Система управления ракеты носителя союз 2 в

Очень хорошо, когда в инструментальном «арсенале» владельца дома или квартиры имеются контрольно-измерительные приборы. В частности если речь идет об электрохозяйстве, нередко приходится прибегать к помощи мультиметра. Этот компактный и относительно недорогой по нынешним временам прибор позволяет тестировать бытовую технику и освещение, выявлять неполадки в домашней электрической сети, контролировать уровень заряда батареек и аккумуляторов, становится незаменимым при различных электромонтажных работах.

Но кроме наличия самого мультиметра, необходимо еще и умение работать с ним. Вот здесь бывает сложнее. Если, скажем, с прозвоном провода, определением наличия и величины напряжения обычно проблем не возникает, то с замером силы тока у многих возникают неясности. И, кстати, эта операция, по сравнению с другими упомянутыми, наиболее сложна и в определенных условиях бывает наиболее опасна.

Поэтому темой предлагаемой публикации станет вопрос, как измерить силу тока мультиметром.

Для начала вспомним, что же это такое – сила электрического тока.

Этот показатель (I) измеряется в амперах и входит в число основных физических величин, определяющих параметры той или иной электрической цепи. К двум другим относят напряжение (U, измеряется в вольтах) и сопротивление нагрузки (R, измеряется в омах).

Как преподносилось в школьном курсе физики, электрический ток является направленным движением заряженных частиц по проводнику. Если рассматривать с большим упрощением, вызывается он электродвижущей силой, возникающей из-за разности потенциалов (напряжения) на полюсах (клеммах, контактах) подключенного источника питания. По своей сути сила тока показывает количество этих самых заряженных частиц, проходящих через конкретную точку (элемент схемы) в единицу времени (секунду).

На величину силу тока в цепи влияют два других параметра. Напряжение связано прямой пропорциональностью – так, например, его увеличение вызывает и повышение силы тока. Сопротивление – наоборот, то есть с его ростом при том же напряжении сила тока снижается.

А слева на иллюстрации показано графическое, удобное для восприятия, изображение закона Ома, показывающего эти взаимосвязи. Из этой «пирамиды» легко составляются формулы в их привычном написании:

U = I × R

I = U / R

R = U / I

Итак, сила тока измеряется в амперах. С некоторым упрощением можно объяснить так, что 1 ампер – это ток, который возникнет в проводнике сопротивлением 1 ом, если к нему приложить напряжение, равное одному вольту.

Кроме основной единицы, используют и производные. Так, довольно часто приходится иметь дело с миллиамперами. Из самого термина понятно, что 1 мА = 0.001 А.

Кстати, сразу упомянем, и про мощность. Ток в 1 ампер, вызванный напряжением 1 вольт, выполнит работу в 1 джоуль. А если это привести к единице времени (секунде), то получится значение мощности, равное 1 ватту.

Это определяется формулой закона Джоуля-Ленца:

P = U × I

где Р – мощность, выраженная в ваттах.

Для чего все это рассказывалось? Да просто потому, что большинство случаев замера силы тока, так сказать, на бытовом уровне, так или иначе связано с определением других параметров. Согласитесь, мало кому придет в голову мысль: «а дай-ка я проверю силу тока просто так», то есть без дальнейшего практического приложения. Тем более что, как уже упоминалось выше, работа с амперметром – наиболее сложная и зачастую небезопасная.

Например, в каких случаях чаще всего замеряют силу тока:

  • Для уточнения реальной потребляемой мощности того или иного бытового электроприбора. Промерив значения силы тока и напряжения несложно по формуле вычислить и мощность.
  • Этот же промер и последующий расчет позволяют оценить, советует ли подводимая линия питания таким нагрузкам.
  • Случается, что подобные «ревизии» позволяют выявить пока еще скрытые, незамеченные дефекты прибора – когда значение силы тока (и мощности, соответственно) намного отличаются от заявленного в паспорте номинала в ту или иную сторону.
  • Измерения силы тока позволяют оценить степень заряженности автономных источников питания – аккумуляторов и батареек. Проверка их по напряжению никогда не дает объективной картины. Вольтметр может показать, скажем, положенные 1.5 вольта, но уже спустя несколько минут элемент питания безнадежно «сядет». То есть проверку следует проводить именно измерением силы тока.
  • Таким измерением можно выявить утечку тока, там, где ее по идее быть не должно. Это часто практикуется автомобилистами, если у них есть подозрения, что аккумулятор слишком активно разряжается, когда машина «отдыхает» в гараже или на стоянке. Проведенная проверка позволяет локализовать участок утечки и избежать, кстати, немалых проблем, к которым она может привести.

  • Иногда требует проверки зарядное устройство аккумулятора – выдает ли оно необходимое значение тока зарядки.

Возможны и иные случаи, когда требуется иметь объективные данные о реальной силе тока. Но основные случаи все же перечислены.

Разбираемся с устройством мультиметра

Для измерения силы тока используются специальные приборы, название которых говорит само за себя – амперметры. В продаже чаще всего встречаются амперметры стационарной установки, в виде панелек или для DIN-рейки. Они обычно монтируются в распределительном щите и позволяют отслеживать текущие показатели силы тока, например, за всю локальную систему электроснабжения или на какой-то выделенной её линии.

Устанавливают такие приборы, если в этом есть необходимость, только специалисты электрики. Измерить силу протекающего тока с помощью них – проще простого. Необходимо просто взглянуть на текущие показания при включенной на линии нагрузке.

Этим, по сути, их функциональность и ограничивается. Естественно, у хозяина квартиры (дома) не будет возможности снять подобный прибор с места его стационарной установки для проведения замеров в другом месте.

Другой вариант, который уже позволяет работать в нужном месте – это так называемый лабораторный амперметр. Настольный прибор, в котором имеются клеммы, то есть предусмотрена возможность подключения измерительных проводов со щупами для проверки силы тока на том или ином участке цепи.

Но приобретать такой «девайс» для домашнего инструментального «арсенала» - вряд ли имеет смысл. Просто по той причине, что замером силы тока все и ограничивается. А это измерение, кстати, как уже говорилось, проводится на «бытовом» уровне, пожалуй, реже всего.

Поэтому такие приборы популярности себе не снискали. И оптимальным вариантом является мультитестер (мультиметр).

Эти измерительные многофункциональные приборы представлены в продаже в очень большом разнообразии. Первое, сразу бросающееся в глаза различие – приборы могут быть стрелочными, со снятием показаний со шкал. Несмотря на то что считаются уже «вчерашним днем», некоторые мастера отдают предпочтение именно им. Но для новичка может быть затруднительно на первых порах считывать показания – со шкалами и шагом из градуировки по неопытности несложно запутаться.

Поэтому максимальной популярностью пользуются все же цифровые мультиметры, демонстрирующие на дисплее показания в абсолютном выражении. Умение пользоваться такими приборами приобретается гораздо быстрее. Стоимость многих моделей – весьма доступная, и подобные мультитестеры прочно вошли в домашний инструментальный набор.

Но и среди них бывают существенные различия, которые необходимо знать и учитывать при проведении измерения электрических параметров.

Наиболее удобны, наверное, мультиметры, в которых достаточно выставить лишь режим измерений. Допустимый диапазон при этом не указывается – прибор автоматически подстроится под параметры цепи, проведет замер и выдаст искомый результат.

Пример показан на иллюстрации:

Рукоятка переключателя режимов (поз.1) имеет всего несколько положений. Это напряжение – объединено переменное V AC (значок ~) и постоянное DC (-), в вольтовом и милливольтом диапазоне. Аналогично и с силой тока – А, тоже без разделения на тип тока, но с градацией на амперы и миллиамперы. Кроме того, обязательно имеется опция замера сопротивления и прозвона цепи. Могут быть и другие заложенные функции.

В нижней части расположены гнезда для подключения измерительных проводов со щупами. Их бывает три или четыре. Обязательно имеется гнездо СОМ – для « общего» провода (поз. 2), как правило – черного цвета. Гнездо поз. 3 – для красного провода при проведении подавляющего большинства измерений. Под гнездом имеется надпись с указанием допустимых пределов измерений по напряжению и току. И, наконец, гнездо поз. 4 – выделено для замеров силы тока, исчисляемой в амперах. Также указан допустимый предел - не более 10 А.

Показания высвечиваются на цифровом дисплее (поз. 5).

Такие приборы удобны, однако их стоимость в несколько раз превышает цену на широкодоступные мультиметры. Поэтому их чаще можно увидеть у профессионалов.

Более распространенный вариант – мультиметры, при пользовании которыми необходимо не только переключать режим и переставлять измерительные провода, но еще и указывать предполагаемый диапазон измерений.

При пользовании таким мультиметром требуется не только указать режим работы, но и выставит переменный или постоянный ток. И уже в этом секторе установить переключатель в предполагаемый диапазон измерений, выраженный в миллиамперах мА (бывает еще и в микроамперах, µА ) или в амперах А .

Аналогично дело обстоит и с режимами замера напряжения.

Еще нюанс – показан пример с четырьмя гнездами подключения проводов. Здесь для измерения силы тока для красного провода выделено два гнезда. Одно – с токами до 200 мА, второе – до 10 А. Все остальные замеры (напряжения, сопротивления, емкости и другие) проводятся через отдельное гнездо.

Но обычно под этими гнездами-клеммами располагается понятная схема, позволяющая избежать ошибок. Просто надо быть внимательным.

А теперь – еще один очень важный нюанс. Показанные выше приборы позволяют проводить замер силы тока как постоянного, так и переменного. Но очень часто обычными пользователями приобретаются мультиметры с «усеченными» возможностями. Такие приборы широко популярны из-за своей супердоступной цены. И некоторые потенциальные владельцы не обращают внимание на этот их недостаток.

Так, наиболее распространенными на бытовом уровне являются мультитестеры типа DT830 или DT832. Они позволяют выполнить бо́льшую часть возможных измерений. Но, обратите внимание, функции амперметра для переменного тока у них НЕ ПРЕДУСМОТРЕНА .

Таким образом, если есть необходимость проверить силу тока в цепи работающего от сети 220 В/50 Гц бытового прибора, то просто так это не получится. Потребуется искать другой, более совершенный мультиметр. Или придумывать дополнительные «усовершенствования», которые позволят обойтись и таким тестером. Об этом будет сказано ниже.

Основные принципы замера силы тока

Главной особенностью работы с мультитестером в режиме амперметра является то, что он обязательно должен быть включен в разрыв цепи. Такое подключение называется последовательным. По сути, прибор становится частью этой цепи, то есть весь ток должен пройти именно через него. А как известно, сила тока на любом участке неразветвленной электрической цепи постоянна. Проще говоря, сколько «вошло» столько должной и «выйти». То есть место последовательного подключения амперметра особого значения не имеет.

Чтобы стало понятнее, ниже размещена схема, в которой показывается разница в подключении мультиметра в разных режимах работы.

  • Итак, при замере силы тока мультиметр включается в разрыв цепи, сам становясь одним из ее звеньев. То есть будет проблема, как этот разрыв цепи организовать практически. Решают по-разному – это будет показано ниже.
  • При замере напряжения (в режиме вольтметра) цепь, наоборот, не разрывается, а прибор подключается параллельно нагрузке (участку цепи, где требуется узнать напряжение). При замере напряжения источника питания щупы подключаются напрямую к клеммам (контактам розетки), то есть мультиметр сам становится нагрузкой.
  • Наконец, если меряется сопротивление, то внешний источник питания вообще не фигурирует. Контакты прибора подключаются непосредственно к той или иной нагрузке (прозваниваемому участку цепи). Необходимый ток для проведения измерений поступает из автономного источника питания мультитестера.

Вернемся к теме статьи - к замерам силы тока.

Очень важно изначально правильно установить на мультиметре, помимо постоянного или переменного тока, диапазон измерений. Надо сказать, что у начинающих с этим часто возникают проблемы. Сила тока – величина крайне обманчивая. И «спалить» свой прибор, а то и наделать больших бед, неправильно установив верхний предел измерений – проще простого.

Поэтому настоятельная рекомендация – если вы не знаете, какая сила тока ожидается в цепи, начинайте измерения всегда с максимальных величин. То есть, например, на том же DT 830 красный щуп должен быть установлен в гнездо на 10 ампер (показано на иллюстрации красной стрелкой). И рукоятка переключатель режимов работы также должно показывать на 10 ампер (голубая стрелка). Если измерения покажут, что предел завышен (показания получаются менее 0,2 А), то можно, чтобы получить более точные значения, переставить сначала красный провод в среднее гнездо, а затем ручку переключателя – в положение 200 мА. Бывает, что и этого многовато, и приходится переключателем снижать еще на разряд и т.д. Не вполне удобно, не спорим, но зато безопасно и для пользователя, и для прибора.

Кстати, о безопасности. Никогда не следует пренебрегать мерами предосторожности. И особенно если речь идет об опасных напряжениях (а сетевое напряжение 220 В – чрезвычайно опасно) и высоких токах.

Мы здесь спокойно ведём разговор об амперах, а между тем, безопасным для человека считается ток не выше 0.001 ампера. А ток всего в 0.01 ампера, прошедший через тело человека, чаще всего приводит к необратимыми последствиям.

Что важно знать об опасности электрического тока

Электричество – это величайший помощник человечества. Но при неграмотном, беспечном или откровенно наплевательском отношении к соблюдению безопасности – карает мгновенно и беспощадно. Что необходимо накрепко запомнить об , прежде чем приступать к любым электромонтажным работам – читайте в специальной публикации нашего портала.

Проведение замеров силы тока, особенно если работа ведется в самом высоком диапазоне, рекомендуется проводить максимально быстро. В противном случае мультитестер может просто перегореть.

Об этом, кстати, могут информировать и предупреждающие надписи около гнезда подключения измерительного провода.

Обратите внимание. Слово «unfused» в данном случае обозначает, что прибор в этом режиме не защищен плавким предохранителем. То есть при перегреве он просто выйдет полностью из строя. Указано и допустимое время замера – не более 10 секунд, да и то не чаще одного раза в 15 минут («each 15 m»). То есть после каждого такого замера придется еще и выдерживать немалую паузу.

Справедливости ради – далеко не все мультиметры настолько «привередливые». Но если такое предупреждение есть – пренебрегать им не стоит. И в любом случае замер силы тока проводить максимально быстро.

Как проводится измерение силы тока

В этом разделе статьи рассмотрим несколько наиболее характерных случаев.
И для начала ответим на один почему-то весьма часто задаваемый, и при этом – совершенно безграмотный вопрос.

Как измерить силу тока в розетке?

Никакого тока в розетке не ищите – там есть только напряжение на контактах, между фазой и нулем. А ток возникнет лишь тогда, когда к розетке будет подключена нагрузка – неважно что это, лампочка накаливания или бытовой прибор. Естественно, рассчитанный на работу с сетевым напряжением 220 вольт.

А что будет, если в режиме амперметра все же вставить щупы мультитестера в розетку? Да все произойдет очень просто и быстро. Собственное сопротивление прибора – невелико, то есть практически гарантированно получается короткое замыкание. Вспомните закон Ома – при стремящемся к нулю сопротивлении сила тока возрастает до огромных значений. Хорошо, если все ограничится срабатыванием защиты и перегоранием плавкого предохранителя в мультитестере. Если он «unfused», о чем говорилось выше – гарантированное перегорание, и прибор нередко остается только выбрасывать. И это еще в лучшем случае – иногда бывают и «фейерверки».

Запомните «золотую истину» – пока к розетке ничего не подключено, ток в ней однозначно равен нулю. И проверять это экспериментально – себе дороже!

А вот замер силы тока в цепи подключённого к розетке бытового прибора – это уже совсем другой случай.

Как измерить силу тока в цепи подключенного бытового прибора

Нельзя сказать, что подобная проверка проводится часто, но иногда она помогает разобраться с правильностью организации домашней электросети. То есть сопоставить соответствие реальной силы тока подведенным к розетке проводам и возможностям другого электротехнического оборудования. Или же дает возможность проверить реальную потребляемую мощность бытового прибора. Если она сильно отличается от паспортной в ту или иную сторону, это может говорить о пока еще не выявленной неисправности.

Схема в общих чертах выглядит следующим образом

1 – розетка 220 вольт.

2 – условно – бытовой прибор.

3 – кабель питания прибора.

4 – точки разрыва цепи (подсоединения щупов тестера). В данном случае они показаны на фазном проводе, хотя для проверки силы переменного тока это не имеет никакого значения — могут быть и на нулевом.

5 – мультиметр, установленный в режим измерения переменного тока 10 А

6 – измерительные провода мультитестера.

Все просто – после сборки такой схемы необходимо подсоединить кабель питания к розетке, а затем запустить бытовой прибор в нужном режиме выключателем. И спустя 3÷5 секунд (некоторым приборам требуется время для выхода на номинальный режим) снять показания силы тока в амперах.

Но как это осуществить, так сказать, технологически? Резать изоляцию и затем – один из проводов кабеля питания, чтобы подключить в разрыв амперметр? Иногда поступают и так. Пример показан на иллюстрации.

Согласитесь, не слишком привлекательный вариант. Нарушается целостность внешней оплетки провода. Концы придется после замеров сращивать и изолировать. Для разовой срочной проверки – может, и сгодится, но не более того.

Городить дополнительные провода между розеткой и вилкой, чтобы «вклинить» между ними амперметр? Тоже довольно неудобно.

Чтобы замеры были безопасными, а их проведение занимало минимум времени и усилий, можно изготовить специальное приспособление. Для этого потребуется небольшая фанерная площадка, две накладные (внешние) розетки (самые дешевые) и отрезок сетевого шнура с вилкой.

Схематично этот «испытательный стенд» будет выглядеть так:

На небольшом жестком фрагменте (поз. 1) например, фанерном, текстолитовом и т.п., крепятся две розетки, так, как показано на схеме. Розетки совершенно условно пронумеруем №1 и №2, а их контакты назовем соответственно 1а и 1б, 2а и 2б.

К розеткам поводится сетевой шнур (поз.4) с вилкой (поз.3). Эта вилка будет подключаться в обычную сетевую розетку.

Шнур разделан, и два его провода подключены к клеммам одноимённых контактов обеих розеток. То есть на схеме это 1а и 2а. А вторая пара, 1б и 2б контактов соединена перемычкой из одножильного провода.

Как проводить замеры с таким приспособлением?

  • Для начала – витка сетевого шнура подключается к розетке (к любой или к тестируемой, то есть к той, к которой подключается на постоянной основе испытываемый бытовой прибор). Вся конструкция у нас после сборки полностью закрыта, изолирована, никаких открытых токопроводящих деталей нет.
  • Имеет смысл для начала проверить напряжение в розетке. Если конечной целью ставится определение реальной мощности прибора, то этот параметр желательно уточнить. Иногда, если домашняя сеть не имеет стабилизатора, он значительно отличается от заявляемых 220 вольт. То есть это может повлиять на конечный результат.

Проверить напряжение несложно. Мультиметр переключается в режим ~V (ACV) с диапазоном больше 220 вольт (обычно это 750 вольт). Штекера проводов устанавливаются в соответствующие гнезда прибора (СОМ и ~V). Затем щупы прибора вставляются в контакты розеток 1а и 2а, как показано на схеме ниже.

  • После этого в одну розетку (любую) вставляется вилка сетевого шнура испытываемого прибора. Цепь не замкнута – разрыв ее получается на второй розетке.
  • Мультитестер переводится в режим амперметра переменного тока (~A или ACA) в максимальный диапазон. Штекер красного измерительного провода переставляется в соответствующий разъем.

  • После этого щупы мультитестера вставляются в гнезда оставшейся свободной розетки. И теперь осталось только включить испытываемый бытовой прибор и снять с мультитестера показания силы тока.

Калькулятор расчета мощности электроприбора

Укажите запрашиваемые значения и нажмите
«РАССЧИТАТЬ ПОТРЕБЛЯЕМУЮ МОЩНОСТЬ ЭЛЕКТРОПРИБОРА»

Уточненное напряжение в сети, В

Измеренное значение силы тока, А

Как видите, и довольно сложную задачу замера силы тока питания бытового прибора вполне можно решить с должным уровнем безопасности и комфорта.

А что делать, если мультитестер не рассчитан на измерение силы переменного тока?

Бывает, что требуется измерить силу переменного тока, примерно так, как показывалось выше. но в распоряжении лишь мультиметр, не рассчитанный на такую операцию. И приобретать новый – нет желания или возможности. Если ли выход?

Да, можно выполнить замер и в такой ситуации. Существует для этого несколько способов. Но в любом случае придётся сначала провести некоторые подготовительные работы.

Измерение силы переменного тока с помощью вольтметра и дополнительного сопротивления.

Да, это совершенно серьезно, именно с помощью вольтметра. Снова вспомним закон Ома для участка электрической цепи:

I = U / R

Но если сопротивление на этом участке будет равно ровно одному ому, то получается, что номиналы силы тока и напряжения – совпадут.

I (A) = U(V) / 1 = U(V)

Значит, задача состоит в том, чтобы в разрыв цепи поместить резистор номиналом ровно в 1 ом, а затем промерить напряжение на его концах.

Талой резистор можно приобрести в магазине. Правда, не забываем, что на нем будет потребляться весьма внушительная мощность, и лучше приобретать керамический резистор на 10 или даже 50 Вт.

Правда, такие резисторы далеко не всегда есть в продаже. Да и стоить они могут немало. Можно обойтись и самодельным, накрутив спираль из нихромовой проволоки.

В интернете полно таблиц с удельными сопротивлениями нихромовых проводников различных диаметров. То есть провести расчет требуемой длины, чтобы «выскочить» на 1 ом – не столь сложно.

Например, будет использоваться нихромовая проволока диаметром 0,4 мм (сечение 0,123 мм²). Ее удельное сопротивление составляет 7,94 Ом/м. Несложно рассчитать, что для сопротивления 1 ом потребуется 126 мм проволоки.

Из этого отрезка навивается спираль. Или, что еще удобнее и безопаснее – можно намотать проволоку на панельку их стеклотекстолита, как показано на иллюстрации. После намотки проводят проверку мультиметром в режиме омметра. При необходимости – корректируют длину, чтобы сопротивление было 1 ом с максимально возможной точностью.

Концы резистора можно прикрепить, например, к штырям разобранной вилки – чтобы удобнее было их подключать к разрыву цепи.

Если резистор готов, можно приниматься за измерения.

В свободную розетку к ее контактам присоединяют самодельный резистор. После этого можно сразу к его концам «крокодильчиками» подцепить щупы мультиметра. Провода и сам тестер должны быть настроены на режим вольтметра для переменного тока.

Включается прибор-нагрузка. Но дисплее мультиметра показывается напряжение (в вольтах) для участка цепи сопротивлением 1 ом. Это же значение, но только в амперах – искомая сила тока в замкнутой цепи.

Важно – резистор при таком замере может очень быстро нагреваться, буквально докрасна. Поэтому снятие показаний должно выполняться с максимальной оперативностью. Как только подключенный прибор вышел на свою мощность, показания на дисплее стабилизировались – их записывают и выключают нагрузку.

Есть и другой способ измерения силы переменного тока при отсутствии соответствующего амперметра. Ток можно выпрямить с помощью диодного моста. Подробнее об этом – в предлагаемом видеосюжете.

Видео: Как можно переделать амперметр постоянного тока под переменный

Как с помощью амперметра можно проверить элементы питания

Еще один частый случай, когда приходится переключать мультитестер в режим измерения силы тока. Речь идет о проверке элементов питания. Помогает как при приобретении батареек в сомнительных торговых точках, так и при ревизии накопившегося дома запаса.

Безусловно, для начала будет неплохо проверить батарейки по напряжению. Для этого переключатель режимов мультиметра устанавливается на постоянное напряжение (DCV). Предел измерений – в соответствии с заявляемым напряжением элемента питания. Если это наиболее распространенные 1.5 вольта, то оптимальным будет предел 2000 мВ (= 2В). Можно установить и 20 В – в этот предел вкладываются практически все используемые элементы питания.

Щуп черного провода (СОМ) прикладывается к отрицательному полюсу элемента питания. Красный, установленный в соответствующее гнездо – к положительному. Производится быстрый замер напряжения. И если оно менее 1.2 В, то такую батарейку можно смело отправлять на утилизацию – она села, и чудес от нее ждать не приходится.

Кстати, о полярности. При работе с переменным током, ясное дело, это не имеет значения. А при замерах постоянного напряжения или тока ее соблюдение важно для стрелочных мультиметров. Если щупы расположены неправильно – стрелка начнет валиться влево, и никаких показаний не будет. Для цифровых же приборов ошибка не станет большой проблемой – просто перед числовым показателем на дисплее появится минус. Тем не менее, «культура пользования» все же предполагает правильное расположение полярности. Тем более что бывают ситуации, когда это имеет важное значение. И хорошо, если правильное расположение щупов просто войдет в привычку.

Вернемся к проверке. Измерение напряжения – это лишь первый шаг, позволяющий отсеять явно негодные элементы питания. А само значение еще ни о чем не говорит – неизвестно, как поведет себя батарейка под нагрузкой. Поэтому и следует проверить ее еще и по току.

Для этого мультиметр переключается в режим DCA с максимальным пределом измерения, то есть на 10 или 20 А (в зависимости от модели прибора). Это важно, так как токи при замыкании батарейки через амперметр бывают нешуточные. Красный провод, естественно, переставляется в соответствующее гнездо.

После этого опять черный провод прикладывается к отрицательному полюсу батарейки. А красным производят кратковременное замыкание цепи на положительном полюсе. Это очень важный момент: замер не должен превышать одной – двух секунд. Можно постараться уложиться и менее чем за секунду. Необходимо быстро засечь пиковое значение силы тока, когда оно перестанет расти. Если же затянуть с измерением, это повлечет активный разряд элемента питания.

  • В новых, качественных элементах питания проверка может показать порядка 4÷6 ампер. Они подойдут для самых ответственных мест установки.
  • Диапазон от 3 до 3.9 ампера говорят, что батарейка вполне работоспособная, хотя ее функциональные способности все же несколько снижены. Но она еще послужит немало.
  • От 2 до 3 ампер – элемент питания уже «посажен», но еще вполне пригоден для использования в приборах с незначительным потреблением энергии.
  • Менее 2 ампер – батарейка, скорее всего, пригодна лишь для пульта дистанционного управления.
  • Ну а если ток едва достигает 1.1 ампер или ниже – это почти всё. Возможно, такую батарейку еще можно поставить в пульт ДУ, но только если на текущий момент вообще нет другой замены. И вполне можно ожидать, что отказ в работе способен произойти в любой момент.

Проведя такую ревизию нередко скапливающегося дома запаса батареек, можно сразу избавиться от «балласта». А остальные - отсортировать по возможности дальнейшего применения.

Проверка тока утечки электросети автомобиля

Еще одно практическое приложение измерения силы тока мультиметром. Это - самостоятельная диагностика своего автомобиля на предмет токов утечки, которые способны привести к быстрому разряду аккумулятора.

Проводится она примерно в следующем порядке:

  • Проверка должна проводиться при полностью заряженном аккумуляторе.
  • Перед тестированием требуется выключить все потребляющие электроэнергию приборы. Имеется в виду освещение, аудиосистема, парктроник, и т.п. При проверке, возможно, придётся открывать двери в салон. Поэтому необходимо каким-то образом закрепить в нажатом положении концевые выключатели, ответственные за габаритные огни на дверях.

Безусловно, следует учитывать и иные особенности своего авто. Так, нередко требуется определенное время на полное «засыпание» бортового компьютера. Могут быть нюансы и с системой сигнализации. Хозяин машины должен с этим разобраться.

  • С клеммы аккумулятора снимается кабель массы («минус»).
  • Мультитестер переводится в режим амперметра с пределом измерений постоянного тока до 10 ампер. Ток утечки, безусловно, намного меньше, но подстраховаться никогда не мешает. А на точности снятия показаний это особо не отразится – двух знаков после десятичной запятой будет вполне достаточно. Красный провод устанавливается в соответствующее гнездо на 10 А.
  • Далее, черный провод мультитестера необходимо подсоединить к минусовой клемме аккумулятора. Это можно сделать, например, с использованием обычного хомута.
  • Замыкаться же цепь будет контактом щупа красного провода с клеммной снятого кабеля массы. Значение, высвечивающееся при этом на дисплее мультиметра, как раз и покажет ток утечки.

Нормальным считается ток утечки в пределах 0,03÷0,05 А (30 ÷ 50 мА), и чем ниже, тем лучше. Иногда может быть и больше, если автомобиль «нафарширован» электроникой. Но даже в таком случае – никак не выше 0,08 А.

  • Если ток в пределах нормы – то можно только порадоваться. Но в том случае, когда он явно выходит за пределы допустимого, следует сразу локализовать проблему, то есть выявить участок, где такая утечка происходит.
  • Для этого последовательно вынимаются предохранители, отвечающие за разные участки электросети автомобиля. При этом необходимо проверить все – не только в коробке под капотом, но и размещенные в салоне.

Итак, предохранитель достали из гнезда. Если показания не изменились, его можно сразу вернуть на место. Значит, на этом участке проблем нет.

  • Рано или поздно снятие какого-то предохранителя приведет к резкому снижению показаний силы тока на мультиметре. Вот он – тот самый участок, более детальной диагностикой которого предстоит заняться.

Кстати, причин утечки может быть и несколько. Например, снятие одного из предохранителей снизило показания силы тока с 0,25 до 0,12 А. Да, это проблемный участок, но очевидно, что ток все равно великоват. Значит, не устанавливая обратно этот предохранитель, поиск продолжают, пока не будет отыскано следующее «слабое звено». И так далее – пока показатель утечки не войдет в пределы нормы.

В субботу, 28 декабря 2013 года, в 16 часов 30 минут (мск) с пусковой установки номер 4 площадки номер 43 космодрома Плес ецк боевым расчетом Войск воздушно-космической обороны успешно проведен уникальный пуск ракеты- носителя легк ого класса «Союз-2-1В» с блоком выведения «Волга» и космическим аппаратом «Аист».

«Союз-2» этапа 1В - это двухступенчатая ракета-носитель лёгкого класса, разработанная АО «РКЦ «Прогресс» (Cамара). Предназначена для запуска спутников со стартовых комплексов ракет-носителей «Союз-2». Ракета-носитель разработана на базе «Союз-2» этапа 1Б, со снятием боковых блоков, установкой на центральном блоке двигателя НК-ЗЗА и рулевого двигателя РД0110З (разработки ОАО «КБХА»). Блок второй ступени заимствуется с доработкой блока 3 ступени «Союз-2» этапа 1Б.

В основе новой ракеты работает двигатель первой ступени НК-33, разработанный самарским предприятием ОАО «Кузнецов». Это первый запуск НК-33 в российском проекте после закрытия в 1974 году советской «лунной» программы, где планировалось его использование.

Система управления РН разработана НПО автоматики. Аппаратура и программно-математическое обеспечение разработано на базе СУ РН «Союз-2». В СУ внедрена новая БЦВС «Малахит-7», отличающаяся от предыдущей БЦВС меньшими в 6 раз габаритами, меньшей в 5 раз стоимость, и более высокой производительностью. Кроме того в состав СУ входит прибор аварийной защиты двигателя. Вновь разработанные периферийные приборы обеспечивают управление маршевым и рулевым двигателями на первой ступени. Вторая ступень с приборами СУ заимствуется с РН «Союз-2». Огромное преимущество новой РН и системы управления в том, что стартовый комплекс и наземная аппаратура СУ претерпели незначительные изменения и обеспечивают запуск РН семейства «Союз-2» с одного стартового комплекса.

Для НПО автоматики это 30-й запуск РН семейства «Союз-2» с нашей системой управления.

Преимущества систем управления (СУ) «Союз-2», «Союз-СТ», «Союз-2-1В»:

1. Высокая точность выведения полезной нагрузки с использованием данных навигационной системы ГЛОНАСС;

2. Решение проблем экологии:

  • полное выгорание топлива;
  • сокращение зон отчуждения под падение отработанных ступеней РН;

3. СУ полностью изготавливается Российскими предприятиями на современной отечественной элементной базе;

4. Максимальное использование энергетики РН;

5. Цифровая система управления:

  • расчет и ввод полетного задания в процессе предстартовой подготовки;
  • возможность перенастройки автомата стабилизации под различную полезную нагрузку и готовые обтекатели;

6. Автоматическое гирокомпасирование - нет необходимости в развороте стартового стола;

7. Автоматический режим предстартовой подготовки с отсутствием ручных операций;

8. Значительное сокращение боевого расчета при проведении проверочных режимов и предстартовой подготовки РН.

В системе управления РН «Союз-2», «Союз-СТ», «Союз-2-1В» НПОА использует распределенную систему управления, которая обладает рядом преимуществ:

  • Связь между абонентами системы осуществляется по магистральным кодовым линиям связи, что приводит к сокращению числа кабельных связей, а значит сокращению массы кабельной сети изделия;
  • Внедрение распределенной системы дает возможность модульного наращивания функций, позволяет легко адаптировать систему управления к каждому новому объекту управления;За счет внедрения РСУ мы получаем возможность модульного наращивания системы управления, а значит система становится легко адаптируемой к каждому новому объекту управления;Увеличение массы полезной нагрузки за счет перемещения части приборов СУ на более низкие ступени;Распределение и увеличение вычислительных ресурсов, что расширяет возможности модернизации системы;Упрощение монтажа и эксплуатации;
  • Применение управляющих органов и интеллектуализированных датчиков, в том числе разработки НПО автоматики, с использованием нанотехнологий.

Конкурентные преимущества НПО автоматики:

  1. Уникальный опыт в создании автоматических систем управления ракетно-космической техники;
  2. Высокое качество разработки и отработки систем;Высокий научно-технический и производственный потенциал, актуальный задел по ряду направлений;Замкнутый цикл изготовления продукции: научные исследования, проектирование, конструирование, производство, испытания, сопровождение в эксплуатации;Значительный опыт построения эффективного и долгосрочного взаимодействия с заказчиками, поставщиками и смежными организациями;Система контроля качества на всех этапах разработки и производства систем управления;
  3. Развитая экспериментальная база.

В системе управления РН «Союз-2-1В» НПОА внедрена БЦВС нового поколения.


РАКЕТА-НОСИТЕЛЬ «СОЮЗ-2»

THE CARRIER ROCKET «SOYUZ-2»

02.02.2018


Специалисты Центра контроля космического пространства Космических войск ВКС внесли в Главный каталог космических объектов российской системы контроля космического пространства информацию о российских космических аппаратах «Канопус-В» №3
и №4, а также иностранных космических аппаратах, выведенных на орбиту в качестве попутной полезной нагрузки.
После выведения на орбиту космических аппаратов «Канопус-В» №3 и №4, а также 9 малых космических аппаратов США и Германии, запущенных 1 февраля с космодрома Восточный ракетой-носителем среднего класса «Союз-2.1А», офицеры Центра контроля космического пространства приступили к анализу и обработке координатной и некоординатной информации о новых космических объектах для принятия их на сопровождение наземными средствами Главного центра разведки космической обстановки Космических войск ВКС.
Главный каталог космических объектов СККП представляет собой единую информационную базу данных, содержащую координатную и некоординатную информацию о каждом космическом объекте. Главный каталог предназначен для долговременного хранения орбитальной измерительной радиолокационной, оптической, радиотехнической и специальной информации о космических объектах искусственного происхождения на высотах от 120 км до 50 тысяч км. В каталоге содержится информация о 1500 показателях характеристик каждого космического объекта, включая набор элементов орбит, достаточный для прогнозирования его движения с необходимой точностью, международный номер-идентификатор, данные о времени и месте пуска, типе объекта, назначении, массе, размере и т.п.
Ежесуточно для поддержания Главного каталога космических объектов специалистами ЦККП Космических войск ВКС обрабатывается более 60 тысяч измерений.
Департамент информации и массовых коммуникаций Министерства обороны Российской Федерации


У ракеты "Р-7" оказалась удивительно долгая жизнь. Через пятьдесят шесть лет после первого пуска в мире эксплуатируются пять стартовых комплексов и строится шестой. И сегодня, в 16:30 МСК состоялся первый испытательный полёт новой модели семейства Р-7 - "Союз-2.1в". О длинной и славной истории "семёрки" и о её новой модификации я бы и хотел рассказать.

Колыбель цвета хаки

В начале двадцатого века ученые и энтузиасты занимались ядерной физикой и строили первые ракеты с жидкостным двигателем. Катализатор Второй Мировой войны породил реализованные в металле технологии - ядерную бомбу ("Манхеттенский проект", США) и баллистические ракеты ("Фау-2", Германия). Очевидная выгода от их сочетания и напряжение Холодной войны породили межконтинентальные баллистические ракеты, первой из которых стала "Р-7", созданная в ОКБ-1 Сергея Павловича Королёва.
Задача создания МБР требовала прорыва в новое, многие решения принимались априорно и определили судьбу ракеты:

  • В 1953 году масса головной части с термоядерной боеголовкой была принята равной 5,5 тонн по докладной записке Андрея Сахарова. Несмотря на то, что уже спустя месяц Сахаров нашёл возможность уменьшить вес вдвое, требование грузоподъемности для ракетчиков сохранили. Ракета получилась слишком мощной для боевой, но обрела блестящее космическое будущее. Что любопытно, в США была совершенно такая же ситуация при разработке МБР "Атлас". Американцы изменили требования, перепроектировали ракету (потратив время, которое им очень не помешало бы в космической гонке), выиграли в военном смысле (стартовые позиции "Атласов" были проще и дешевле, их построили в разы больше), но получили очень серьезные проблемы с запуском в космос человека - мощность МБР как ракеты-носителя была в дефиците.

  • Одной ступенью получить межконтинентальную дальность было невозможно. А двигателисты не могли гарантировать запуск двигателя в невесомости после отделения первой ступени. Пришлось ставить первую ступень сбоку. Стартовый комплекс получился открытым, очень большим и очень неподходящим для военного применения. У американцев были такие же проблемы, и они их решили крайне своеобразно - МБР "Атлас" также запускала все три двигателя при старте, а в полёте сбрасывала два двигателя из трёх вместе с частью хвостового отсека.

  • Для управления полётом ракеты использовалась радиокоррекция с наземных пунктов. Это было верное решение для своего времени (в США ничего лучше тоже не придумали). В случае размещения стартовой позиции на полигоне "Капустин Яр" в районе Астрахани наземные пункты оказывались в горах Кавказа и надежной связи дать не могли. Пришлось искать новое место, которым стал район разъезда Тюра-Там, из соображений секретности названный "Байконур". К сожалению, технический прогресс быстро сделал инерциальную навигацию достаточно точной и необходимость радиокоррекции отпала, а космодром в тяжелых климатических условиях и, после распада СССР, в другом государстве, остался.


  • 15 мая 1957 года состоялся первый пуск (неудача: пожар бокового блока, потеря стабилизации, аварийное выключение двигателей). Третий пуск 21 августа был успешным для ракеты (головная часть разрушилась при входе в атмосферу). Наступал международный геофизический год, США неоднократно объявляли о намерении запустить искусственный спутник Земли, поэтому было решено использовать простаивающие в ожидании новых головных частей МБР как ракеты-носители. И 4 октября 1957 года началась космическая эра человечества.

    Р-7 как конструктор


    Первая версия "семёрки" имела две ступени - центральный блок "А" и четыре боковых блока "Б", "В", "Г", "Д".

    Боковые блоки
    Блоки "Б"-"Д" работали, в зависимости от модификации, ~100-120 секунд и сбрасывались. Разделение ступеней реализовано очень красиво - после разрушения нижних узлов связи хвостовая часть блоков отходит в сторону за счет последнего импульса двигателей, затем двигатели выключаются, и блоки выходят из верхних силовых узлов просто за счет своего веса.

    Центральный блок
    Блок "А" работает, в зависимости от модификации, ~240-290 секунд. В варианте МБР для точного прицеливания двигатель выключался в два этапа - сначала маршевые камеры, ступень переходила на режим малой тяги на рулевых камерах, и, при достижении требуемой скорости, выключались и они.

    В двухступенчатом варианте Р-7 могла вывести на орбиту примерно тонну. Этого было мало, да и законы баллистики говорили о том, что небольшая третья ступень, работающая в апогее, серьезно бы увеличила грузоподъемность ракеты. Такой третьей ступенью стал блок "Е", ракета получила названия "Луна" и "Восток" и использовалась с 1958 по 1991 год.

    Блок "Е"
    С третьей ступенью "семёрка" уже могла вывести на околоземную орбиту 4,5 тонны или отправить небольшой аппарат к Луне. На этой версии ракеты были запущены первые "Луны", первый человек, разведывательные и народнохозяйственные спутники.

    Более мощная третья ступень могла бы ещё повысить грузоподъемность ракеты. Так появился блок "И":

    Блок "И"
    Блок "И" позволил выводить на орбиту уже ~7 тонн. Ракеты под названиями "Восход" и "Союз" запустили множество различных аппаратов, "Союз" в модификациях "Союз-2", "Союз-ФГ" и "Союз-У" используется до сих пор.

    Для запуска более тяжелых аппаратов к Луне и спутников связи "Молния", которые выводились на высокоэллиптические орбиты, была добавлена четвертая ступень - блок "Л"

    Блок "Л"
    Четырехступенчатая ракета-носитель "Молния" обеспечила первую мягкую посадку автомата на Луну ("Луна-9"), отправку аппаратов к Марсу/Венере и спутниковое вещание на территории СССР.

    Если вам хочется более подробно посмотреть, как это всё работает и летает, рекомендую - семейство Р-7 в Orbiter"e представлено отлично.

    2.1в

    После этого обзора можно объяснить, в чем состоит новизна версии 2.1в. Во-первых, первая ступень, из боковых блоков "Б"-"Г", убирается. Блок "А" заменяется на новый, с новым двигателем (забавно, у него, похоже, пока нет буквенного имени). Блок "И" остаётся, но, вместо третьей ступени, становится второй. И третьей ступенью ставится новый блок выведения "Волга" (опционально). Получается ракета-носитель легкого класса (~2,8 т на 200 км, 1,4-1,7 т. на 800-1000 км или солнечно-синхронную орбиту с блоком выведения), способная эффективно заменить закрываемое семейство ракет "Космос" и конверсионные "Днепр", "Стрела", "Рокот", которые используют снятые с производства МБР.

    Обратите внимание на изменение геометрических размеров первой ступени. Двигатель НК-33 при сравнимой массе имеет в полтора раза большую тягу, чем РД-108, и не имеет таких устаревших решений, как привод турбонасосного агрегата от отдельного бака с перекисью водорода. При этом сохраняется совместимость с существующими стартовыми сооружениями - используются те же узлы подвески, для нижней части стартового стола требуется минимальная доработка. Если говорить о более отдаленном будущем - возможны последующие модификации с добавлением геометрически более совершенных (цилиндр, а не конус) боковых блоков с новыми двигателями и ожидаемой полезной нагрузкой до 15-17 тонн.

    Блок выведения "Волга"
    Этот блок предназначен для довыведения спутников на требуемую орбиту при необходимости. Если у спутника нет собственной двигательной установки (а это верно для большого количества спутников на низких круговых орбитах), или же нужно осуществить вывод полезной нагрузки на солнечно-синхронную орбиту (что несколько сложнее вывода на "обычные" низкие околоземные орбиты), блок "Волга" способен разместить его на орбите с требуемыми параметрами и затормозиться, чтобы культурно сгореть в атмосфере и не мусорить в космосе. Блок разработан не с нуля, а является развитием двигательной установки спутников фоторазведки серии "Янтарь".

    Вот небольшая схема, иллюстрирующая необходимость блока выведения:

    Полезная нагрузка
    Поскольку пуск является испытательным, в качестве полезной нагрузки установлены калибровочные сферы для радаров предупреждения о ракетном нападении - простые шары из полированного металла, и малый студенческий спутник "Аист", дублер которого был запущен в космос весной вместе со спутником "Бион".

    Заключение

    Несмотря на огромный по меркам высокотехнологичных технических систем возраст в 56 лет, семейство ракет на базе "семерки" не думает уходить в историю. Наоборот, судя по текущей ситуации, они будут эксплуатироваться ещё лет десять как минимум.

    Спасибо за материалы:


  1. Артему Жарову за

4. Модификации ракеты
5. Преимущества и недостатки
6. Испытания
7. Список состоявшихся запусков в рамках испытаний
8. Предстоящие запуски

Семейство состоит из нескольких модификаций РН:

Версия Индекс ПН на НОО, кг ПН на ССО, кг ПН на ГПО, кг Масса РН, т ДУ 1 ст ДУ 2 ст ДУ 3 ст Тип РБ СК Примечание
14А14 Плесецк 5900-6830,
Байконур 5500-7020
312 РД-107А РД-108А РД-0110 Фрегат Плесецк 43/4,
Байконур 31
14А14 Плесецк 6900-7835,
Байконур 6500-8250
Плесецк 4900 312 РД-107А РД-108А РД-0124 Фрегат Плесецк 43/4,
Байконур 31
131КС Плесецк 2800,
Байконур 2850
1500 кг
157-160 НК-33,
РД-0110Р
РД-0124 нет Волга Плесецк 43/4
СТА 372РН21 4230 2850 312 РД-107А РД-108А РД-0110 Фрегат ГКЦ
СТБ 372РН21 9000-9200 4900 3240 312 РД-107А РД-108А РД-0124 Фрегат ГКЦ

«Союз-2.1а»

Первая модификация предусматривала замену двух аналоговых систем управления на единую цифровую российского производства, что позволило значительно повысить точность выведения, устойчивость и управляемость ракеты, кроме того снизило зависимость от импортных комплектующих при производстве РН. Применение новой системы управления позволило использовать увеличенные головные обтекатели и соответственно увеличить габариты полезной нагрузки. Новая система управления распределена по всей ракете: на третьей ступени установлены БЦВМ, навигационные приборы и оборудование преобразования информации с датчиков и формирования команд для элементов управления третьей ступени,оборудование преобразования информации с датчиков и формирования команд для элементов управления остальных блоков размещены непосредственно в этих блоках, преобразовательное оборудование связано с БЦВМ по кодовым линиям связи.

На этом этапе предусмотрено также использование модернизированных двигателей на блоках первой и второй ступеней — с целью повышения эффективности двигателей применены новые форсуночные головки, обеспечивающие более эффективное смесеобразование, что приводит к увеличению выводимой полезной нагрузки примерно на 300 кг. Конструкция третьей ступени рассчитана на применение обоих типов двигателей, как РД-0110, использовавшийся и на предыдущих модификациях, так и на РД-0124. Соотношение объёмов баков О и Г изменено с учётом требований для двигателя РД-0124, в результате чего бак керосина приобрёл слегка «чечевицеобразную» форму.

«Союз-2.1б»

По сравнению с вариантом «Союз-2.1а» в качестве двигателя третьей ступени используется РД-0124 разработки КБ Химавтоматики с повышенной удельной тягой до 359 с и улучшенной управляемостью за счёт возможности изменения вектора тяги основных камер вместо применения малоэффективных рулевых сопел на затурбинном газе. Применение другого типа горючего привело к изменению соотношения объёмов заправляемых компонентов и, как следствие, к переработке конструкции блока И.

Данная модификация может применяться как самостоятельно, так и с использованием разгонного блока Фрегат.

Данная модификация проще чем 1а, из-за применения более совершенного двигателя и способна заменить 1а во всех вариантах применения. Её недостатки проистекают из её преимуществ: новый двигатель делает модификацию дороже из-за необходимости окупания затрат на ОКР, он заметно более материалоёмок, и он же не позволяет распространить статистику успешных пусков Союз-У и Союз-ФГ на данную модификацию ракеты, что пока не позволяет применять её в особо ответственных областях, например, в пилотируемой космонавтике.

«Союз-СТА»

Для обеспечения коммерческих запусков с космодрома Куру на базе ракеты-носителя «Союз-2.1а» создаётся модифицированная ракета-носитель «Союз-СТ». Основные отличия ракеты от базового варианта — доработка системы управления под приём телекоманд с земли на прекращение полёта и доработка телеметрии под европейские наземные станции приёма телеметрической информации.

Основные отличия между СТА и 1а лежат в технологии подготовки и запуска РН из Куру относительно применяемых в Плесецке и Байконуре.

Первый запуск «Союз-СТ» запланирован на 3-й квартал 2011 года. Первая партия российского оборудования для стартового комплекса ракет-носителей «Союз» прибыла в Куру в 2008. В настоящее время проводятся комплексные испытания старта.

Предполагавшаяся по завершении комплексных испытаний пусковая кампания отложена из-за отсутствия или неготовности полезной нагрузки.

«Союз-СТБ»

Вариант «Союз-СТ» для запуска с космодрома Куру на базе «Союз-2.1б», отличия аналогичны таковым между СТА и Союз-2.1а. Первый запуск «Союз-СТБ» планируется осуществить 20 октября 2011 года.

«Союз-2.1в»

По сравнению с вариантом «Союз-2.1б» в качестве двигателя центрального блока используется НК-33 разработки СНТК им. Н.Д. Кузнецова, обладающий более чем вдвое большей тягой, по сравнению с используемым на Союз-2.1а и Союз-2.1б РД-108. В настоящее время эскизный проект доработан в плане использования в качестве маршевого двигателя первой ступени двигателя НК-33 без форсирования, установки узла качания и рулевых машин. В качестве рулевого двигателя будет использована специальная версия двигателя РД-0110 с третьей ступени РН Союз, при этом 4 камеры РД-0110Р будут расположены вокруг НК-33. Кроме того, исключаются боковые блоки. Является ракетой лёгкого класса, с грузоподъёмностью порядка 2800 кг на низкую орбиту Земли

Данная модификация будет использовать унифицированные с остальными вариантами стартовый комплекс и систему управления. Вероятно, что именно данная модификация будет взята за основу РН Союз-2-3.

В настоящий момент ведётся изготовление некоторых элементов конструкции ракеты для стендовых испытаний.

В случае успешных испытаний и введения в эксплуатацию будет конкурировать с такими РН как Ангара-1 и Вега.

Модификация ранее была известна как Союз-1.

«Союз-2.1в» может использоваться с блоком выведения «Волга», разрабатываемым «ЦСКБ-Прогресс». Первый пуск ожидается в 2011-2012 годах с космодрома Плесецк. Блок имеет двигательную установку на компонентах НДМГ/АТ, развивающую тягу 2,94 кН и обеспечивающую удельный импульс 307 с. Длина блока 1,025 м, диаметр 3,200 м. Стартовая масса 1140-1740 кг, сухая - 840 кг. Масса выводимой полезной нагрузки на ССО - 1500 кг.

Фотографии модели РН «Союз-2.1в»