Коррозионные металлы. Коррозия. Коррозия: виды, способы защиты

Известно, что большинство металлов содержится в рудах не в чистом виде, а в различных химических соединениях. Поэтому, чтобы извлечь металлы из этих соединений, приходится задействовать непростые и энергозатратные металлургические операции.

И все же немалую часть результатов этих процессов отнимает у нас коррозия – главный враг металла.

Что такое коррозия

Коррозия – это распад и уничтожение металлов под воздействием окружающей среды. Когда происходит коррозия – металлы снова возвращаются в положение химических соединений, похожих на те, в которых они находятся в рудах.

Коррозия приносит огромные убытки, ее разрушительное действие мы видим во всем, что нас окружает, из-за коррозии выходят из строя машины, механизмы, различное оборудование. Предохранение от коррозии и ее предупреждение – довольно трудоемкие и затратные мероприятия.

Коррозия различается по видам, но обычно она начинается на поверхности металла и затем проходит внутрь. Различные металлы реагируют на коррозию по-разному: одни поддаются ее разрушительному действию быстрее, другие медленнее, но не существует металла, обладающего полной защитой от коррозии. Такие благородные металлы, как платина, золото и другие, также подвержены разрушению при некоторых условиях. Например, они растворяются при погружении в раствор соляной и серной кислоты, известный как «царская водка».

Виды коррозии.

1. Химическая коррозия. В том случае, когда на металл оказывают воздействие газы – это и есть химическая коррозия. Например: следы ее заметны на серебряных предметах, которые со временем покрываются темным налетом. Это происходит вследствие, вступления в химическую реакцию с серебром, соединений серы, которые находятся в воздухе, и сульфид серебра, образующийся при этой реакции, откладывается на верхнем слое серебряных предметов.

Еще один пример такого вида коррозии – окалина, возникающая на железе, когда оно нагрето в воздухе. Это воздействие мы можем видеть во время ковки или прокатки. При этих процессах, возникают тонкие пленки или окислы, которыми покрываются металлы. Эти тонкие, но прочные пленки взаимодействуют с металлом, на котором они образуются, и предохраняют его от воздействия коррозии. При этом на некоторых других металлах корка возникает не такая прочная, и коррозия проходит внутрь металла. В наше время существует много способов увеличения действия защиты окисного слоя, они связаны внешней обработкой материалов.

2. Электрохимическая коррозия. Это — наиболее распространенный и вредоносный вид коррозии. Такая коррозия опасна и непредсказуема. Она может возникнуть в одном куске металла, который состоит из различных соединений. При этом на поверхности материала возникают различные гальванические структуры, а вода от дождя, росы, пара является электролитом.

Для возникновения коррозии благоприятны изменения температуры, так как они способствуют образованию влаги. Из-за резкой смены ночных и дневных температур опасность возникновения коррозии особенно велика в странах с субтропическим климатом. Еще одним фактором возникновения коррозии является сильное загрязнение окружающей среды пылью и газами, особенно в местах скопления промышленных объектов. В случае, когда коррозия проходит постепенно, ее еще можно контролировать, но она крайне опасна при локализации в частях деталей или материалов и здесь можно говорить о сквозной коррозии, возникающей в растворах, включающих в себя различные хлориды.

Возникает коррозия также под влиянием различных механических нагрузок, разрушая металл под действием напряжения. В этом случае на поверхности изделий образуются трещины, уходящие далее в тело материала. Этому виду коррозии подвержены многие металлы и сплавы, находящиеся в различных средах.

Защита от коррозии.

Для предотвращения коррозии или уменьшения ее действия необходимы огромные усилия и финансовые вложения. Одним из способов защиты является покрытие металлических изделий лакокрасочными материалами. Очевидно – лаки и краски защищают металл от воздействия окружающей среды и других металлов, но это средство не долговечно, так как краска постепенно уничтожается, что требует нового покрытия. Но пока это – один из самых распространенных способов защиты огнезащита металлических конструкций от коррозии. Существуют еще несколько методов защиты. Например, погружение изделия в расплав металла, когда на поверхности изделия образуется защитная пленка. Этот метод включает в себя плакирование, металлизацию и некоторые другие.

Гальванический способ защиты металлов также имеет широкое распространение. С помощью этого процесса многие предметы, изделия и механизмы эффективно защищаются от воздействия коррозии. Некоторые детали автомобиля, серебряная посуда и многое другое обрабатывается гальваническим способом.

Коррозия металлических материалов наносит значительный урон промышленности, требует огромных затрат на ее предупреждение и устранение. Но различные методы борьбы с коррозией, изложенные выше, помогают защитить и по возможности предупредить последствия этого разрушительного явления.

Коррозия - это разрушение металлических, керамических, деревянных и других материалов в результате химического или физико-химического взаимодействия. Что же касается причин возникновения такого нежелательного эффекта, то они разные. В большинстве случаев это конструкционная неустойчивость к термодинамическим воздействиям окружающей среды. Давайте подробно разберемся с тем, что такое коррозия. Виды коррозии тоже обязательно нужно рассмотреть, да и о защите от нее поговорить не будет лишним.

Немного общих сведений

Мы привыкли слышать термин «ржавление», который применяется в случае коррозии металла и сплавов. Есть еще такое понятие, как «старение», - оно свойственно полимерам. По сути, это одно и то же. Яркий пример - старение резиновых изделий из-за активного взаимодействия с кислородом. Помимо этого, некоторые пластиковые элементы разрушаются под воздействием Скорость протекания коррозии напрямую зависит от условий, в которых находится объект. Так, ржавчина на металлическом изделии будет распространяться тем быстрее, чем выше температура. Также влияет и влажность: чем она выше, тем быстрее непригодным для дальнейшей эксплуатации. Опытным путем установлено, что примерно 10 процентов металлических изделий безвозвратно списываются, и виной всему - коррозия. Виды коррозии бывают различными и классифицируются в зависимости от типа сред, характера протекания и тому подобного. Давайте рассмотрим их более подробно.

Классификация

В настоящее время существует более двух десятков вариантов ржавления. Мы приведем только самые основные виды коррозии. Условно их можно поделить на следующие группы:

  • Химическая коррозия - процесс взаимодействия с коррозионной средой, при котором и восстановление окислителя проходят в одном акте. Металл и окислитель не разделены пространственно.
  • Электрохимическая коррозия - процесс взаимодействия металла с Ионизация атомов и восстановление окислителя проходят в разных актах, однако скорость во многом зависит от электродного потенциала.
  • Газовая коррозия - химическое ржавление металла при минимальном содержании влаги (не более 0,1 процента) и/или высоких температурах в газовой среде. Чаще всего данный вид встречается в химической и нефтеперерабатывающей промышленности.

Помимо этого, существует еще огромное количество процессов ржавления. Все они и есть коррозия. Виды коррозии, кроме вышеописанных, включают биологическое, радиоактивное, атмосферное, контактное, местное, целевое ржавление и др.

Электрохимическая коррозия и ее особенности

При таком виде разрушения процесс протекает при соприкосновении металла с электролитом. В качестве последнего может выступать конденсат или дождевая вода. Чем больше в жидкости содержится солей и кислот, тем выше электропроводность, а следовательно, и скорость протекания процесса. Что же касается наиболее подверженных коррозии мест металлической конструкции, то это заклепки, сварные соединения, места механических повреждений. В случае если конструкционные свойства сплава железа делают его устойчивым к ржавлению, процесс несколько замедляется, однако все равно продолжается. Ярким примером является оцинковка. Дело в том, что цинк имеет более отрицательный потенциал, нежели железо. По этой простой причине сплав железа восстанавливается, а цинк коррозирует. Однако наличие на поверхности оксидной пленки сильно замедляет процесс разрушения. Безусловно, все виды электрохимической коррозии являются крайне опасными и иногда с ними даже невозможно бороться.

Химическая коррозия

Такое изменение металла встречается довольно часто. Ярким примером является появление окалины в результате взаимодействия металлических изделий с кислородом. Высокая температура в этом случае выступает ускорителем процесса, а участвовать в нем могут такие жидкости, как вода, соли, кислоты, щелочи и растворы солей. Если говорить о таких материалах, как медь или цинк, то их окисление приводит к возникновению устойчивой к дальнейшей коррозии пленки. Стальные же изделия образуют окиси железа. Дальнейшие приводят к возникновению ржавчины, которая не обеспечивает никакой защиты от дальнейшего разрушения, а наоборот, способствует этому. В настоящее время все виды химической коррозии устраняются при помощи оцинковки. Могут применяться и другие средства защиты.

Виды коррозии бетона

Изменение структуры и увеличение хрупкости бетона под воздействием окружающей среды может быть трех видов:

  • Разрушение частей цементного камня - один из самых распространенных видов коррозии. Он имеет место в том случае, если изделие из бетона подвергается систематическому воздействию атмосферных осадков и других жидкостей. В результате вымывается гидрат окиси кальция и нарушается структура.
  • Взаимодействие с кислотами. Если цементный камень будет контактировать с кислотами, то образуется бикарбонат кальция - агрессивный химический элемент для бетонного изделия.
  • Кристаллизация труднорастворимых веществ. По сути, имеется в виду биокоррозия. Суть заключается в том, что микроорганизмы (споры, грибки) попадают в поры и там развиваются, вследствие чего происходит разрушение.

Коррозия: виды, способы защиты

Миллиардные ежегодные убытки привели к тому, что люди стали бороться с этим вредным воздействием. Можно с уверенностью говорить о том, что все виды коррозии приводят к потере не самого металла, а ценных металлоконструкций, на строительство которых тратятся огромные деньги. Сложно сказать, возможно ли обеспечить 100-процентную защиту. Тем не менее, при правильной подготовке поверхности, которая заключается в абразивоструйной очистке, можно добиться хороших результатов. От электрохимической коррозии надежно защищает лакокрасочное покрытие при правильном его нанесении. А от разрушения металла под землей надежно защитит специальная обработка поверхности.

Активные и пассивные методы борьбы

Суть активных методов заключается в том, чтобы изменить структуру двойного электрического поля. Для этого используют источник постоянного тока. Напряжение нужно выбирать таким образом, чтобы повышался изделия, которое нужно защитить. Еще один крайне популярный метод - «жертвенный» анод. Он разрушается, защищая основной материал.

Пассивная защита подразумевает использование лакокрасочного покрытия. Основная задача заключается в том, чтобы полностью предотвратить попадание влаги, а также кислорода на защищаемую поверхность. Как уже было отмечено несколько выше, имеет смысл использовать цинковое, медное или никелевое напыление. Даже частично разрушенный слой будет защищать металл от ржавления. Конечно, данные виды защиты от коррозии металлов действенны только тогда, когда поверхность не будет иметь видимых дефектов в виде трещин, сколов и тому подобного.

Оцинкование в подробностях

Мы уже с вами рассмотрели основные виды коррозии, а сейчас хотелось бы поговорить о лучших методах защиты. Одним из таких является оцинкование. Суть его заключается в том, что на обрабатываемую поверхность наносится цинк или его сплав, что придает поверхности некоторые физико-химические свойства. Стоит отметить, что данный метод считается одним из самых экономичных и эффективных, и это при том, что на металлизацию цинком расходуется примерно 40 процентов от мировой добычи этого элемента. Оцинкованию могут подвергаться стальные листы, крепежные детали, а также приборы и другие металлоконструкции. Интересно то, что с помощью металлизации или распыления можно защитить изделие любого размера и формы. Декоративного назначения цинк не имеет, хотя с помощью некоторых специальных добавок появляется возможность получения блестящих поверхностей. В принципе, этот металл способен обеспечить максимальную защиту в агрессивных средах.

Заключение

Вот мы и рассказали вам о том, что такое коррозия. Виды коррозии тоже были рассмотрены. Теперь вы знаете, как защитить поверхность от преждевременного ржавления. По большому счету, сделать это предельно просто, но немалое значение имеет то, где и как эксплуатируется изделие. Если оно постоянно подвергается динамическим и вибрационным нагрузкам, то велика вероятность возникновения трещин в лакокрасочных покрытиях, через которые влага будет попадать на металл, в результате чего он будет постепенно разрушаться. Тем не менее, использование различных резиновых прокладок и герметиков в местах взаимодействия металлических изделий может несколько продлить срок службы покрытия.

Ну, вот и все по данной теме. Помните о том, что преждевременное разрушение конструкции из-за воздействия коррозии может привести к непредвиденным последствиям. На предприятии большой материальный ущерб и человеческие жертвы возможны в результате ржавления несущей металлоконструкции.

– физико-химическое или химическое взаимодействие между металлом (сплавом) и средой, приводящее к ухудшению функциональных свойств металла (сплава), среды или включающей их технической системы.

Слово коррозия происходит от латинского «corrodo» – «грызу» (позднелатинское «corrosio» означает «разъедание»).

Коррозия вызывается химической реакцией металла с веществами окружающей среды, протекающей на границе металла и среды. Чаще всего это окисление металла, например, кислородом воздуха или кислотами, содержащимися в растворах, с которыми контактирует металл. Особенно подвержены этому металлы, расположенные в ряду напряжений (ряду активности) левее водорода, в том числе железо.

В результате коррозии железо ржавеет. Этот процесс очень сложен и включает несколько стадий. Его можно описать суммарным уравнением:

Fe + 6 H 2 O (влага) + 3 O 2 (воздух) = 4 Fe (OH ) 3

Гидроксид железа(

III ) очень неустойчив, быстро теряет воду и превращается в оксид железа(III ). Это соединение не защищает поверхность железа от дальнейшего окисления. В результате железный предмет может быть полностью разрушен.

Многие металлы, в том числе и довольно активные (например, алюминий) при коррозии покрываются плотной, хорошо скрепленной с металлами оксидной пленкой, которая не позволяет окислителям проникнуть в более глубокие слои и потому предохраняет металл от коррозии. При удалении этой пленки металл начинает взаимодействовать с влагой и кислородом воздуха.

Алюминий в обычных условиях устойчив к воздействию воздуха и воды, даже кипящей, однако если на поверхность алюминия нанести ртуть, то образующаяся амальгама разрушает оксидную пленку – выталкивает ее с поверхности, и металл быстро превращается в белые хлопья метагидроксида алюминия:

4Al + 2H 2 O + 3O 2 = 4AlO(OH) Амальгамированный алюминий взаимодействует с водой с выделением водорода: Al + 4 H 2 O = 2 AlO (OH ) + 3 H 2

Коррозии подвергаются и некоторые довольно мало активные металлы. Во влажном воздухе поверхность меди покрывается зеленоватым налетом (патиной) в результате образования смеси основных солей.

Иногда при коррозии металлов происходит не окисление, а восстановление некоторых элементов, содержащихся в сплавах. Например, при высоких давлениях и температурах карбиды, содержащиеся в сталях, восстанавливаются водородом.

Разрушение металлов в присутствии водорода обнаружили в середине девятнадцатого века. Французский инженер Сент Клэр Девиль изучал причины неожиданных разрывов орудийных стволов. При их химическом анализе он нашел в металле водород. Девиль решил, что именно водородное насыщение явилось причиной внезапного падения прочности стали.

Много хлопот доставил водород конструкторам оборудования для одного из важнейших промышленных химических процессов – синтеза аммиака. Первые аппараты для этого синтеза служили лишь десятки часов, а затем разлетались на мелкие части. Только добавление в сталь титана, ванадия или молибдена помогло решить эту проблему.

К коррозии металлов можно отнести также их растворение в жидких расплавленных металлах (натрий, свинец, висмут), которые используются, в частности, в качестве теплоносителей в ядерных реакторах.

По стехиометрии реакции, описывающие коррозию металлов, довольно просты, однако по механизму они относятся к сложным гетерогенным процессам. Механизм коррозии определяется, прежде всего, типом агрессивной среды.

При контакте металлического материала с химически активным газом на его поверхности появляется пленка продуктов реакции. Она препятствует дальнейшему контакту металла и газа. Если сквозь эту пленку происходит встречная диффузия реагирующих веществ, то реакция продолжается. Процесс облегчается при высоких температурах. В ходе коррозии пленка продукта непрерывно утолщается, а металл разрушается. Большие убытки от газовой коррозии терпит металлургия и другие отрасли промышленности, где используются высокие температуры.

Наиболее распространена коррозия в средах электролитов. В некоторых технологических процессах металлы контактируют с расплавами электролитов. Однако чаще всего коррозия протекает в растворах электролитов. Металл не обязательно должен быть полностью погружен в жидкость. Растворы электролитов могут находиться в виде тонкой пленки на поверхности металла. Они нередко пропитывают окружающую металл среду (почву, бетон и др.).

Во время строительства метромоста и станции «Ленинские горы» в Москве в бетон добавляли большое количество хлорида натрия, чтобы не допустить замерзания еще не схватившегося бетона. Станция была сооружена в кратчайшие сроки (всего за 15 месяцев) и открыта 12 января 1959. Однако присутствие хлорида натрия в бетоне вызвало разрушение стальной арматуры. Коррозии оказались подвергнуты 60% железобетонных конструкций, поэтому станция была закрыта на реконструкцию, продолжавшуюся почти 10 лет. Лишь 14 января 2002 состоялось повторное открытие метромоста и станции, получившей название «Воробьевы горы».

Использование солей (обычно хлорида натрия или кальция) для удаления снега и льда с дорог и тротуаров также приводит к ускоренному разрушению металлов. Сильно страдают транспортные средства и подземные коммуникации. Подсчитано, что только в США применение солей для борьбы со снегопадами и гололедом приводит к потерям на сумму около 2 млрд. долл. в год в связи с коррозией двигателей и 0,5 млрд. долл. на дополнительный ремонт дорог, подземных магистралей и мостов.

В средах электролитов коррозия обусловлена не только действием кислорода, воды или кислот на металлы, но и электрохимическими процессами. Уже в начале 19 в. электрохимическую коррозию изучали английские ученые Гемфри Дэви и Майкл Фарадей. Первая теория электрохимической коррозии была выдвинута в 1830 швейцарским ученым Де ла Ривом. Она объясняла возникновение коррозии в месте контакта двух разных металлов.

Электрохимическая коррозия приводит к быстрому разрушению более активных металлов, которые в различных механизмах и устройствах контактируют с менее активными металлами, расположенными в электрохимическом ряду напряжений правее. Использование медных или латунных деталей в железных или алюминиевых конструкциях, которые работают в морской воде, существенно усиливает коррозию. Известны случаи разрушения и затопления кораблей, железная обшивка которых была скреплена медными заклепками.

По отдельности алюминий и титан устойчивы к действию морской воды, но если они контактируют в одном изделии, например в боксе для подводной фототехники, алюминий очень быстро разрушается, и бокс протекает.

Электрохимические процессы могут протекать и в однородном металле. Они активизируются, если есть различия в составе зерна металла в объеме и на границе, неоднородное механическое напряжение, микропримеси и т.д. В разработке общей теории электрохимической коррозии металлических материалов участвовали многие наши соотечественники, в том числе Владимир Александрович Кистяковский (1865–1952) и Александр Наумович Фрумкин (1895–1976).

Одной из причин возникновения электрохимической коррозии являются блуждающие токи, которые появляются вследствие утечки части тока из электрических цепей в почву или водные растворы, где они попадают на металлические конструкции. В местах выхода тока из этих конструкций вновь в почву или воду начинается растворение металла. Такие зоны разрушения металлов под действием блуждающих токов особенно часто наблюдаются в районах наземного электрического транспорта (трамвайные линии, железнодорожный транспорт на электрической тяге). Эти токи могут достигать несколько ампер, что приводит к большим коррозионным разрушениям. Например, прохождение тока силой в 1 А в течение одного года вызовет растворение 9,1 кг железа, 10,7 кг цинка, 33,4 кг свинца.

Коррозия может возникать и под влиянием радиационного излучения, а также продуктов жизнедеятельности бактерий и других организмов. С развитием бактерий на поверхности металлических конструкций связано явление биокоррозии. Обрастание подводной части судов мелкими морскими организмами также оказывает влияние на коррозионные процессы.

При одновременном воздействии на металл внешней среды и механических напряжений все коррозионные процессы активизируются, поскольку при этом понижается термическая устойчивость металла, нарушаются оксидные пленки на поверхности металла, усиливаются электрохимические процессы в местах появления трещин и неоднородностей.

Коррозия приводит к огромным безвозвратным потерям металлов, ежегодно полностью разрушается около 10% производимого железа. По данным Института физической химии РАН, каждая шестая домна в России работает впустую – весь выплавляемый металл превращается в ржавчину. Разрушение металлических конструкций, сельскохозяйственных и транспортных машин, промышленной аппаратуры становится причиной простоев, аварий, ухудшения качества продукции. Учет возможной коррозии приводит к повышенным затратам металла при изготовлении аппаратов высокого давления, паровых котлов, металлических контейнеров для токсичных и радиоактивных веществ и т.д. Это увеличивает общие убытки от коррозии. Немалые средства приходится тратить на противокоррозионную защиту. Соотношение прямых убытков, косвенных убытков и расходов на защиту от коррозии оценивают как (3–4):1:1. В промышленно развитых странах ущерб от коррозии достигает 4% национального дохода. В нашей стране он исчисляется миллиардами рублей в год.

Проблемы коррозии постоянно обостряются из-за непрерывного роста производства металлов и ужесточения условий их эксплуатации. Среда, в которой используются металлические конструкции, становится все более агрессивной, в том числе и за счет ее загрязнения. Металлические изделия, используемые в технике, работают в условиях все более высоких температур и давлений, мощных потоков газов и жидкостей. Поэтому вопросы защиты металлических материалов от коррозии становятся все более актуальными. Полностью предотвратить коррозию металлов невозможно, поэтому единственным путем борьбы с ней является поиск способов ее замедления.

Проблема защиты металлов от коррозии возникла почти в самом начале их использования. Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел, а позднее и покрытием другими металлами и, прежде всего, легкоплавким оловом (лужением). В трудах древнегреческого историка Геродота (5 в. до н. э.) и древнеримского ученого Плиния Старшего (1 в. до н. э.) уже есть упоминания о применении олова для предохранения железа от ржавления. В настоящее время борьбу с коррозией ведут сразу в нескольких направлениях – пытаются изменить среду, в которой работает металлическое изделие, повлиять на коррозионную устойчивость самого материала, предотвратить контакт между металлом и агрессивными веществами внешней среды.

Полностью предотвратить коррозию можно только в инертной среде, например в атмосфере аргона, однако реально создать такую среду при эксплуатации конструкций и механизмов в подавляющем большинстве случаев невозможно. На практике для снижения коррозионной активности среды из нее стараются удалить наиболее реакционноспособные компоненты, например, снижают кислотность водных растворов и почв, с которыми могут контактировать металлы. Одним из методов борьбы с коррозией железа и его сплавов, меди, латуни, цинка, свинца является удаление из водных растворов кислорода и диоксида углерода. В энергетике и некоторых отраслях техники воду освобождают также от хлоридов, которые стимулируют локальную коррозию. Для снижения кислотности почвы проводят известкование.

Агрессивность атмосферы сильно зависит от влажности. Для любого металла есть некоторая критическая относительная влажность, ниже которой он не подвергается атмосферной коррозии. Для железа, меди, никеля, цинка она составляет 50–70%. Иногда для сохранности изделий, имеющих историческую ценность, их температуру искусственно поддерживают выше точки росы. В закрытых пространствах (например, в упаковочных коробках) влажность понижают с помощью силикагеля или других адсорбентов. Агрессивность промышленной атмосферы определяется, в основном продуктами сгорания топлива (см . ЗАГРЯЗНЕНИЕ ОКРУЖАЮЩЕЙ СРЕДЫ ). Уменьшению потерь от коррозии способствует предотвращение кислотных дождей и устранение вредных газовых выбросов.

Разрушение металлов в водных средах можно замедлить при помощи ингибиторов коррозии, которые в небольших количествах (обычно менее 1%) вводят в водные растворы. Они способствуют пассивированию поверхности металла, то есть образованию тонкой и плотной пленки оксидов или других малорастворимых соединений, которая препятствует разрушению основного вещества. Для этой цели применяют некоторые соли натрия (карбонат, силикат, борат) и другие соединения. Если бритвенные лезвия погрузить в раствор хромата калия, они хранятся намного дольше. Часто используют органические ингибиторы, которые более эффективны, чем неорганические.

Один из способов защиты от коррозии основывается на разработке новых материалов, обладающих более высокой коррозионной стойкостью. Постоянно ведутся поиски заменителей коррозирующих металлов. Пластмассы, керамика, стекло, резина, асбест и бетон более устойчивы к воздействию окружающей среды, однако по многим другим свойствам они уступают металлам, которые по-прежнему служат основными конструкционными материалами.

Благородные металлы практически не поддаются коррозии, но для широкого применения они слишком дороги, поэтому их используют лишь в наиболее ответственных деталях, например для изготовления некорродирующих электрических контактов. Высокой коррозионной стойкостью обладают никель, алюминий, медь, титан и сплавы на их основе. Их производство растет довольно быстро, однако и сейчас наиболее доступным и широко используемым металлом остается быстро ржавеющее железо. Для придания коррозионной стойкости сплавам на основе железа часто используют легирование. Так получают нержавеющую сталь, которая, помимо железа, содержит хром и никель. Самая распространенная в наше время нержавеющая сталь марки 18–8 (18% хрома и 8% никеля) появилась в 1923. Она вполне устойчива к воздействию влаги и кислорода. Первые тонны нержавеющей стали в нашей стране были выплавлены в 1924 в Златоусте. Сейчас разработано много марок таких сталей, которые, помимо хрома и никеля, содержат марганец, молибден, вольфрам и другие химические элементы. Часто применяют поверхностное легирование недорогих железных сплавов цинком, алюминием, хромом.

Для противостояния атмосферной коррозии на стальные изделия наносятся тонкие покрытия из других металлов, более устойчивых к воздействию влаги и кислорода воздуха. Часто используются покрытия из хрома и никеля. Поскольку хромовые покрытия нередко содержат трещины, их обычно наносят поверх менее декоративных никелевых покрытий. На защиту жестяных консервных банок от коррозии в органических кислотах, содержащихся в пищевых продуктах, расходуется значительное количество олова. Долгое время для покрытия кухонной утвари использовали кадмий, однако теперь известно, что этот металл опасен для здоровья и кадмиевые покрытия используются только в технике.

Для замедления коррозии на поверхность металла наносят лаки и краски, минеральные масла и смазку. Подземные конструкции покрывают толстым слоем битума или полиэтилена. Внутренние поверхности стальных труб и резервуаров защищают дешевыми покрытиями из цемента.

Чтобы лакокрасочное покрытие было более надежным, поверхность металла тщательно очищают от грязи и продуктов коррозии и подвергают специальной обработке. Для стальных изделий используют так называемые преобразователи ржавчины, содержащие ортофосфорную кислоту (Н 3 РО 4) и ее соли. Они растворяют остатки оксидов и формируют плотную и прочную пленку фосфатов, которая способна на некоторое время защитить поверхность изделия. Затем металл покрывают грунтовочным слоем, который должен хорошо ложиться на поверхность и обладать защитными свойствами (обычно используют свинцовый сурик или хромат цинка). Только после этого можно наносить лак или краску.

Одним из наиболее эффективных методов борьбы с коррозией является электрохимическая защита. Для защиты буровых платформ, сварных металлических оснований, подземных трубопроводов их подключают в качестве катода к внешнему источнику тока. В качестве анода используются вспомогательные инертные электроды.

Другой вариант такой защиты применяют для сравнительно небольших стальных конструкций или дополнительно покрытых изоляцией металлических объектов (например, трубопроводов). В этом случае используют протектор – анод из сравнительно активного металла (обычно это магний, цинк, алюминий и их сплавы), который постепенно разрушается, оберегая основной объект. С помощью одного магниевого анода защищают до 8 км трубопровода. Протекторная защита широко распространена; например, в США на производство протекторов ежегодно расходуется около 11,5 тыс. т алюминия.

Защита одного металла другим, более активным металлом, расположенным в ряду напряжений левее, эффективна и без наложения разности потенциалов. Более активный металл (например, цинк на поверхности железа) защищает от разрушения менее активный металл.

К электрохимическим методам борьбы с коррозией можно отнести и защиту от разрушения конструкций блуждающими токами. Одним из способов устранения такой коррозии является соединение металлическим проводником участка конструкции, с которого стекает блуждающий ток, с рельсом, по которому движется трамвай или электропоезд.

Елена Савинкина

ЛИТЕРАТУРА Фримантл М. Химия в действии . В 2-х ч. М., Мир, 1991
Степин Б.Д., Аликберова Л.Ю. Книга по химии для домашнего чтения . М., Химия, 1994

Коррозия – самопроизвольное окисление металлов, вредное для промышленной практики (уменьшающее долговечность изделий). Это слово произошло от латинского corrodere – разъедать. Среда, в которой металл подвергается коррозии (корродирует), называется коррозионной или агрессивной . При этом образуются продукты коррозии: химические соединения, содержащие металл в окисленной форме. В тех случаях, когда окисление металла необходимо для осуществления какого-либо технологического процесса, термин «коррозия» употреблять не следует. Например, нельзя говорить о коррозии растворимого анода в гальванической ванне, поскольку анод должен окисляться, посылая свои ионы в раствор, чтобы протекал нужный процесс. Нельзя также говорить о коррозии алюминия при осуществлении алюмотермического процесса. Но физико-химическая сущность изменений, происходящих с металлом во всех подобных случаях, одинакова: металл окисляется. Следовательно, термин «коррозия» имеет не столько научное, сколько инженерное значение. Правильнее было бы употреблять термин «окисление» независимо от того, вредно или полезно оно для нашей практики. В системе стандартизации (ГОСТ 5272-68) коррозия металлов определена как разрушение металлов вследствие химического и электрохимического взаимодействия их с коррозионной средой. В системе ИСО (международной стандартизации) это понятие несколько шире: физико-химическое взаимодействие между металлом и средой, в результате которого изменяются свойства металла, и часто происходит ухудшение функциональных характеристик металла, среды или включающей их технической системы.

Объекты воздействия коррозии – металлы, сплавы (твердые растворы), металлопокрытия, металлоконструкции машин, оборудования и сооружений. Процесс коррозии представляют как коррозионную систему, состоящую из металла и коррозионной среды. Коррозионная среда содержит одно или несколько веществ, вступающих в реакцию с металлом. Она может быть жидкой и газообразной. Газообразная среда, окисляющая металл, называется окислительной газовой средой . Изменение в любой части коррозионной системы, вызванное коррозией, называется коррозионным эффектом . Коррозионный эффект, ухудшающий функциональные характеристики металла, покрытия, среды или включающих их технических систем, расценивают как эффект повреждения или как коррозионную порчу (по системе ИСО). В результате коррозии образуются новые вещества, включающие окислы и соли корродирующего металла, это – продукты коррозии . Видимые продукты атмосферной коррозии, состоящие в основном из гидратированных оксидов железа, называют ржавчиной , продукты газовой коррозии – окалиной . Количество металла, превращенного в продукты коррозии за определенное время, относят к коррозионным потерям . Коррозионные потери единицы поверхности металла в единицу времени характеризуют скорость коррозии . Эффект повреждений, связанный с потерями механической прочности металла, определяют термином – коррозионное разрушение , глубину его в единицу времени называют скоростью проникновения коррозии . Важнейшее понятие – коррозионная стойкость . Она характеризует способность металла сопротивляться коррозионному воздействию среды. Коррозионную стойкость определяют качественно и количественно – скоростью коррозии в данных условиях, группой или баллом стойкости по принятой шкале, с помощью оптических приборов. Металлы, обладающие высокой коррозионной стойкостью, называют коррозионно стойкими . Факторы, влияющие на скорость, вид, рас-пределение коррозии и связанные с природой металла (состав, структура, внутренние напряжения, состояние поверхности), называют внутренними факторами коррозии . Факторы, влияющие на те же параметры коррозии, но связанные с составом коррозионной среды и условиями процесса (температура, влажность, обмен среды, давление и т. п.), называют внешними факторами коррозии . В ряде случаев факторы коррозии целесообразно делить в соответствии с таблицей 4.


Таблица 4

Факторы коррозии



2. Классификация процессов коррозии металлов

Классифицировать коррозию принято по механизму, условиям протекания процесса и характеру разрушения. По механизму протекания коррозионные процессы, согласно ГОСТ 5272-68, подразделяются на два типа: электрохимические и химические . К электрохимической коррозии относят процесс взаимодействия металла с коррозионной средой, при котором ионизация атомов металла и восстановление окислительных агентов среды протекают не в одном акте и зависят от электронного потенциала (наличия проводников второго рода). Рассмотрим несколько видов электрохимической коррозии:

1) атмосферная – характеризует процесс в условиях влажной воздушной среды. Это наиболее распространенный вид коррозии, так как большинство конструкций эксплуатируют в атмосферных условиях. Ее можно разделить следующим образом: на открытом воздухе, с возможностью попадания на поверхность машин осадков, или с защитой от них в условиях ограниченного доступа воздуха и в замкнутом воздушном пространстве;

2) подземная – разрушение металла в почвах и грунтах. Разновидность этой коррозии – электрохимическая коррозия под воздействием блуждающих токов. Последние возникают в грунте вблизи источников электрического тока (систем передачи электроэнергии, электрифицированных транспортных путей);

3) жидкостная коррозия , или коррозия в электролитах . Ее частным случаем является подводная коррозия – разрушение металлических конструкций, погруженных в воду. По условиям эксплуатации металлоконструкций, этот вид подразделяют на коррозию при полном и неполном погружении; при неполном погружении рассмотрен процесс коррозии по ватерлинии. Водные среды могут отличаться коррозийной активностью в зависимости от природы растворенных в них веществ (морская, речная вода, кислотные и щелочные растворы химической промышленности и т. п.). При подводной коррозии возможны процессы коррозии оборудования в неводных жидких средах, которые подразделяют на неэлектропроводящие и электропроводящие. Такие среды специфичны для химической, нефтехимической и других отраслей промышленности. К химической коррозии относят процесс, в котором окисление металла и восстановление среды представляют единый акт (отсутствие проводников второго рода). Химическая коррозия – это разрушение металлов в окислительных средах при высоких температурах. Различают два вида: газовая (т. е. окисление металла при нагреве) и коррозия в неэлектролитах :

а) характерной особенностью газовой коррозии является отсутствие влаги на поверхности металла. На скорость газовой коррозии влияет, прежде всего температура и состав газовой среды. В промышленности часто встречаются случаи этой коррозии: от разрушения деталей нагревательных печей до коррозии металла при термической обработке.

б) коррозия металлов в неэлектролитах, независимо от их природы, сводится к химической реакции между металлом и веществом. В качестве неэлектролитов используют органические жидкости.

В особую группу следует выделить виды коррозии в условиях воздействия механических напряжений (механическая коррозия). Эта группа включает: собственно коррозию под напряжением , характеризуемую разрушением металла при одновременном воздействии коррозионной среды и постоянных или переменных механических напряжений; коррозионное растрескивание – при одновременном воздействии коррозионной среды и внешних или внутренних механических напряжений растяжения с образованием транскристаллитных трещин.

Различают самостоятельные виды коррозии:

1) коррозия при трении – разрушение металла, вызываемое одновременным воздействием коррозионной среды и трения;

2) фреттинг-коррозия – разрушение при колебательном перемещении двух поверхностей относительно друг друга в условиях воздействия коррозионной среды;

3) коррозионная кавитация – разрушение при ударном воздействии среды;

4) коррозионная эрозия – при истирающем воздействии среды;

5) контактная коррозия – разрушение одного из двух металлов, находящихся в контакте и имеющих разные потенциалы в данном электролите.

Следует различать коррозию и эрозию. Эрозия о латинского слова erodere (разрушать) – постепенное механическое разрушение металла, например при истирании трущихся частей механизмов.

Самостоятельный вид коррозии – биокоррозия – это разрушение металла, при котором в качестве значимого выступает биофактор. Биоагенты – микроорганизмы (грибы, бактерии), которые являются инициаторами или стимуляторами процесса коррозии.

По характеру разрушения коррозия делится на сплошную (или общую) и местную (локальную). Сплошная коррозия охватывает всю поверхность металла, при этом она может быть равномерной или неравномерной. Местная коррозия происходит с разрушением отдельных участков поверхности металлов. Разновидность этой коррозии: точечная (питтинг), коррозия пятнами и сквозная коррозия.

Подповерхностная коррозия начинается с поверхности, но развивается преимущественно под ней таким образом, что продукты коррозии сосредоточены внутри металла. Ее разновидность – послойная коррозия , распространяющаяся преимущественно в направлении пластической деформации металла.

Структурная коррозия связана со структурной неоднородностью металла. Ее разновидность – межкристаллитная – разрушение металла по границам кристаллитов (зерен) металла; внутрикристаллитная – разрушение металла по зернам кристаллитов. Наблюдается при коррозийном растрескивании, протекающем под влиянием внешних механических нагрузок или внутренних напряжений.

Ножевая коррозия – локализованное разрушение металла в зоне сплавления сварных соединений в жидких средах с высокой коррозионной активностью.

Щелевая коррозия – усиление процесса разрушения металла в зазорах между двумя металлами.

Избирательная коррозия – разрушение одной структурной составляющей или одного компонента металла в высокоактивных средах. Существует ряд разновидностей: графитизация чугуна (растворение ферритных или перлитных составляющих) и обесцинкование (растворение цинковой составляющей) латуней.

3. Виды коррозионных разрушений

Коррозия, в зависимости от природы металла, агрессивной среды и других условий, приводит к различным видам разрушений. На рисунке 13 представлены разрезы через прокорродировавший образец металла, показывающие возможные изменения рельефа поверхности в результате коррозии.



Рис. 11. Схематическое изображение различных видов коррозии: а – равномерная коррозия; б – коррозия пятнами; в, г – коррозия язвами; д – точечная коррозия (питтинг); е – подповерхностная коррозия; НН – исходная поверхность металла; КК – рельеф поверхности, измененный вследствие коррозии.


Иногда коррозия протекает со скоростью, одинаковой по всей поверхности; в таком случае поверхность становится только немного более шероховатой, чем исходная (а). Часто наблюдается различная скорость коррозии на отдельных участках: пятнами (б), язвами (в, г). Если язвы имеют малое сечение, но относительно большую глубину (д), то говорят о точечной коррозии (питтинг). В некоторых условиях небольшая язва распространяется вглубь и вширь под поверхностью (е). Неравномерная коррозия значительно более опасна, чем равномерная. Неравномерная коррозия, при сравнительно небольшом количестве окисленного металла, вызывает большое уменьшение сечения в отдельных местах. Язвенная или точечная коррозия могут привести к образованию сквозных отверстий, например, в листовом материале, при малой потере металла.

Приведенная классификация, конечно, условна. Возможны многочисленные формы разрушения, лежащие между характерными типами, показанными на данном рисунке.

Некоторые сплавы подвержены своеобразному виду коррозии, протекающей только по границам кристаллитов, которые оказываются отделенными друг от друга тонким слоем продуктов коррозии (межкристаллитная коррозия). Здесь потери металла очень малы, но сплав теряет прочность. Это очень опасный вид коррозии, который нельзя обнаружить при наружном осмотре изделия.

4. Методы защиты от коррозии

Для ослабления коррозионного процесса требуется повлиять либо на сам металл, либо на коррозионную среду. Выделяют основные направления для борьбы с коррозией:

1) легирование металла, либо замена его другим, более коррозионностойким;

2) защитные покрытия (металлические и неметаллические) органического или неорганического происхождения;

3) электрохимическая защита, различают катодную, анодную и протекторную как вариант катодной защиты.

Например, при атмосферной коррозии применяют покрытия органического и неорганического происхождения; от подземной коррозии эффективна электрохимическая защита;

4) введение ингибиторов (веществ, замедляющих скорость реакции).

Коррозия металлов (от позднелат. corrosio — разъедание) — физико-химическое взаимодействие металлического материала и среды, приводящее к ухудшению эксплуатационных свойств материала, среды или технической системы, частями которой они являются.

В основе коррозии металлов лежит химическая реакция между материалом и средой или между их компонентами, протекающая на границе раздела фаз. Это процесс является самопроизвольным, а также является следствием окислительно-восстановительных реакций с компонентами окружающей среды. Химические вещества, разрушающие строительные материалы, называются агрессивными. Агрессивной средой может служить атмосферный воздух, вода, различные растворы химических веществ, газы. Процесс разрушения материала усиливается при наличии в воде даже незначительного количества кислот или солей, в почвах при наличии в почвенной воде солей и колебаниях уровня грунтовых вод.

Коррозионные процессы классифицируют:

1) по условиям протекания коррозии,

2) по механизму процесса,

3) по характеру коррозионного разрушения.

По условиям протекания коррозии , которые весьма разнообразны, различают несколько видов коррозии.

Коррозионные среды и вызываемые ими разрушения столь характерны, что по названию этих сред классифицируются и протекающие в них коррозионные процессы. Так, выделяют газовую коррозию , т. е. химическую коррозию под действием горячих газов (при температуре много выше точки росы).

Характерны некоторые случаи электрохимической коррозии (преимущественно с катодным восстановлением кислорода) в природных средах: атмосферная - в чистом или загрязнённом воздухе при влажности, достаточной для образования на поверхности металла плёнки электролита (особенно в присутствии агрессивных газов, например СО 2 , Cl 2 , или аэрозолей кислот, солей и т. п.); морская - под действием морской воды и подземная - в грунтах и почвах.

Коррозия под напряжением развивается в зоне действия растягивающих или изгибающих механических нагрузок, а также остаточных деформаций или термических напряжений и, как правило, ведёт к транскристаллитному коррозионному растрескиванию, которому подвержены, например, стальные тросы и пружины в атмосферных условиях, углеродистые и нержавеющие стали в паросиловых установках, высокопрочные титановые сплавы в морской воде и т. д.

При знакопеременных нагрузках может проявляться коррозионная усталость , выражающаяся в более или менее резком понижении предела усталости металла в присутствии коррозионной среды. Коррозионная эрозия (или коррозия при трении ) представляет собой ускоренный износ металла при одновременном воздействии взаимно усиливающих друг друга коррозионных и абразивных факторов (трение скольжения, поток абразивных частиц и т. п.).

Родственная ей кавитационная коррозия возникает при кавитационных режимах обтекания металла агрессивной средой, когда непрерывное возникновение и «захлопывание» мелких вакуумных пузырьков создаёт поток разрушающих микрогидравлических ударов, воздействующих на поверхность металла. Близкой разновидностью можно считать и фреттинг- коррозию , наблюдаемую в местах контакта плотно сжатых или катящихся одна по другой деталей, если в результате вибраций между их поверхностями возникают микроскопические смещения сдвига.

Утечка электрического тока через границу металла с агрессивной средой вызывает в зависимости от характера и направления утечки дополнительные анодные и катодные реакции, могущие прямо или косвенно вести к ускоренному местному или общему разрушению металла (коррозию блуждающим током ). Сходные разрушения, локализуемые вблизи контакта, может вызвать соприкосновение в электролите двух разнородных металлов, образующих замкнутый гальванический элемент, - контактная коррозия .

В узких зазорах между деталями, а также под отставшим покрытием или наростом, куда проникает электролит, но затруднён доступ кислорода, необходимого для пассивации металла, может развиваться щелевая коррозия , при которой растворение металла в основном происходит в щели, а катодные реакции частично или полностью протекают рядом с ней на открытой поверхности.

Принято выделять также биологическую коррозию , идущую под влиянием продуктов жизнедеятельности бактерий и др. организмов, и радиационную коррозию - при воздействии радиоактивного излучения.

1 . Газовая коррозия - коррозия металлов в газах при высоких температурах (например, окисление и обезуглероживание стали при нагревании);

2. Атмосферная коррозия - коррозия металлов в атмосфере воздуха, а также любого влажного газа (например, ржавление стальных конструкций в цехе или на открытом воздухе);

Атмосферная коррозия является самым распространенным видом коррозии; около 80% металлоконструкций эксплуатируется в атмосферных условиях.
Основным фактором, определяющим механизм и скорость атмосферной коррозии, является степень увлажнения поверхности металла. По степени увлажнения различают три основных типа атмосферной коррозии:

  • Мокрая атмосферная коррозия – коррозия при наличии на поверхности металла видимой пленки воды (толщина пленки от 1мкм до 1 мм). Коррозия этого типа наблюдается при относительной влажности воздуха около 100%, когда имеет место капельная конденсация воды на поверхности металла, а также при непосредственном попадании воды на поверхность (дождь, гидроочистка поверхности и т. п.);
  • Влажная атмосферная коррозия – коррозия при наличии на поверхности металла тонкой невидимой пленки воды, которая образуется в результате каппилярной, адсорбционной или химической конденсации при относительной влажности воздуха ниже 100% (толщина пленки от 10 до 1000 нм);
  • Сухая атмосферная коррозия – коррозия при наличии на поверхности металла очень тонкой адсорбционной пленки воды (порядка нескольких молекулярных слоев общей толщиной от 1 до 10 нм), которую еще нельзя рассматривать, как сплошную и обладающую свойствами электролита.

Очевидно, что минимальные сроки коррозии имеют место при сухой атмосферной коррозии, которая протекает по механизму химической коррозии.

С увеличением толщины пленки воды происходит переход механизма коррозии от химического к электрохимическому, что соответствует быстрому возрастанию скорости коррозионного процесса.

Из приведенной зависимости видно, что максимуму скорости коррозии отвечает граница областей II и III, затем наблюдается некоторое замедление коррозии вследствие затруднения диффузии кислорода через утолщенный слой воды. Еще более толстые слои воды на поверхности металла (участок IV) приводят лишь к незначительному замедлению коррозии, так как в меньшей степени будут влиять на диффузию кислорода.

На практике не всегда можно так отчетливо разграничить эти три этапа атмосферной коррозии, так как в зависимости от внешних условий возможен переход от одного типа к другому. Так, например, металлоконструкция, которая корродировала по механизму сухой коррозии, при увеличении влажности воздуха начнет коррозировать по механизму влажной коррозии, а при выпадении осадков уже будет иметь место мокрая коррозия. При высыхании влаги процесс будет изменяться в обратном направлении.

На скорость атмосферной коррозии металлов оказывает влияние ряд факторов. Основным из них следует считать длительность увлажнения поверхности, которая определяется главным образом величиной относительной влажности воздуха. При этом в большинстве практических случаев скорость коррозии металла резко увеличивается только при достижении некоторой определенной критической величины относительной влажности, при которой появляется сплошная пленка влаги на поверхности металла в результате конденсации воды из воздуха.

Влияние относительной влажности воздуха на скорость атмосферной коррозии углеродистой стали показано на рисунке Зависимость увеличения массы продуктов коррозии m от относительной влажности воздуха W получена при экспозиции стальных образцов в атмосфере, содержащей 0,01% SO 2 , в течении 55 суток.

Очень сильно влияют на скорость атмосферной коррозии содержащиеся в воздухе примеси SO 2 , H 2 S, NH 3 , HCl и др. Растворяясь в пленке воды, они увеличивают ее электропроводность и

Твердые частицы из атмосферы, попадающие на поверхность металла, могут, растворяясь, действовать как вредные примеси (NaCl, Na 2 SO 4), либо в виде твердых частиц облегчать конденсацию влаги на поверхности (частицы угля, пыль, частицы абразива и т.п.).

На практике трудно выявить влияние отдельных факторов на скорость коррозии металла в конкретных условиях эксплуатации, но можно приблизительно оценить ее, исходя из обобщенных характеристик атмосферы (оценка дается в относительных единицах):

сухая континентальная — 1-9
морская чистая — 38
морская индустриальная — 50
индустриальная — 65
индустриальная, сильно загрязненная – 100.

3 . Жидкостная коррозия - коррозия металлов в жидкой среде: в неэлектролите (бром, расплавленная сера, органический растворитель, жидкое топливо) и в электролите (кислотная, щелочная, солевая, морская, речная коррозия, коррозия в расплавленных солях и щелочах). В зависимости от условий взаимодействия среды с металлом различают жидкостную коррозию металла при полном, неполном и переменном погружении, коррозию по ватерлинии (вблизи границы между погруженной и непогруженной в коррозионную среду частью металла), коррозию в неперемешиваемой (спокойной) и перемешиваемой (движущейся) коррозионной среде;

Жидкостная коррозия

4. Подземная коррозия - коррозию металлов в почвах и грунтах (например, ржавление подземных стальных трубопроводов);

Подземная коррозия

По своему механизму является электрохим. коррозией металлов. подземная коррозия обусловлена тремя факторами: коррозионной агрессивностью почв и грунтов (почвенная коррозия), действием блуждающих токов и жизнедеятельностью микроорганизмов.

Коррозионная агрессивность почв и грунтов определяется их структурой, грану-лометрич. составом, уд. электрич. сопротивлением, влажностью, воздухопроницаемостью, рН и др. Обычно коррозионную агрессивность грунта по отношению к углеродистым сталям оценивают по уд. электрич. сопротивлению грунта, средней плотности катодного тока при смещении электродного потенциала на 100 мВ отрицательнее коррозионного потенциала стали; по отношению к алюминию коррозионная активность грунта оценивается содержанием в нем ионов хлора, железа, значением рН, по отношению к свинцу-содержанием нитрат-ионов, гумуса, значением рН.

5. Биокоррозия - коррозия металлов под влиянием жизнедеятельности микроорганизмов (например, усиление коррозии стали в грунтах сульфат-редуцирующими бактериями);

Биокоррозия

Биокоррозия подземных сооружений обусловлена в осн. жизнедеятельностью сульфатвосстанавливающих, сероокис-ляющих и железоокисляющих бактерий, наличие к-рых устанавливают бактериологич. исследованиями проб грунта. Сульфатвосстанавливающие бактерии присутствуют во всех грунтах, но с заметной скоростью биокоррозия протекает только тогда, когда воды (или грунты) содержат 105-106 жизнеспособных бактерий в 1 мл (или в 1 г).

6. С труктурная коррозия - коррозия, связанную со структурной неоднородностью металла (например, ускорение коррозионного процесса в растворах H 2 S0 4 или НСl катодными включениями: карбидами в стали, графитом в чугуне, интерметаллидом СuА1 3 в дюралюминии);

Структурная коррозия

7. Коррозия внешним током - электрохимическая коррозия металлов под воздействием тока от внешнего источника (например, растворение стального анодного заземления станции катодной защиты подземного трубопровода);

Коррозия внешним током

8. Коррозия блуждающим током - электрохимическая коррозия металла (например, подземного трубопровода) под воздействием блуждающего тока;

Основные источники блуждающих токов в земле -электрифи-цир. железные дороги постоянного тока, трамвай, метрополитен, шахтный электротранспорт, линии электропередач постоянного тока по системе провод — земля. Наибольшие разрушения блуждающие токи вызывают в тех местах подземного сооружения, где ток стекает с сооружения в землю (т. наз. анодные зоны).Потери железа от коррозии блуждающими токами составляют 9,1 кг/А·год.

На подземные металлич. сооружения могут натекать токи порядка сотен ампер и при наличии повреждений в защитном покрытии плотность тока, стекающего с сооружения в анодной зоне, настолько велика, что за короткий период в стенках сооружения образуются сквозные повреждения. Поэтому при наличии анодных или знакопеременных зон на подземных металлич. сооружениях коррозия блуждающими токами обычно опаснее почвенной коррозии.

9. Контактная коррозия - электрохимическая коррозия, вызванная контактом металлов, имеющих разные стационарные потенциалы в данном электролите (например, коррозия в морской воде деталей из алюминиевых сплавов, находящихся в контакте с медными деталями).

Контактная коррозия

Контактная коррозия в электролитах с высокой электропроводностью может возникать в следующих частных случаях:

    при контакте низколегированной стали различных марок, если одна из них легирована медью и (или) никелем;

    при введении этих элементов в сварные швы в процессе сварки стали, не легированной этими элементами;

    при воздействии на конструкции из стали, не легированной медью и никелем, а также из оцинкованной стали или из алюминиевых сплавов, пыли, содержащей тяжелые металлы или их оксиды, гидрооксиды, соли; перечисленные материалы являются катодами по отношению к стали, алюминию, металлическим защитным покрытиям;

    при попадании на конструкции из перечисленных материалов потеков воды с корродирующих медных деталей;

    при попадании на поверхность конструкций из оцинкованной стали или алюминиевых сплавов графитовой либо железорудной пыли, коксовой крошки;

    при контакте алюминиевых сплавов между собой, если один сплав (катодный) легирован медью, а другой (анодный) ¾ нет;

10. щелевая коррозия - усиление коррозии в щелях и зазорах между металлами (например, в резьбовых и фланцевых соединениях стальных конструкций, находящихся в воде), а также в местах неплотного контакта металла с неметаллическим коррозионноинертным материалом. Присуща конструкциям из нержавеющей стали в агрессивных жидких средах, в которых материалы вне узких щелей и зазоров устойчивы благодаря пассивному состоянию т.е. вследствие образования на их поверхности защитной пленки;

11. Коррозия под напряжением - коррозия металлов при одновременном воздействии коррозионной среды и механических напряжений. В зависимости от характера нагрузок может быть коррозия при постоянной нагрузке (например, коррозия металла паровых котлов) и коррозия при переменной нагрузке (например, коррозия осей и штоков насосов, рессор, стальных канатов); одновременное воздействие коррозионной среды и знакопеременных или циклических растягивающих нагрузок часто вызывает коррозионную усталость - понижение предела усталости металла;

Коррозия под напряжением

12. Коррозионная кавитация - разрушение металла, вызванное одновременным коррозионным и ударным воздействием внешней среды (например, разрушение лопастей гребных винтов морских судов);

Коррозионная кавитация

Кавитация - (от лат. cavitas - пустота) - образование в жидкости полостей (кавитационных пузырьков, или каверн), заполненных газом, паром или их смесью. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить при увеличении её скорости (гидродинамическая кавитация). Перемещаясь с потоком в область с более высоким давлением или во время полупериода сжатия, кавитационный пузырек захлопывается, излучая при этом ударную волну.

Кавитация во многих случаях нежелательна. На устройствах, например, винтах и насосах, кавитация вызывает много шума, повреждает их составные части, вызывает вибрации и снижение эффективности.

Когда разрушаются кавитационные пузыри, энергия жидкости сосредотачивается в очень небольших объемах. Тем самым, образуются места повышенной температуры и возникают ударные волны, которые являются источниками шума. При разрушении каверн освобождается много энергии, что может вызвать основные повреждения. Кавитация может разрушить практически любое вещество. Последствия, вызванные разрушением каверн, ведут к большому износу составных частей и могут значительно сократить срок службы винта и насоса.

Для предотвращения кавитации

  • подбирают устойчивый к данному виду эрозии материал (молибденовые стали);
  • уменьшают шероховатость поверхности;
  • снижают турбулентность потока, уменьшают количество поворотов, делают их более плавными;
  • не допускают прямого удара эрозийной струи в стенку аппарата, применяя отражатели, рассекатели струй;
  • очищают газы и жидкости от твердых примесей;
  • не допускают работу гидравлических машин в режиме кавитации;
  • ведут систематический контроль за износом материала.

13. коррозия при трении (коррозионная эрозия) - разрушение металла, вызываемое одновременным воздействием коррозионной среды и трения (например, разрушение шейки вала при трении о подшипник омываемый морской водой);

14. Фреттинг-коррозия - коррозия металлов при колебательном перемещение двух поверхностей относительно друг друга в условиях воздействия коррозионной среды (например, разрушение двух поверхностей металлических деталей машины, плотно соединенных болтами, в результате вибрации в окислительной атмосфере, содержащей кислород).

Фреттинг-коррозия

По механизму процесса различают химическую и электрохимическую коррозию металлов:

1. химическая коррозия - взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Примерами такого типа коррозии являются реакции, протекающие при соприкосновении металлоконструкций с кислородом или другими окисляющими газами при высокой температуре (свыше 100°С):

2 Fe + O 2 = FeO;

4FeO + 3O 2 = 2Fe 2 O 3 .

Если в результате химической коррозии образуется сплошная оксидная пленка, имеющая достаточно прочную адгезию с поверхностью металлоконструкции, то доступ кислорода к металлу затрудняется, коррозия замедляется, а затем прекращается. Пористая, плохо сцепленная с поверхностью конструкции оксидная пленка не защищает металл от коррозии. Когда объем оксида больше объема вступившего в реакцию окисления металла и оксид имеет достаточную адгезию с поверхностью металлоконструкции, такая пленка хорошо защищает металл от дальнейшего разрушения. Толщина защитной пленки оксида колеблется от нескольких молекулярных слоев (5-10)х10 –5 мм до нескольких микронов.

Окисление материала металлоконструкций, соприкасающихся с газовой средой, происходит в котлах, дымовых трубах котельных, водонагревателях, работающих на газовом топливе, теплообменниках, работающих на жидком и твердом топливе. Если бы газообразная среда не содержала диоксида серы или других агрессивных примесей, а взаимодействие металлоконструкций со средой происходило при постоянной температуре по всей плоскости конструкции, то относительно толстая оксидная пленка служила бы достаточно надежной защитой от дальнейшей коррозии. Но в связи с тем, что тепловое расширение металла и оксида различно, оксидная пленка отслаивается местами, что создает условия для дальнейшей коррозии.

Газовая коррозия стальных конструкций может протекать вследствие не только окислительных, но и восстановительных процессов. При сильном нагреве стальных конструкций под высоким давлением в среде, содержащей водород, последний диффундирует в объем стали и разрушает материал по двойному механизму – обезуглероживания вследствие взаимодействия водорода с углеродом

Fe 3 OC + 2H 2 = 3Fe + CH 4 O

и придания стали свойств хрупкости вследствие растворения в ней водорода – «водородная хрупкость».

2. Электрохимическая коррозия - взаимодействие металла с коррозионной средой (раствором электролита), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном, акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).

При контакте с воздухом на поверхности конструкции появляется тонкая пленка влаги, в которой растворяются примеси, находящиеся в воздухе, например диоксид углерода. При этом образуются растворы, способствующие электрохимической коррозии. Различные участки поверхности любого металла обладают разными потенциалами.

Причинами этого могут быть наличие примесей в металле, различная обработка отдельных его участков, неодинаковые условия (окружающая среда), в которых находятся различные участки поверхности металла. При этом участки поверхности металла с более электроотрицательным потенциалом становятся анодами и растворяются.

Электрохимическая коррозия – явление сложное, состоящее из нескольких элементарных процессов. На анодных участках протекает анодный процесс – в раствор переходят ионы металла (Ме), а избыточные электроны (е), оставаясь в металле, движутся к катодному участку. На катодных участках поверхности металла избыточные электроны поглощаются ионами, атомами или молекулами электролита (деполяризаторами), которые восстанавливаются:

е + Д → [Де],

где Д – деполяризатор; е – электрон.

Интенсивность коррозионного электрохимического процесса зависит от скорости анодной реакции, при которой ион металла переходит из кристаллической решетки в раствор электролита, и катодной, заключающейся в ассимиляции освобождающихся при анодной реакции электронов.

Возможность перехода иона металла в электролит определяется силой связи с электронами в междоузлиях кристаллической решетки. Чем сильнее связь между электронами и атомами, тем труднее переход иона металла в электролит. В электролитах имеются положительно заряженные частицы – катионы и отрицательно заряженные – анионы. Анионы и катионы присоединяют к себе молекулы воды.

Структура молекул воды обусловливает ее полярность. Между заряженными ионами и полярными молекулами воды возникает электростатическое взаимодействие, вследствие которого полярные молекулы воды определенным образом ориентируются вокруг анионов и катионов.

При переходе ионов металлов из кристаллической решетки в раствор электролита освобождается эквивалентное число электронов. Таким образом на границе «металл – электролит» образуется двойной электрический слой, в котором металл заряжен отрицательно, электролит – положительно; возникает скачок потенциала.

Способность ионов металла переходить в раствор электролита характеризуется электродным потенциалом, который представляет собой энергетическую характеристику двойного электрического слоя.

Когда этот слой достигает разности потенциалов, переход ионов в раствор прекращается (наступает равновесное состояние).

Коррозионная диаграмма: К, К’ - катодные поляризационные кривые; А, A’ - анодные поляризационные кривые.

По характеру коррозионного разрушения различают следующие виды коррозии:

1. сплошную, или общую коррозию , охватывающую всю поверхность металла, находящуюся под воздействием данной коррозионной среды. Сплошная коррозия характерна для стали, алюминия, цинковых и алюминиевых защитных покрытий в любых средах, в которых коррозионная стойкость данного материала или металла покрытия недостаточно высока.

Этот вид коррозии характеризуется относительно равномерным по всей поверхности постепенным проникновением в глубь металла, т. е. уменьшением толщины сечения элемента или толщины защитного металлического покрытия.

При коррозии в нейтральных, слабощелочных и слабокислых средах элементы конструкций покрываются видимым слоем продуктов коррозии, после механического удаления которого до чистого металла поверхность конструкций оказывается шероховатой, но без очевидных язв, точек коррозии и трещин; при коррозии в кислых (а для цинка и алюминия и в щелочных) средах видимый слой продуктов коррозии может не образоваться.

Наиболее подверженными этому виду коррозии участками, как правило, являются узкие щели, зазоры, поверхности под головками болтов, гайками, другие участки скопления пыли, влаги по той причине, что на этих участках фактическая продолжительность коррозии больше, чем на открытых поверхностях.

Сплошная коррозия бывает:

* равномерной, которая протекает с одинаковой скоростью по всей поверхности металла (например, коррозия углеродистой стали в растворах H 2 S0 4);

* неравномерной, которая протекает с неодинаковой скоростью на различных участках поверхности металла (например, коррозия углеродистой стали в морской воде);

* избирательной, при которой разрушается одна структурная составляющая сплава (графитизация чугуна) или один компонент сплава (обесцинкование латуней).

2. местную коррозию, охватывающую отдельные участки поверхности металла.

Местная коррозия бывает:

* коррозия пятнами характерна для алюминия, алюминиевых и цинковых покрытий в средах, в которых их коррозионная стойкость близка к оптимальной, и лишь случайные факторы могут вызвать местное нарушение состояния устойчивости материала.

Этот вид коррозии характеризуется небольшой глубиной проникновения коррозии по сравнению с поперечными (в поверхности) размерами коррозионных поражений. Пораженные участки покрываются продуктами коррозии как и при сплошной коррозии. При выявлении этого вида коррозии необходимо установить причины и источники временных местных повышений агрессивности среды за счет попадания на поверхность конструкции жидких сред (конденсата, атмосферной влаги при протечках и т. п.), локального накопления или отложения солей, пыли и т. д.

* коррозия язвами характерна в основном для углеродистой и низкоуглеродистой стали (в меньшей степени - для алюминия, алюминиевых и цинковых покрытий) при эксплуатации конструкций в жидких средах и грунтах.

Язвенная коррозия низколегированной стали в атмосферных условиях чаще всего связана с неблагоприятной структурой металла, т. е. с повышенным количеством неметаллических включений, в первую очередь сульфидов с высоким содержанием марганца.

Язвенная коррозия характеризуется появлением на поверхности конструкции отдельных или множественных повреждений, глубина и поперечные размеры которых (от долей миллиметра до нескольких миллиметров) соизмеримы.

Обычно сопровождается, образованием толстых слоев продуктов коррозии, покрывающих всю поверхность металла или значительные ее участки вокруг отдельных крупных язв (характерно для коррозии незащищенных стальных конструкций в грунтах). Язвенная коррозия листовых конструкций, а также элементов конструкций из тонкостенных труб и прямоугольных элементов замкнутого сечения со временем переходит в сквозную с образованием отверстий в стенках толщиной до нескольких миллиметров.

Язвы являются острыми концентраторами напряжений и могут оказаться инициаторами зарождения усталостных трещин и хрупких разрушений. Для оценки скорости язвенной коррозии и прогнозирования ее развития в последующий период определяют средние скорости проникновения коррозии в наиболее глубоких язвах и количество язв на единицу поверхности. Эти данные в дальнейшем следует использовать при расчете несущей способности элементов конструкций.

* точечная (питтинговая) коррозия характерна для алюминиевых сплавов, в том числе анодированных, и нержавеющей стали. Низколегированная сталь подвергается коррозии этого вида крайне редко.

Практически обязательным условием развития питтинговой коррозии является воздействие хлоридов, которые могут попадать на поверхность конструкций на любой стадии, начиная от металлургического производства (травление проката) до эксплуатации (в виде солей, аэрозолей, пыли).

При обнаружении питтинговой коррозии необходимо выявить источники хлоридов и возможности исключения их воздействия на металл. Питтинговая коррозия представляет собой разрушение в виде отдельных мелких (не более 1 - 2 мм в диаметре) и глубоких (глубина больше поперечных размеров) язвочек.

* сквозная коррозия , которая вызывает разрушение металла насквозь (например, при точечной или язвенной коррозии листового металла);

* нитевидная коррозия , распространяющаяся в виде нитей преимущественно под неметаллическими защитными покрытиями (например, на углеродистой стали под пленкой лака);

* подповерхностная коррозия , начинающаяся с поверхности, но преимущественно распространяющейся под поверхностью металла таким образом, что разрушение и продукты коррозии оказываются сосредоточенными в некоторых областях внутри металла; подповерхностная коррозия часто вызывает вспучивание металла и его расслоение (например, образование пузырей на поверхности
недоброкачественного прокатанного листового металла при коррозии или травлении);

* межкристаллитная коррозия характерна для нержавеющей стали и упрочненных алюминиевых сплавов, особенно на участках сварки, и характеризуется относительно равномерным распределением множественных трещин на больших участках поверхности конструкций. Глубина трещин, обычно меньше, чем их размеры на поверхности. На каждом участке развития, этого вида коррозии трещины практически одновременно зарождаются от многих источников, связь которых с внутренними или рабочими напряжениями, не является обязательной. Под оптическим микроскопом на поперечных шлифах, изготавливаемых из отобранных проб, видно, что трещины распространяются только по границам зерен металла. Отдельные зерна и блоки могут выкрошиваться, в результате чего образуются язвы и поверхностное шелушение. Этот вид коррозии ведет к быстрой потере металлом прочности и пластичности;

* ножевая коррозия - локализованная коррозия металла, имеющая вид надреза ножом в зоне сплавления сварных соединений в сильно агрессивных средах (например, случаи коррозии сварных швов хромоникелевой стали Х18Н10 с повышенным содержанием углерода в крепкой HN0 3).

* коррозионное растрескивание — вид квазихрупкого разрушения стали и высокопрочных алюминиевых сплавов при одновременном воздействии статических напряжений растяжения и агрессивных сред; характеризуется образованием единичных и множественных трещин, связанных с концентрацией основных рабочих и внутренних напряжений. Трещины могут распространяться между кристаллами или по телу зерен, но с большей скоростью в плоскости, нормальной к действующим напряжениям, чем в плоскости поверхности.

Углеродистая и низколегированная сталь обычной и повышенной прочности подвергается этому виду коррозии в ограниченном количестве сред: горячих растворах щелочей и нитратов, смесях СО - СО 2 - Н 2 - Н 2 О и в средах, содержащих аммиак или сероводород. Коррозионное растрескивание высокопрочной стали, например высокопрочных болтов, и высокопрочных алюминиевых сплавов может развиваться в атмосферных условиях и в различных жидких средах.

При установлении факта поражения конструкции коррозионным растрескиванием необходимо убедиться в отсутствии признаков других форм квазихрупкого разрушения (хладноломкости, усталости).

* коррозионная хрупкость , приобретенная металлом в результате коррозии (например, водородное охрупчивание труб из высокопрочных сталей в условиях сероводородных нефтяных скважин); под хрупкостью следует понимать свойство материала разрушаться без заметного поглощения механической энергии в необратимой форме.

Количественная оценка коррозии. Скорость общей коррозии оценивают по убыли металла с единицы площади коррозии, например в г/м 2 ч, или по скорости проникновения коррозии, т. е. по одностороннему уменьшению толщины нетронутого металла (П ), например в мм/год.

При равномерной коррозии П = 8,75К/ρ , где ρ - плотность металла в г/см 3 . При неравномерной и местной коррозии оценивается максимальное проникновение. По ГОСТу 13819-68 установлена 10-балльная шкала общей коррозионной стойкости (см. табл.). В особых случаях К. может оцениваться и по др. показателям (потеря механической прочности и пластичности, рост электрического сопротивления, уменьшение отражательной способности и т. д.), которые выбираются в соответствии с видом К. и назначением изделия или конструкции.

10-балльная шкала для оценки общей коррозионной стойкости металлов

Группа стойкости

Скорость коррозии металла,

мм/год.

Балл

Совершенно стойкие

|Менее 0,001

1

Весьма стойкие

Свыше 0,001 до 0,005

2

Свыше 0,005 до 0,01

3

Стойкие

Свыше 0,01 до 0,05

4

Свыше 0,05 до 0,1

5

Пониженно-стойкие

Свыше 0,1 до 0,5

6

Свыше 0,5 до 1,0

7

Малостойкие

Свыше 1,0 до 5,0

8

Свыше 5,0 до 10,0

9

Нестойкие

Свыше 10,0

10

При подборе материалов, стойких к воздействию различных агрессивных сред в тех или иных конкретных условиях, пользуются справочными таблицами коррозионной и химической стойкости материалов или проводят лабораторные и натурные (непосредственно на месте и в условиях будущего применения) коррозионные испытания образцов, а также целых полупромышленных узлов и аппаратов. Испытания в условиях, более жёстких, чем эксплуатационные, называют ускоренными.

Применение различных методов защиты металлов от коррозии позволяет в какой-то степени свести к минимуму потери металла от коррозии. В зависимости от причин, вызывающих коррозию, различают следующие методы защиты.

1) Обработка внешней среды, в которой протекает коррозия . Сущность метода заключается либо в удалении из окружающей среды тех веществ, которые выполняют роль деполяризатора, либо в изоляции металла от деполяризатора. Например, для удаления из воды кислорода используют специальные вещества или кипячение.

Удаление кислорода из коррозионной среды называется деаэрацией . Максимально замедлить процесс коррозии можно путем введения в окружающую среду специальных веществ – ингибиторов . Широкое распространение получили летучие и парофазные ингибиторы, которые защищают от атмосферной коррозии изделия из черных и цветных металлов при хранении, транспортировке и т.д.

Ингибиторы применяются при очистке паровых котлов от накипи, для снятия окалины с отработанных деталей, а также при хранении и перевозке соляной кислоты в стальной таре. В качестве органических ингибиторов применяют тиомочевину (химическое название — сульфид-диамид углерода C(NH 2) 2 S), диэтиламин, уротропин (CH 2) 6 N 4) и другие производные аминов.

В качестве неорганических ингибиторов применяют силикаты (соединения металла с кремнием Si), нитриты (соединения с азотом N), дихроматы щелочных металлов и т.д. Механизм действия ингибиторов заключается в том, что их молекулы адсорбируются на поверхности металла, препятствуя протеканию электродных процессов.

2) Защитные покрытия . Для изоляции металла от окружающей среды на него наносят различного рода покрытия: лаки, краски, металлические покрытия. Наиболее распространенными являются лакокрасочные покрытия, однако их механические свойства значительно ниже, чем у металлических. Последние по характеру защитного действия можно разделить на анодные и катодные.

Анодные покрытия . Если на металл нанести покрытие из другого, более электроотрицательного металла, то в случае возникновения условий для электрохимической коррозии разрушаться будет покрытие, т.к. оно будет выполнять роль анода. Примером анодного покрытия может служить хром, нанесенный на железо.

Катодные покрытия . У катодного покрытия стандартный электродный потенциал более положителен, чем у защищаемого металла. Пока слой покрытия изолирует металл от окружающей среды, электрохимическая коррозия не протекает. При нарушении сплошности катодного покрытия оно перестает защищать металл от коррозии. Более того, оно даже интенсифицирует коррозию основного металла, т.к. в возникающей гальванопаре анодом служит основной металл, который будет разрушаться. В качестве примера можно привести оловянное покрытие на железе (луженое железо).

Таким образом, при сравнении свойств анодных и катодных покрытий можно сделать вывод, что наиболее эффективными являются анодные покрытия. Они защищают основной металл даже в случае нарушения целостности покрытия, тогда как катодные покрытия защищают металл лишь механически.

3) Электрохимическая защита . Различают два вида электрохимической защиты: катодная и протекторная. В обоих случаях создаются условия для возникновения на защищаемом металле высокого электроотрицательного потенциала.

Протекторная защита . Защищаемое от коррозии изделие соединяют с металлическим ломом из более электроотрицательного металла (протектора). Это равносильно созданию гальванического элемента, в котором протектор является анодом и будет разрушаться. Например, для защиты подземных сооружений (трубопроводов) на некотором расстоянии от них закапывают металлолом (протектор), присоединив его к сооружению.

Катодная защита отличается от протекторной тем, что защищаемая конструкция, находящаяся в электролите (почвенная вода), присоединяется к катоду внешнего источника тока. В ту же среду помещают кусок металлолома, который соединяют с анодом внешнего источника тока. Металлический лом подвергается разрушению, предохраняя тем самым от разрушения защищаемую конструкцию.

Во многих случаях металл предохраняет от коррозии образующаяся на его поверхности стойкая оксидная пленка (так, на поверхности алюминия образуется Al 2 O 3 , препятствующий дальнейшему окислению металла). Однако некоторые ионы, например Cl – , разрушают такие пленки и тем самым усиливают коррозию.

Коррозия металлов наносит большой экономический вред. Человечество несет огромные материальные потери в результате коррозии трубопроводов, деталей машин, судов, мостов, морских конструкций и технологического оборудования.

Коррозия приводит к уменьшению надежности работы оборудования: аппаратов высокого давления, паровых котлов, мета ллических контейнеров для токсичных и радиоактивных веществ, лопастей и роторов турбин, деталей самолетов и т.д. С учетом возможной коррозии приходится завышать прочность этих изделий, а значит, увеличивать расход металла, что приводит к дополнительным экономическим затратам. Коррозия приводит к простоям производства из-за замены вышедшего из строя оборудования, к потерям сырья и продукции (утечка нефти, газов, воды), к энергетическим затратам для преодоления дополнительных сопротивлений, вызванных уменьшением проходных сечений трубопроводов из-за отложения ржавчины и других продуктов коррозии. Коррозия также приводит к загрязнению продукции, а значит, и к снижению ее качества.

Затраты на возмещение потерь, связанных с коррозией, исчисляются миллиардами рублей в год. Специалисты подсчитали, что в развитых странах стоимость потерь, связанных с коррозией, составляет 3…4% валового национального дохода.

За долгий период интенсивной работы металлургической промышленности выплавлено огромное количество металла и переведено в изделия. Этот металл постоянно корродирует. Сложилась такая ситуация, что потери металла от коррозии в мире уже составляют около 30% от его годового производства. Считается, что 10% прокорродировавшего металла теряется (в основном в виде ржавчины) безвозвратно. Возможно, в будущем установится баланс, при котором от коррозии будет теряться примерно столько же металла, сколько его будет выплавляться вновь. Из всего сказанного следует, что важнейшей проблемой является изыскание новых и совершенствование старых способов защиты от коррозии.

Список литературы

    Козловский А.С. Кровельные работы. – М.: «Высшая школа», 1972

    Акимов Г. В., Основы учения о коррозии и защите металлов, М., 1946;

    Томашов Н. Д., Теория коррозии и защита металлов, М., 1959;

    Эванс Ю. P., Коррозия и окисление металлов, пер. с англ., М., 1962;

    Розенфельд И. Л., Атмосферная коррозия металлов, М., 1960;