки.

Таблица 2
Таблица 2
Металлы и сплавы Состояние Предел текучести, МПа Предел прочности на растяжение, МПа Удлинение, %
Малоуглеродистая сталь (0,2% С) Горячекатанная 300 450 35
Среднеуглеродистая сталь (0,4% С,
0,5% Mn)
Упрочненная и отпущенная 450 700 21
Высокопрочная сталь (0,4% С, 1,0% Mn,
1,5% Si, 2,0% Cr,
0,5% Мo)
Упрочненная и отпущенная 1750 2300 11
Серый чугун После литья 175–300 0,4
Алюминий технически чистый Отожженный 35 90 45
Алюминий технически чистый Деформационно-упрочненный 150 170 15
Алюминиевый сплав (4,5% Cu, 1,5% Mg,
0,6% Mn)
Упрочненный старением 360 500 13
Полностью отожженная 80 300 66
Латунь листовая (70% Cu, 30% Zn) Деформационно-упрочненная 500 530 8
Вольфрам, проволока Тянутая до диаметра 0,63 мм 2200 2300 2,5
Свинец После литья 0,006 12 30

Сжатие.

Упругие и пластические свойства при сжатии обычно весьма сходны с тем, что наблюдается при растяжении (рис. 2). Кривая соотношения между условным напряжением и условной деформацией при сжатии проходит выше соответствующей кривой для растяжения только потому, что при сжатии поперечное сечение образца не уменьшается, а увеличивается. Если же по осям графика откладывать истинное напряжение и истинную деформацию, то кривые практически совпадают, хотя при растяжении разрушение происходит раньше.

Твердость.

Твердость материала – это его способность сопротивляться пластической деформации. Поскольку испытания на растяжение требуют дорогостоящего оборудования и больших затрат времени, часто прибегают к более простым испытаниям на твердость. При испытаниях по методам Бринелля и Роквелла в поверхность металла при заданных нагрузке и скорости нагружения вдавливают «индентор» (наконечник, имеющий форму шара или пирамиды). Затем измеряют (часто это делается автоматически) размер отпечатка, и по нему определяют показатель (число) твердости. Чем меньше отпечаток, тем больше твердость. Твердость и предел текучести – это в какой-то мере сравнимые характеристики: обычно при увеличении одной из них увеличивается и другая.

Может сложиться впечатление, что в металлических материалах всегда желательны максимальные предел текучести и твердость. На самом деле это не так, и не только по экономическим соображениям (процессы упрочнения требуют дополнительных затрат).

Во-первых, материалам необходимо придавать форму различных изделий, а это обычно осуществляется с применением процессов (прокатки, штамповки, прессования), в которых важную роль играет пластическая деформация. Даже при обработке на металлорежущем станке очень существенна пластическая деформация. Если твердость материала слишком велика, то для придания ему нужной формы требуются слишком большие силы, вследствие чего режущие инструменты быстро изнашиваются. Такого рода трудности можно уменьшить, обрабатывая металлы при повышенной температуре, когда они становятся мягче. Если же горячая обработка невозможна, то используется отжиг металла (медленные нагрев и охлаждение).

Во-вторых, по мере того как металлический материал становится тверже, он обычно теряет пластичность. Иначе говоря, материал становится хрупким, если его предел текучести столь велик, что пластическая деформация не происходит вплоть до тех напряжений, которые сразу же вызывают разрушение. Конструктору обычно приходится выбирать какие-то промежуточные уровни твердости и пластичности.

Ударная вязкость и хрупкость.

Вязкость противоположна хрупкости. Это способность материала сопротивляться разрушению, поглощая энергию удара. Например, стекло хрупкое, потому что оно не способно поглощать энергию за счет пластической деформации. При столь же резком ударе по листу мягкого алюминия не возникают большие напряжения, так как алюминий способен к пластической деформации, поглощающей энергию удара.

Существует много разных методов испытания металлов на ударную вязкость. При использовании метода Шарпи призматический образец металла с надрезом подставляют под удар отведенного маятника. Работу, затраченную на разрушение образца, определяют по расстоянию, на которое маятник отклоняется после удара. Такие испытания показывают, что стали и многие металлы ведут себя как хрупкие при пониженных температурах, но как вязкие – при повышенных. Переход от хрупкого поведения к вязкому часто происходит в довольно узком температурном диапазоне, среднюю точку которого называют температурой хрупко-вязкого перехода. Другие испытания на ударную вязкость тоже указывают на наличие такого перехода, но измеренная температура перехода изменяется от испытания к испытанию в зависимости от глубины надреза, размеров и формы образца, а также от метода и скорости ударного нагружения. Поскольку ни в одном из видов испытаний не воспроизводится весь диапазон рабочих условий, испытания на ударную вязкость ценны лишь тем, что позволяют сравнивать разные материалы. Тем не менее они дали много важной информации о влиянии сплавления, технологии изготовления и термообработки на склонность к хрупкому разрушению. Температура перехода для сталей, измеренная по методу Шарпи с V-образным надрезом, может достигать +90° С, но соответствующими легирующими присадками и термообработкой ее можно понизить до - 130° С.

Хрупкое разрушение стали было причиной многочисленных аварий, таких, как неожиданные прорывы трубопроводов, взрывы сосудов давления и складских резервуаров, обвалы мостов. Среди самых известных примеров – большое количество морских судов типа «Либерти», обшивка которых неожиданно расходилась во время плавания. Как показало расследование, выход из строя судов «Либерти» был обусловлен, в частности, неправильной технологией сварки, оставлявшей внутренние напряжения, плохим контролем за составом сварного шва и дефектами конструкции. Сведения, полученные в результате лабораторных испытаний, позволили существенно уменьшить вероятность таких аварий. Температура хрупко-вязкого перехода некоторых материалов, например вольфрама, кремния и хрома, в обычных условиях значительно выше комнатной. Такие материалы обычно считаются хрупкими, и придавать им нужную форму за счет пластической деформации можно только при нагреве. В то же время медь, алюминий, свинец, никель, некоторые марки нержавеющих сталей и другие металлы и сплавы вообще не становятся хрупкими при понижении температуры. Хотя многое уже известно о хрупком разрушении, это явление нельзя еще считать полностью изученным.

Усталость.

Усталостью называется разрушение конструкции под действием циклических нагрузок. Когда деталь изгибается то в одну, то в другую сторону, ее поверхности поочередно подвергаются то сжатию, то растяжению. При достаточно большом числе циклов нагружения разрушение могут вызывать напряжения, значительно более низкие, чем те, при которых происходит разрушение в случае однократного нагружения. Знакопеременные напряжения вызывают локализованные пластическую деформацию и деформационное упрочнение материала, в результате чего с течением времени возникают малые трещины. Концентрация напряжений вблизи концов таких трещин заставляет их расти. Сначала трещины растут медленно, но по мере уменьшения поперечного сечения, на которое приходится нагрузка, напряжения у концов трещин увеличиваются. При этом трещины растут все быстрее и, наконец, мгновенно распространяются на все сечение детали.

Усталость, несомненно, является самой распространенной причиной выхода конструкций из строя в условиях эксплуатации. Особенно подвержены этому детали машин, работающие в условиях циклического нагружения. В авиастроении усталость оказывается очень важной проблемой из-за вибрации. Во избежание усталостного разрушения приходится часто проверять и заменять детали самолетов и вертолетов.

Ползучесть.

Ползучестью (или крипом) называется медленное нарастание пластической деформации металла под действием постоянной нагрузки. С появлением воздушно-реактивных двигателей, газовых турбин и ракет стали приобретать все более важное значение свойства материалов при повышенных температурах. Во многих областях техники дальнейшее развитие сдерживается ограничениями, связанными с высокотемпературными механическими свойствами материалов.

При нормальных температурах пластическая деформация устанавливается почти мгновенно, как только прикладывается соответствующее напряжение, и в дальнейшем мало увеличивается. При повышенных же температурах металлы не только становятся мягче, но и деформируются так, что деформация продолжает нарастать со временем. Такая зависящая от времени деформация, или ползучесть, может ограничивать срок службы конструкций, которые должны длительное время работать при повышенных температурах.

Чем больше напряжения и чем выше температура, тем больше скорость ползучести. Типичные кривые ползучести представлены на рис. 3. После начальной стадии быстрой (неустановившейся) ползучести эта скорость уменьшается и становится почти постоянной. Перед разрушением скорость ползучести вновь увеличивается. Температура, при которой ползучесть становится критической, неодинакова для разных металлов. Предметом забот телефонных компаний является ползучесть подвесных кабелей в свинцовой оболочке, работающих при обычных температурах окружающей среды; в то же время некоторые специальные сплавы могут работать при 800° С, не обнаруживая чрезмерной ползучести.

Срок службы деталей в условиях ползучести может определяться либо предельно допустимой деформацией, либо разрушением, и конструктор должен всегда иметь в виду эти два возможных варианта. Пригодность материалов для изготовления изделий, рассчитанных на длительную работу при повышенных температурах, например лопаток турбин, трудно оценить заранее. Испытания за время, равное предполагаемому сроку службы, зачастую практически невозможны, а результаты кратковременных (ускоренных) испытаний не так просто экстраполировать на более длительные сроки, поскольку может измениться характер разрушения. Хотя механические свойства жаропрочных сплавов постоянно улучшаются, перед металлофизиками и материаловедами всегда будет стоять задача создания материалов, способных выдерживать еще более высокие температуры.

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

Выше речь шла об общих закономерностях поведения металлов под действием механических нагрузок. Чтобы лучше понять соответствующие явления, нужно рассмотреть атомное строение металлов. Все твердые металлы – кристаллические вещества. Они состоят из кристаллов, или зерен, расположение атомов в которых соответствует правильной трехмерной решетке. Кристаллическую структуру металла можно представить как состоящую из атомных плоскостей, или слоев. Когда прикладывается напряжение сдвига (сила, заставляющая две соседние плоскости металлического образца скользить друг по другу в противоположных направлениях), один слой атомов может сдвинуться на целое межатомное расстояние. Такой сдвиг скажется на форме поверхности, но не на кристаллической структуре. Если один слой сдвинется на много межатомных расстояний, то на поверхности образуется «ступенька». Хотя отдельные атомы слишком малы, чтобы их можно было увидеть под микроскопом, ступеньки, образовавшиеся за счет скольжения, хорошо видны под микроскопом и названы линиями скольжения.

Обычные металлические предметы, встречающиеся нам ежедневно, являются поликристаллическими, т.е. состоят из большого числа кристаллов, в каждом из которых своя ориентация атомных плоскостей. Деформация обычного поликристаллического металла имеет с деформацией монокристалла то общее, что она происходит за счет скольжения по атомным плоскостям в каждом кристалле. Заметное же скольжение целых кристаллов по их границам наблюдается только в условиях ползучести при повышенных температурах. Средний размер одного кристалла, или зерна, может составлять от нескольких тысячных до нескольких десятых долей сантиметра. Желательна более мелкая зернистость, так как механические характеристики мелкозернистого металла лучше, чем у крупнозернистого. Кроме того, мелкозернистые металлы менее хрупки.

Скольжение и дислокации.

Процессы скольжения удалось подробнее исследовать на монокристаллах металлов, выращенных в лаборатории. При этом выяснилось не только то, что скольжение происходит в некоторых определенных направлениях и обычно по вполне определенным плоскостям, но и то, что монокристаллы деформируются при очень малых напряжениях. Переход монокристаллов в состояние текучести начинается для алюминия при 1, а для железа – при 15–25 МПа. Теоретически же этот переход в обоих случаях должен происходить при напряжениях ок. 10 000 МПа. Такое расхождение между экспериментальными данными и теоретическими расчетами на протяжении многих лет оставалось важной проблемой. В 1934 Тейлор, Полани и Орован предложили объяснение, основанное на представлении о дефектах кристаллической структуры. Они высказали предположение, что при скольжении сначала происходит смещение в какой-то точке атомной плоскости, которое затем распространяется по кристаллу. Граница между сдвинувшейся и несдвинувшейся областями (рис. 4) представляет собой линейный дефект кристаллической структуры, названный дислокацией (на рисунке эта линия уходит в кристалл перпендикулярно плоскости рисунка). Когда к кристаллу прикладывается напряжение сдвига, дислокация движется, вызывая скольжение по плоскости, в которой она находится. После того как дислокации образовались, они очень легко движутся по кристаллу, чем и объясняется «мягкость» монокристаллов.

В кристаллах металлов обычно имеется множество дислокаций (общая длина дислокаций в одном кубическом сантиметре отожженного металлического кристалла может составлять более 10 км). Но в 1952 научные сотрудники лабораторий корпорации «Белл телефон», испытывая на изгиб очень тонкие нитевидные кристаллы («усы») олова, обнаружили, к своему удивлению, что изгибная прочность таких кристаллов близка к теоретическому значению для совершенных кристаллов. Позднее были обнаружены чрезвычайно прочные нитевидные кристаллы и многих других металлов. Как предполагают, столь высокая прочность обусловлена тем, что в таких кристаллах либо вообще нет дислокаций, либо имеется одна, идущая по всей длине кристалла.

Температурные эффекты.

Влияние повышенных температур можно объяснить, исходя из представлений о дислокациях и зеренной структуре. Многочисленные дислокации в кристаллах деформационно-упрочненного металла искажают кристаллическую решетку и увеличивают энергию кристалла. Когда же металл нагревается, атомы становятся подвижными и перестраиваются в новые, более совершенные кристаллы, содержащие меньше дислокаций. С такой рекристаллизацией и связано разупрочнение, которое наблюдается при отжиге металлов.

О свойствах металлов часто судят только по их твердости, пределу прочности и относительному удлинению. Исходя только из этих параметров делают выводы о возможностях металла или сравнивают разные сплавы. На самом деле этой информации абсолютно недостаточно для решения вопроса о пригодности материала для конкретной задачи. Кроме упомянутых параметров применяемость металлов и сплавов определяют а) конструкционная прочность, б) степень проявления неупругих явлений, в) износостойкость, г) устойчивость к коррозии и многие другие.

На этой странице мы выясним, что именно определяют наиболее распространенные параметры механических свойств и рассмотрим основные показатели конструкционной прочности. На других страницах рассмотрены вопросы износостойкости и коррозионной стойкости .

Содержание:

  1. Упругие и пластические деформации

  2. Показатели упругого и пластического состояний

2.1. пределы пропорциональности, упругости и текучести

2.2. характеристики упругого состояния

2.3. предел прочности

2.4. пластичность и вязкость

2.5. твердость

3. Показатели конструкционной прочности

3.1. трещиностойкость

3.2. усталостная прочность

3.3. ударная вязкость

3.4. пределы ползучести и длительной прочности

1. УПРУГИЕ И ПЛАСТИЧЕСКИЕ ДЕФОРМАЦИИ

Механические свойства металлов и сплавов определяются тем, как они воспринимают внешние нагрузки, т.е. сопротивляются деформированию и разрушению. При их деформировании наблюдается два различных вида деформаций – упругие и пластические, – которые отличаются и внешними проявлениями и внутренними механизмами. Понятно, что свойства, определяющие упругое и пластическое состояние металлов, должны описываться разными характеристиками.

Упругие деформации происходят за счет изменения межатомных расстояний, они не изменяют структуру металла, его свойства и являются обратимыми. Обратимость означает, что после снятия нагрузки тело принимает прежние форму и размеры, т.е. остаточная деформация отсутствует.

Пластические деформации возникают за счет образования и движения дислокаций, они изменяют структуру и свойства металла. После снятия нагрузки деформации остаются, т.е. пластические деформации носят необратимый характер.


2. ПОКАЗАТЕЛИ УПРУГОГО И ПЛАСТИЧЕСКОГО СОСТОЯНИЯ

2.1. ПРЕДЕЛЫ ПРОПОРЦИОНАЛЬНОСТИ, УПРУГОСТИ и ТЕКУЧЕСТИ.

Область напряжений, при которых происходит только упругая деформация, ограничена пределом пропорциональности? пц. В этой области в каждом зерне имеют место только упругие деформации, а для образца в целом выполняется закон Гука – деформация пропорциональна напряжению (отсюда и название предела).

С повышением напряжения в отдельных зернах возникают микропластические деформации. При таких нагрузках остаточные напряжения незначительные (0.001% - 0.01%).

Напряжение, при котором появляются остаточные деформации в указанных пределах, называется условным пределом упругости. В его обозначении индекс указывает на величину остаточной деформации (в процентах), для которой произведено определение предела упругости, например? 0.01 .

Напряжение, при котором пластическая деформация имеет место уже во всех зернах называется условным пределом текучести. Чаще всего он определяется при величине остаточной деформации 0.2% и обозначается? 0.2 .

Формально, различие между пределами упругости и текучести связано с точностью определения «границы» между упругим и пластическим состоянием, что и отражает слово «условный». Очевидно, что? пц именно предел пропорциональности или упругости определяет степень проявления неупругих свойств и величину предела усталости.

Отсутствие резкой границы между упругим и пластическим состоянием означает, что в интервале напряжений между? пц и? 0.2 происходят и упругие и пластические деформации.

Упругое состояние существует до тех пор, пока во всех зернах металла дислокации неподвижны.

Переход к пластическому состоянию наблюдается в таком интервале нагрузок, при которых движение дислокаций (и, следовательно, пластическая деформация) происходит только в отдельных кристаллических зернах, а в остальных продолжает реализовываться механизм упругой деформации.

Пластическое состояние реализуется, когда движение дислокаций происходит во всех зернах образца.

После перестройки дислокационной структуры (завершения пластической деформации) металл возвращается в упругое состояние, но с измененными упругими свойствами.

Приведенные обозначения пределов соответствуют одноосному растяжению, диаграмма которого приведена на рисунке. Аналогичные по смыслу пределы определяют для сжатия, изгиба и кручения.

Рассмотренная диаграмма характерна для металлов, у которых переход от упругого состояния к пластическому очень плавный. Однако с уществуют металлы с ярко выраженным переходом в пластическое состояние. Диаграммы растяжения таких металлов имеют горизонтальный участок, и они характеризуются не условным, а физическим пределом текучести. Пример такой диаграммы см. на сайте http://www.physics-words.com/130/207/2770120.html.. По достижении физического предела текучести небольшое увеличение напряжения приводит к резкому удлинению образца, металл как-бы течет, отсюда и название предела.

2.2. ХАРАКТЕРИСТИКИ УПРУГОГО СОСТОЯНИЯ

Самые важные параметры упругого состояния – предел упругости? у и модули упругости.

Предел упругости определяет предельно допустимые эксплуатационные нагрузки , при которых металл испытывает только упругие или небольшие допустимые упруго-пластические деформации. Очень грубо (и в сторону завышения) границу упругости можно оценить по пределу текучести.

Модули упругости характеризуют сопротивление материала действию нагрузки в упругом состоянии. Модуль Юнга E определяет сопротивление нормальным напряжениям (растяжение, сжатие и изгиб), а модуль сдвига G - касательным напряжениям (кручение). Чем больше модули упругости, тем круче упругий участок на диаграмме деформации (см. рисунок), тем меньше величина упругих деформаций при равных напряжениях и, следовательно, больше жесткость конструкции. Упругие деформации не могут быть больше величины? у /Е.

Таким образом, модули упругости определяют предельно допустимые эксплуатационные деформации (с учетом величины предела упругости и жесткость изделий . Модули упругости измеряются в тех же единицах, что и напряжение (МПа или кгс/мм 2).

Конструкционные материалы должны сочетать высокие значения предела текучести (выдерживают большие нагрузки) и модулей упругости (обеспечивают большую жесткость). Модуль упругости Е имеет одинаковую величину при сжатии и растяжении. Однако, пределы упругости при сжатии и растяжении могут отличаться. Поэтому при одинаковой жесткости, диапазоны упругости при сжатии и растяжении могут быть различны.

В упругом состоянии металл не испытывает макро пластических деформаций, однако в его отдельных микроскопических объемах могут происходить локальные микро пластические деформации. Они являются причиной так называемых неупругих явлений, существенно влияющих на поведение металлов в упругом состоянии. При статических нагрузках проявляются гистерезис, упругое последействие и релаксация, а при динамических – внутреннее трение.

Релаксация – самопроизвольное уменьшение напряжений в изделии. Примером её проявления является ослабевание со временем натяжных соединений. Чем меньше релаксация, тем стабильнее действующие напряжения. Кроме этого релаксация приводит к появлению остаточной деформации после снятия нагрузки. Восприимчивость к этим явлениям характеризует релаксационная стойкость. Она оценивается как относительное изменение напряжения со временем. Чем она больше, тем меньше металл подвержен релаксации.

Внутреннее трение определяет необратимые потери энергии при переменных нагрузках. Потери энергии характеризуются декрементом затухания или коэффициентом внутреннего трения. Металлы с большим декрементом затухания эффективно гасят звук и вибрации, меньше подвержены резонансу (один из лучших демпфирующих металлов - серый чугун). Металлы с низким коэффициентом внутреннего трения, наоборот минимально влияют на распространение колебаний (например колокольная бронза). В зависимости от назначения металл должен иметь высокое внутреннее трение (амортизаторы) или, наоборот, низкое (пружины измерительных приборов).

С повышением температуры упругие свойства металлов ухудшаются. Это проявляется в сужении упругой области (за счет уменьшения пределов упругости), усилении неупругих явлений и уменьшении модулей упругости.

Металлы, которые используются для изготовления упругих элементов, изделий со стабильными размерами должны иметь минимальные проявления неупругих свойств. Это требование лучше выполняется когда предел упругости значительно превышает рабочее напряжение. Кроме этого важно соотношение пределов упругости и текучести. Чем больше отношение? у / ? 0.2 , тем меньше проявление неупругих свойств. Когда говорят, что металл обладает хорошими упругими свойствами, обычно подразумевается не только высокий предел упругости, но и большое значение? у / ? 0.2.

2.3. ПРЕДЕЛ ПРОЧНОСТИ

При напряжениях, превышающих предел текучести? 0.2 , металл переходит в пластическое состояние. Внешне это проявляется в снижении сопротивления действующей нагрузке и видимым изменением формы и размеров. После снятия нагрузки металл возвращается в упругое состояние, но остается деформированным на величину остаточных деформаций, которые могут намного превышать предельные упругие деформации. Изменение дислокационной структуры в процессе пластической деформации увеличивает предел текучести металла – происходит его деформационное упрочнение.

Обычно пластическую деформацию исследуют при одноосном растяжении образца. При этом определяются временное сопротивление? в, относительное удлинение после разрыва? и относительное сужение после разрыва?. Картина растяжения при напряжениях, превышающих предел текучести, сводится к двум вариантам, представленным на рисунке.

В первом случае (рисунок на вставке) наблюдается равномерное растяжение всего образца - происходит равномерная пластическая деформация, которая завершается разрывом образца при напряжении? в. В этом случае? в имеет смысл условного предела прочности при растяжении, а? и? определяют максимальную равномерную пластическую деформацию.

Во втором случае образец сначала растягивается равномерно, а после достижения напряжения? в образуется местное сужение (шейка) и дальнейшее растяжение, вплоть до разрыва, сосредоточено в области шейки. В этом случае? и? являются суммой равномерной и сосредоточенной деформаций (см. рис.). Поскольку «момент» определения временного сопротивления уже не совпадает с «моментом» разрыва образца, то? в определяет не предельную прочность, а условное напряжение, при котором завершается равномерная деформация. Тем не менее, величину? В часто называют условным пределом прочности независимо от наличия или отсутствии шейки.

В любом случае разница (? в – ? 0.2) определяет интервал условных напряжений, в котором происходит равномерная пластическая деформация, а отношение? 0.2 / ? В характеризует степень упрочнения. В отожженном металле? 0.2 /? В =0.5-0.6. а после деформационного упрочнения (наклепа) оно увеличиватся до 0.9-0.95.

Слово «условный» применительно к? в означает, что оно меньше «истинного» напряжения S В действующего в образце. Дело в том, что напряжение? определяется как отношение растягивающей силы к площади начального сечения образца (что удобно), а истинное напряжение S должно определяться по отношению к площади сечения в момент измерения (что сложнее). В процессе пластической деформации происходит утончение образца и по мере растяжения разница между условным и истинным напряжением увеличивается (особенно после образования шейки). Если строить диаграмму растяжения для истинных напряжений, то кривая растяжения будет проходить над кривой, нарисованной на рисунке и не будет иметь ниспадающего участка.

Металлы могут иметь одинаковое значение? в, но, если у них разные диаграммы растяжения, разрушение образца будет происходить при разных истинных напряжениях S В (их истинная прочность будет различной).

Временное сопротивление? В определяется при нагрузке, действующей в течение десятков секунд, поэтому часто называется пределом кратковременной прочности.

Пластическое деформирование исследуется также при сжатии, изгибе, кручении, диаграммы деформаций при этом подобны приведенной на рисунке. Но по многим причинам одноосное растяжение в большинстве случаев оказывается более предпочтительным. Наименее трудоёмко определение параметров одноосного растяжения? в и?, они всегда определяются при массовых заводских испытаниях, а их значения обязательно приводятся во всех справочниках.

Описание методики испытания металлов на растяжение (и определение всех терминов) приведены в ГОСТ 1497-73 . Испытание на сжатие описано в ГОСТ 25.503-97 , а на кручение - в ГОСТ3565-80.

2.4. ПЛАСТИЧНОСТЬ И ВЯЗКОСТЬ

Пластичность – это способность металла изменять форму без нарушения целостности (без трещин, надрывов и тем более разрушения). Она проявляется, когда упругое деформирование сменяется пластическим, т.е. при напряжениях больших предела текучести? в.

Возможности пластического деформирования характеризует отношение? 0.2 /? в. При? 0.2 /? В = 0.5-0.6 металл допускает большие пластические деформации (? и? составляют десятки процентов). Наоборот, при? 0.2 /? В =0.95–0.98 металл ведет себя как хрупкий: область пластических деформаций практически отсутствует (? и? составляют 1-3%).

Чаще всего пластические свойства оценивают по величине относительного удлинения при разрыве?. Но эта величина определяется при статическом одноосном растяжении и поэтому не характеризует пластичность при других видах деформаций (изгиб, сжатие, кручение), больших скоростях деформирования (ковке, прокатке) и высоких температурах.

В качестве примера можно привести латуни Л63 и ЛС59-1, у которых практически одинаковые значения?, но существенно разные пластические свойства. Надрезанный пруток из Л63 в месте разреза сгибается, а из ЛС59-1 обламывается при небольшом усилии. Проволока из Л63 легко расплющивается без образования трещин, а из ЛС59-1 растрескивается после нескольких ударов. Латунь ЛС59-1 легко поддается горячей прокатке, а Л63 прокатывается только в узком диапазоне температур, за пределами которого заготовка растрескивается.

Таким образом, пластичность зависит от температуры, скорости и способа деформации. На пластические свойства сильно влияют многие примеси, часто даже в очень малых концентрациях.

На практике для определения пластичности применяются технологические пробы, в которых используются такие способы деформирования, которые больше отвечают соответствующим технологическим процессам.

Распространена оценка пластичности по углу изгиба, количеству перегибов или скручиваний, которые выдерживает полуфабрикат без появления трещин и надрывов.

Испытание на выдавливание лунки из ленты (аналогия со штамповкой и глубокой вытяжкой) проводится до появления надрывов и трещин.

Хорошие пластические свойства важны при технологических процессах обработки металлов давлением. При нормальной же эксплуатации металл находится в упругом состоянии и его пластические свойства не проявляются. Поэтому ориентироваться на показатели пластичности при нормальной эксплуатации изделий на первый взгляд нет смысла.

Но если существует вероятность возникновения нагрузок, превышающих предел текучести, то желательно, чтобы материал был пластичен. Хрупкий металл разрушается сразу после превышения некоторого предела, а пластичный материал способен, не разрушаясь, поглотить достаточно избыточной энергии.

Понятия вязкости и пластичности часто отождествляют, но эти термины характеризуют разные свойства:

Пластичность - определяет способность деформироваться без разрушения, она оцениваются в линейных, относительных или условных единицах.

Вязкость - определяет количество энергии, поглощаемой при пластической деформации, она измеряется с использованием единиц энергии

Величина энергии, необходимой для разрушения материала, равна площади под кривой деформации на диаграмме «истинное напряжение – истинная деформация». Это означает, что она зависит и от максимально возможной деформации и от прочности металла. Способ определения энергоемкости при пластической деформации описан в ГОСТ 23.218-84 .

2.5. ТВЕРДОСТЬ

Обобщенной характеристикой упруго-пластических свойств является твердость.

Твердость – это свойство поверхностного слоя материала сопротивляться внедрению другого, более твердого тела, при его сосредоточенном воздействии на поверхность материала. «Другое, более твердое тело» - это индентор (стальной шарик, алмазная пирамида или конус), вдавливаемый в испытываемый металл.

Напряжения, вызванные индентором, определяются его формой и силой вдавливания. В зависимости от величины этих напряжений в поверхностном слое металла происходят упругие, упруго-пластические или пластические деформации. В первом случае снятие нагрузки не оставляет следа на поверхности. Если напряжение превышает предел упругости металла, то после снятия нагрузки на поверхности остаётся отпечаток.

Чем меньше отпечаток, тем выше сопротивление вдавливанию и тем большей считается твердость. По величине сосредоточенного усилия, ещё не оставляющего отпечатка, можно определить твердость на пределе текучести (ГОСТ 22762-77) .

Численное определение твердости производится по методикам Виккерса, Бринелля и Роквелла.

В методе Роквелла (ГОСТ 9013-59) твердость измеряется в условных единицах HR, которые отражают степень упругого восстановления отпечатка после снятия нагрузки. Т.е. число твердости по Роквеллу определяет сопротивление упругим или малым пластическим деформациям. В зависимости от вида металла и его твердости используют разные шкалы. Чаще всего используется шкала С и число твердости HRC.

В единицах HRC часто формулируют требования к качеству поверхности стальных деталей после термообработки. Твердость HRC в наибольшей степени отражает уровень рабочих характеристик высокопрочных сталей, а с учетом простоты измерений по Роквеллу, очень широко применяется на практике. Подробно о методе Роквелла с описанием различных шкал и твердости разных классов материалов см. http://www.fast-const.ru/articles.php?article_id=2

Твердость по Виккерсу и Бринеллю определяется как отношение усилия вдавливания к площади контакта индентора и металла при максимальном внедрении индентора. Т.е. числа твердости HV и HB имеют смысл среднего напряжения на поверхности невосстановленного отпечатка, измеряются в единицах напряжения (МПа или кгс/мм) и определяют сопротивление пластическим деформациям. Основное различие между этими методами связано с формой индентора.

Применение алмазной пирамиды в методе Виккерса (ГОСТ 2999-75 , ГОСТ Р ИСО 6507-1) обеспечивает геометрическое подобие пирамидальных отпечатков при любой нагрузке - соотношение глубины и размера отпечатка при максимальном вдавливании не зависит от приложенного усилия. Это позволяет достаточно строго сравнивать твердость разных металлов, в том числе результаты, полученные при разных нагрузках.

Шаровые инденторы в методе Бринелля (ГОСТ 9012-59) не обеспечивают геометрического подобия сферических отпечатков. Это приводит к необходимости выбирать величину нагрузки в зависимости от диаметра шарового индентора и вида испытуемого материала по таблицам рекомендуемых параметров испытаний. Следствием этого является неоднозначность при сравнении чисел твердости HB для разных материалов.

Зависимость определяемой твердости от величины приложенной нагрузки (небольшая для метода Виккерса и очень сильная в методе Бринелля) требует обязательного указания условий испытания при записи числа твердости (см. ГОСТы), хотя это правило часто не соблюдается.

Область воздействия индентора на металл сопоставима с размерами отпечатка, т.е. твердость характеризует локальные свойства полуфабриката или изделия. Если поверхностный слой (плакированный или упрочненный) отличается по свойствам от основного металла, то измеряемые значения твердости будут зависеть от соотношения глубины отпечатка и толщины слоя – т.е. будут зависеть от метода и условий измерения. Результат измерения твердости может относиться или только к поверхностному слою или к основному металлу с учетом его поверхностного слоя.

При измерении твердости определяется результирующее сопротивление внедрению индентора в металл без учета отдельных структурных составляющих. Усреднение происходит, если размер отпечатка превосходит размер всех неоднородностей. Твердость отдельных фазовых составляющих (микротвердость) определяется по методу Виккерса (ГОСТ 9450-76) при малых усилиях вдавливания.

Прямой взаимосвязи между разными шкалами твердости не существует, отсутствуют и обоснованные методы перевода чисел твердости из одной шкалы в другую. Имеющиеся таблицы, формально связывающие различные шкалы, построены по данным сравнительных измерений и справедливы только для конкретных категорий металлов. В таких таблицах числа твердости обычно сопоставляются с числами твердости HV. Это связано с тем, что метод Виккерса позволяет определять твердость любых материалов (в других методах диапазон измеряемой твердости ограничен) и обеспечивает геометрическое подобие отпечатков.

Графическая связь между шкалами Роквелла и Виккерса см. http://www.gordonengland.co.uk/hardness/hardness_conversion.gif.

для сталей - http://www.grantadesign.com/images/hardness.fe2.gif

То же для цветных сплавов - http://www.grantadesign.com/images/hardness.al1.gif

Табличная связь между всеми шкалами для сталей есть в http://www.freetechnicalcharts.com/images/Steel_hardness_conversion_chart.jpg

Также не существует прямой связи твердости с пределами текучести или прочности, хотя на практике часто используется соотношение? в = k НВ. Значения коэффициента k определяются на основе сравнительных испытаний для конкретных классов металлов и варьируются от 0.15 до 0.5 в зависимости от вида металла и его состояния (отожженный, нагартованный и т.д.).

Изменения упругих и пластических свойств с изменением температуры, после термической обработки, нагартовки и т.д. проявляются в изменении твёрдости. Твердость измеряется быстрее, проще, допускает неразрушающий контроль. Поэтому изменение характеристик металла после различных видов обработки удобно контролировать именно по изменению твердости. Например, упрочнение, увеличивая? 0.2 и? 0.2 /? в, увеличивает твердость, а отжиг её уменьшает.

В большинстве случаев твердость определяется при комнатной температуре при воздействии индентора менее минуты. Определяемая при этом твердость называется кратковременной твердостью. При высоких температурах, когда развивается явление ползучести (см. ниже), определяется длительная твердость - реакция металла на длительное воздействие индентора (обычно в течение часа). Длительная твердость всегда меньше кратковременной и это различие растет с увеличением температуры. Например в меди кратковременная и длительная твердость при 400 о С составляет 35HV и 25HV , а при 700 о С - 9HV и 5HV соответственно.

Рассмотренные методы относятся к статическим: индентор внедряется медленно, а максимальная нагрузка действует достаточно долго для завершения процессов пластической деформации (10 – 180с). В динамических (ударных) методах воздействие индентора на металл кратковременно, поэтому и деформационные процессы протекают иначе. Различные варианты динамических методов используются в портативных твердомерах.

При столкновении с исследуемым материалом энергия индентора (бойка) расходуется на упругую и пластическую деформацию. Чем меньше энергии израсходовано на пластическую деформацию образца, тем выше должна быть его «динамическая» твердость, которая определяет сопротивление материала упруго-пластическому деформированию при ударе. Первичные данные пересчитываются в числа «статической» твердости (HR, HV, HB), которые и отображаются на приборе. Такой пересчет возможен только на основе сравнительных измерений для конкретных групп материалов.

Существуют также оценки твердости по сопротивлению абразивному изнашиванию или резанию, которые лучше отражают соответствующие технологические свойства материалов.

Из сказанного следует, что твердость не является первичным свойством материала, скорее это обобщенная характеристика, отражающая его упруго-пластические свойства. При этом, выбор метода и условий измерения может преимущественно характеризовать или его упругие или, наоборот, пластические свойства.

3. ПОКАЗАТЕЛИ КОНСТРУКЦИОННОЙ ПРОЧНОСТИ

При одноосном растяжении разрушение происходит при достижении предела прочности? в уже после завершения пластической деформации. Однако, в реальных условиях металлы разрушаются при напряжениях, не превышающих даже предела текучести? 0.2 . Это означает, что величина? в не определяет реальную прочность металлов и для её описания нужны другие характеристики.

Практика показывает, что долговечность изделия определяют 1) конструкционная прочность, 2) износостойкость и 3) коррозионная стойкость соответствующего материала при соответствующих условиях эксплуатации. Именно эти свойства определяют выбор материала в большинстве практических задач.

3.1. ТРЕЩИНОСТОЙКОСТЬ (ВЯЗКОСТЬ РАЗРУШЕНИЯ)

В металлах всегда имеются концентраторы напряжений. Ими являются неоднородности структуры (примеси, упрочняющие фазы), дефекты (внутренние и поверхностные трещины), конструктивные особенности изделия (надрезы, резкие изменения в сечении). Механизмы разрушения связаны с микропластическими деформациями, которые развиваются вблизи концентраторов напряжений и с течением времени приводят к зарождению трещины.

По скорости распространения трещины различают вязкое и хрупкое разрушение. При хрупком разрушении она достигает скорости 1000 м/с, а при вязком – в сотни раз меньше. Для вязкого разрушения требуется значительно больше энергии, поскольку область деформации охватывает область металла далеко за пределами трещины. При хрупком разрушении деформация локализована в узкой области у вершины трещины, поэтому для её продвижения требуется намного меньше энергии.

Пока трещина развивается медленно, изделие сохраняет работоспособность. Но после того, как трещина достигает некоторой критической величины, её дальнейшее распространение происходит очень быстро и наступает катастрофическое разрушение конструкции. Чем медленнее развивается трещина, тем больше конструкционная прочность. Для характеристики конструкционной прочности используют несколько величин (ГОСТ 25.506-85).

Важнейшим параметром конструкционной прочности материала является критический коэффициент интенсивности напряжений в вершине трещины К 1С (или вязкость разрушения). Он учитывают длину трещины и процесс её развития. Его знание позволяет рассчитывать максимально допустимую нагрузку в конструкции с трещиной таких размеров, при которых ещё не начинается её быстрое развитие до полного разрушения. В конструкционных сталях, алюминиевых и титановых сплавах К 1С изменяется в широких пределах – от 15 до 200 МПа*м. Чем больше его значение, тем выше конструкционная прочность материала.

П ростой связи между вязкостью разрушения К 1С и параметрами одноосного растяжения (? 0.2 , ? в, ?, ?) не существует. В то же время она существенно зависит от особенностей структуры и наличия примесей.

Это можно проиллюстрировать на примере алюминиевых сплавов семейства В95. Как и другие термоупрочняемые сплавы их структура зависит от режима закалки и старения. Существует много примеров, когда предпочтение отдается металлам с меньшей прочностью , но с большим значением К 1С.

3.2. УСТАЛОСТНАЯ ПРОЧНОСТь

Трещины в металлах зарождаются и развиваются не только при статических нагрузках, но и под действием циклических напряжений. Усталостная трещина зарождается в поверхностных слоях (это её отличительный признак) и с каждым циклом медленно развивается вглубь. Разрушение происходит, когда из-за уменьшения сечения действующие напряжения превысят разрушающие.

Накопление повреждений означает, что чем больше циклов нагружения, тем меньше должна быть величина нагрузки, чтобы металл «работал», не разрушаясь. Процесс постепенного накопления повреждений в металле называется усталостью .

Свойство противостоять усталости называется выносливостью . Её важнейшей характеристикой является предел выносливости. Он показывает наибольшее напряжение цикла, при котором не происходит усталостного разрушения после заданного числа циклов. Чаще используют симметричные знако-переменные циклы (поочередно действуют одинаковые по амплитуде сжимающие и растягивающие напряжения), в таких случаях предел выносливости обозначается? - 1 .

Испытания на усталостную прочность регламентированы в ГОСТ 25.502.79 и в ГОСТ 25.505-85

Вторая по важности характеристика выносливости - усталостная долговечность. Она определяет число циклов, которое металл может выдержать при заданном напряжении. Определяется также вероятность разрушения при заданном уровне нагружения и заданном числе циклов (или допустимое напряжение при заданной вероятности разрушения). Важной характеристикой сопротивления усталости является скорость роста трещины при усталости (СРТУ) dl/dN и циклическая вязкость (циклическая трещиностойкость) К ц 1с. При их определении фиксируют длину трещины по мере увеличения числа циклов, а нагружение проводится на частотах 15-20 Гц.

Способность металла работать в условиях циклических нагрузок существенно зависит от условий нагружения.

А). При относительно небольших напряжениях (которым соответствуют упругие деформации) усталостная долговечность велика – металл сохраняет целостность при большом числе циклов. Многоцикловые характеристики определяются при базе испытаний 10 6 – 10 8 циклов на частотах 10-300 Гц.

Б). При значительных нагрузках (в области упруго-пластических деформаций) усталостная долговечность намного меньше. Параметры малоцикловой усталости определяются при базе испытаний до 5*10 4 на частотах 3 - 5 Гц.

В). Циклические изменения температуры при постоянном напряжении (или на фоне циклических нагрузок) сопровождаются упруго-пластическими деформациями. Это приводит к термической усталости . Способность материала сопротивляться разрушению в условиях проявления термической усталости называется термостойкостью. Показатель термостойкости – количество термоциклов при заданной нагрузке до разрушения (ГОСТ 25.502.79).

Получение усталостных характеристик является очень дорогим и трудоёмким процессом. Поэтому для приближенной оценки предела усталости его часто определяют через другие известные характеристики, например? -1 = k? в. Коэффициент k имеет разные значения не только для разных сплавов, но и для разных состояний одного и того же металла. Например, для отожженных алюминиевых термически неупрочняемых сплавов k = 0,4-0, 6, а для термоупрочненных алюминиевых сплавов k = 0.3.

Характеристики выносливости зависят от сочетания прочностных, пластических свойств и особенностей структуры. На выносливость всех металлов и сплавов отрицательно влияют примеси и грубые фазовые включения, особенно неметаллические.

Поскольку усталостные трещины зарождаются на поверхности, то особое значение для повышения долговечности при циклических нагрузках имеет состояние поверхности. Полировка, поверхностное упрочнение, отсутствие коррозии увеличивают величину предела выносливости.


3.3. УДАРНАЯ ВЯЗКОСТЬ

При статических испытаниях скорость приложения нагрузки составляет 10 -5 – 10 -2 м/с. Их результаты не отражают сопротивляемость материала к нагрузкам, действующим с гораздо большей скоростью. Поэтому устойчивость металла к разрушению при ударных нагрузках определяют в динамических испытаниях при скоростях деформирования 3 – 5 м/с.

Основная характеристика, получаемая при ударных испытаниях – ударная вязкость (единица измерения – Дж/см 2 ). Она определяет энергию, необходимую для разрушения образца. Её измеряют, подвергая удару образец с предварительно нанесенным надрезом (ГОСТ9454-78).

Энергия удара поглощается в некотором объеме вокруг надреза. Этот объем зависит и от прочности и от пластичности металла, для разных металлов он разный и его трудно оценить. Поэтому энергию разрушения относят не к объему деформируемой области (что было бы правильно), а к площади сечения в надрезе (что удобно). По этой причине величина ударной вязкости носит условный характер, что нужно учитывать при сравнении показателей для разных металлов или разных температур

В зависимости от вида надреза (концентратора) определяется три вида ударной вязкости. В её обозначении присутствует буква, указывающая на вид концентратора: КСT, КСU, КСV (последняя буква соответствует профилю надреза). Величина КСV – используется для контроля материалов для ответственных, а КСT – для особо ответственных применений. Т- концентратор представляет собой надрез с заранее введенной трещиной, поэтому в таком случае энергия удара расходуется только на развитие трещины (а не на её образование и развитие), поэтому КСT < КСU, КСV. В справочниках часто встречается обозначение ударной вязкости? н, соответствующе КСU.

При определении динамической вязкости при высоких или пониженных температурах дополнительно вводится обозначение температуры испытания, например КСU -60 . На основе таких измерений и по виду излома образца определяется ещё одна характеристика металла - температура хрупко-вязкого перехода Т хр. Это температура, при которой характер разрушения изменяется с вязкого на хрупкий.

3.4. ПРЕДЕЛЫ ПОЛЗУЧЕСТИ И ДЛИТЕЛЬНОЙ ПРОЧНОСТИ

При напряжениях ниже предела текучести в металлах наблюдается явление ползучести. Ползучесть – это непрерывная деформация под действием постоянного напряжения. При малых нагрузках и низких температурах она носит обратимый характер.

Ползучесть становится проблемой при повышенных температурах (примерно начиная с 0.4-0.6Т пл) и нагрузках выше некоторой величины (но меньше предела текучести). Деформация ползучести сопровождается изменениями структуры и, соответственно механических свойств. В отличие от пластической деформации, упрочняющей металл, деформация ползучести ведет к его разупрочнению. Кроме постоянно растущей деформации и увеличения скорости ползучести в металле начинается зарождение трещин и со временем происходит его разрушение.

С явлением ползучести связано понятие жаропрочности. Это способность работать под нагрузкой с допустимыми деформациями и без разрушения в условиях повышенных температур.

Количественной характеристикой жаропрочности является предел ползучести (ГОСТ 3248-60) и предел длительной прочности (ГОСТ 10145-81).

Предел ползучести используется в двух вариантах. В первом - это растягивающее напряжение, при котором деформация достигает заданной величины за определенное время. В обозначении предела верхний индекс указывает заданную температуру, нижний (через дробь) указывает допустимое удлинение в % и время, за которое оно достигается, например? 900 1/1000 .

В другом варианте нижний индекс указывает допустимую скорость установившейся ползучести.

Предел длительной прочности это условное наибольшее напряжение, под действием которого материал при заданной температуре разрушается через заданный промежуток времени. В обозначении присутствуют два индекса: верхний указывает заданную температуру, нижний – заданную долговечность (в часах), например? 900 1000 . Эта характеристика определяет способность материала противостоять разрушению при длительном воздействии температуры и нагрузки.

Предел ползучести и длительная прочность понижаются с увеличением температуры и длительности выдержки. Они должны рассматриваться как предельные значения рабочего напряжения при высоких температурах.

Жаропрочность часто путают с жаростойкостью – способность выдерживать высокую температуру без окалинообразования. Жаростойкость можно рассматривать как сопротивление коррозии, вызванной высокими температурами. Её характеристики и методы определения даны в ГОСТ 21910-76 и ГОСТ 6130-71 .

ЗАКЛЮЧЕНИЕ

Из приведенного материала должно быть понятно, что любой материал характеризуется таким большим количеством параметров, что нельзя по нескольким величинам делать выводы о всей совокупности свойств металла и возможности его применения в тех или иных условиях.

Для получения необходимой полноты сведений о свойствах необходимо пользоваться не ГОСТами, в которых приведены несколько легкоизмеряемых величин,а справочной литературой.