Процесс сжигания твердого топлива. Горение жидкого и твердого топлива. Подготовка топлива до воспламенения

К атегория: Печи

Основные особенности процессов сгорания топлива

В отопительных печах может использоваться твердое, жидкое и газообразное топливо. Каждому из этих топлив свойственны свои особенности, которые влияют на эффективность использования печей.

Конструкции отопительных печей создавались в течение длительного времени и предназначались для сжигания в них твердого топлива. Только в более поздний период стали создаваться конструкции, рассчитанные на использование жидкого и газообразного топлива. Чтобы наиболее эффективно использовать эти ценные виды в существующих печах, необходимо знать, чем отличаются процессы горения этих топлив от горения твердого топлива.

Во всех печах твердое топливо (дрова, различные виды каменного угля, антрацит, кокс и др.) сжигается на колосниках слоевым способом, с периодической загрузкой топлива и очисткой колосников от шлака. Слоевой процесс сжигания имеет четкий циклический характер. Каждый цикл включает следующие стадии: загрузка топлива, подсушка и разогрев слоя, выделение летучих веществ и их горение, горение топлива в слое, догорание остатков и, наконец, удаление шлаков.

На каждой из этих стадий создается определенный тепловой режим и процесс горения в печи происходит с непрерывно меняющимися показателями.
Первичная стадия подсушки и разогрева слоя носит так называемый эндотермичный характер, т. е. она сопровождается не выделением, а поглощением теплоты, получаемой от раскаленных стен топливника и от недогоревших остатков. Далее по мере разогрева слоя начинается выделение газообразных горючих компонентов и их выгорание в газовом объеме. На этой стадии начинается тепловыделение в топке, которое постепенно увеличивается. Под влиянием разогрева начинается горение твердой коксовой основы слоя, дающей обычно наибольший тепловой эффект. По мере прогорания слоя тепловыделение постепенно уменьшается, и в конечной стадии имеет место малоинтенсивное дожигание горючих веществ. Известно, что роль и влияние отдельных стадий цикла слоевого горения зависит от следующих показателей качества твердого топлива: влажности, зольности, содержания летучих горючих веществ и углерода в горючей
массе.

Рассмотрим, как влияют эти составляющие на характер процесса горения в слое.

Увлажнение топлива отрицательно влияет на горение так как на испарение влаги должна быть затрачена часть удельной теплоты сгорания топлива. В результате снижаются температуры в топливнике, ухудшаются условия сжигания, а сам цикл горения затягивается.

Отрицательная роль зольности топлива проявляется в том, что зольная масса обволакивает горючие компоненты топлива и препятствует доступу к ним кислорода воздуха. В результате горючая масса топлива не догорает, образуется так называемый механический недожог.

Исследованиями ученых установлено, что большое влияние на характер развития процессов горения оказывает соотношение содержания в твердом топливе летучих газообразных веществ и твердого углерода. Летучие горючие вещества начинают выделяться из твердого топлива при сравнительно низких температурах, начиная со 150-200 °С и выше. Летучие вещества разнообразны по составу и отличаются различными температурами выхода, поэтому процесс их выделения растянут по времени и его окончательная стадия обычно сочетается с горением твердой топливной части слоя.

Летучие вещества имеют относительно низкую температуру воспламенения, так как содержат много водородеодержащих компонентов, горение их происходит в надслоевом газовом объеме топливника. Твердая часть топлива, остающаяся после выхода летучих веществ, состоит в основном из углерода, имеющего наиболее высокую температуру воспламенения (650-700°С). Горение углеродного остатка начинается в последнюю очередь. Оно протекает непосредственно в тонком слое колосниковой решетки, и ввиду интенсивного тепловыделения в нем развиваются высокие температуры.

Типичная картина изменения температуры в топке и газоходах в течение цикла горения твердого топлива показана на рис. 1. Как видно, в начале топки наблюдается быстрое нарастание температур в топливнике и дымоходах, В стадии же догорания происходит резкое снижение температуры внутри печи, особенно в топливнике. Каждая из стадий требует подачи в топку определенного количества воздуха для горения. Однако, ввиду того что в топку поступает постоянное количество воздуха, на стадии интенсивного горения коэффициент избытка воздуха составляет величину ат=1,5-2, а на стадии догорания, продолжительность которой достигает 25-30% времени топки, коэффициент избытка воздуха достигает ат=8-10. На рис. 2 показано, как изменяется коэффициент избытка воздуха на протяжении одного цикла горения на колосниковой решетке трех видов твердого топлива: дров, торфа и каменного угля в типичной отопительной печи периодического действия.

Рис. 1. Изменение температуры дымовых газов в различных сечениях отопительной печи при топке твердым топливом 1 - температура в топливнике (на расстоянии 0,23 м от колосниковой решетки); 1 - темперйтура в первом горизонтальном дымоходе; ’3 - температура в третьем горизонтальном дымоходе; 4 - температура в шестом горизонтальном дымоходе (перед заслонкой печи)

Из рис. 2 видно, что коэффициент избытка воздуха в печах, работающих с периодической загрузкой твердого топлива, непрерывно изменяется.

При этом на стадии интенсивного выхода летучих веществ количества поступающего в топку воздуха обычно недостаточно для полного их сгорания, а на стадиях предварительного разогрева и дожигания горючих веществ количество воздуха в несколько раз превышает теоретически необходимое.

В результате на стадии интенсивного выхода летучих веществ происходит химический недожог выделившихся горючих газов, а при дожигании остатков имеют место повышенные потери теплоты с уходящими газами ввиду увеличения объема продуктов сгорания. Потери теплоты с химическим недожогом составляют 3-5%, а с уходящими газами - 20-35%. Однако отрицательное действие химического недожога проявляется не только в дополнительных потерях теплоты и снижении КПД. Опыт эксплуатации большого количества отопительных печей показывает; что в результате химического недожога интенсивно выделяющихся летучих веществ на внутренних стенках топки и дымоходов откладывается аморфный углерод в виде сажи.

Рис. 2. Изменение коэффициента избытка воздуха в течение цикла горения твердого топлива

Поскольку сажа имеет низкую теплопроводность, ее отложения увеличивают термическое сопротивление стен печи и тем самым снижают полезную теплоотдачу печей. Отложения сажи в дымоходах сужают сечение для прохода газов, ухудшают тягу и, наконец, создают повышенную пожароопасность, так как сажа горюча.

Из сказанного ясно, что неудовлетворительные показатели слоевого процесса во многом объясняются неравномерностью выделения летучих веществ по времени.

При слоевом сжигании высокоуглеродистых топлив процесс горения сосредоточен в пределах довольно тонкого топливного слоя, в котором развиваются высокие температуры. Процесс горения чистого углерода в слое имеет свойство саморегулирования. Это значит, что количество прореагировавшего (сожженного) углерода будет соответствовать количеству поданного окислителя (воздуха). Поэтому при постоянном расходе воздуха постоянным будет и количество сожженного топлива. Изменение же тепловой нагрузки должно производиться за счет регулирования подачи воздуха VB. Например, при увеличении VB возрастает количество сожженного топлива, а снижение Ув вызовет уменьшение теплопроизводительности слоя, причем величина коэффициента избытка воздуха останется стабильной.

Однако сжигание антрацита и кокса связано со следующими трудностями. Для возможности создания высоких температур толщина слоя при сжигании антрацита и кокса поддерживается достаточно большой. При этом рабочей зоной слоя является относительно тонкая нижняя его часть, в которой осуществляются экзотермические реакции оксидирования углерода кислородом воздуха, т. е. происходит собственно горение. Весь вышележащий слой служит как бы тепловым изолятором горящей части слоя, предохраняющим зону горения от охлаждения за счет излучения теплоты на стенки топливника.

В результате окислительных реакций в зоне горения выделяется полезная теплота согласно реакции
с+о2->со.

Однако при высоких температурах слоя в верхней его зоне осуществляются обратные восстановительные эндотермические реакции, протекающие с поглощением теплоты, согласно уравнению
С02+С2СО.

В результате этих реакций образуется оксид углерода СО, который является горючим газом, обладающим довольно высокой удельной теплотой сгорания, поэтому присутствие его в дымовых газах свидетельствует о неполноте сгорания топлива и снижении экономичности печи. Таким образом, для обеспечения высоких температур в зоне горения топливный слой должен иметь достаточную толщину, но это приводит к вредным восстановительным реакциям в верхней части слоя, приводящим к химическому недожогу твердого топлива.

Из приведенного ясно, что в любой печи периодического действия, работающей на твердом топливе, имеет место нестационарный процесс горения, неизбежно снижающий КПД эксплуатируемых печей.

Большое значение для экономичной, работы печи имеет качество твердого топлива.

Согласно стандартам для коммунально-бытовых нужд выделяют в основном каменные угли (марок Д, Г, Ж, К, Т и др.), а также бурые угли и антрациты. По размеру кусков угли должны поставляться следующих классов: 6-13, 13-25, 25-50 и 50-100 мм. Зольность угля на сухую массу колеблется в пределах 14-35% для каменных углей и до 20% -для антрацита, влажность- 6-15% для каменных и 20-45% для бурых углей.

Топочные устройства бытовых печей не имеют средств механизации процесса горения (регулирования подачи дутьевого воздуха, шуровки слоя и др.), поэтому для эффективного сжигания в печах к качеству угля должны предъявляться достаточно высокие требования. Значительная часть угля поставляется, однако, несортированным, рядовым, с качественными характеристиками (по влажности, зольности, содержанию мелочи) существенно ниже предусмотренных стандартами.

Сжигание некондиционного топлива происходит несовершенно, с повышенными потерями от химического и механического недожога. Академией коммунального хозяйства им. К. Д. Памфилова был определен годовой материальный ущерб, причиняемый в результате поставки углей низкого качества. Расчеты показали, что материальный ущерб, обусловленный неполным использованием топлива, составляет примерно 60% стоимости добычи угля. Экономически и технически целесообразно обогащать топливо в местах его добычи до кондиционного состояния, так как дополнительные расходы на обогащение составят примерно половину указанной величины материального ущерба.

Важной качественной характеристикой угля, влияющей на эффективность его сжигания, является его фракционный состав.

При повышенном содержании в топливе мелочи она, уплотняясь, закрывает прозоры в горящем топливном слое, что приводит к кратерному горению, имеющему неравномерный характер по площади слоя. По этой же причине хуже по сравнению с другими видами топлива сжигаются бурые угли, имеющие свойство растрескиваться при нагреве с образованием значительного количества мелочи.

С другой стороны, использование чрезмерно крупных кусков угля (более 100 мм) также приводит к кратерному горению.

Влажность угля, вообще говоря, не ухудшает топочного процесса; однако она снижает удельную теплоту сгорания, температуру горения, а также осложняет хранение угля, так как при минусовых температурах происходит его смерзание. Для предотвращения смерзания влажность каменных углей не должна превышать 8%.

Вредным компонентом в твердом топливе является сера, так как продуктами ее сгорания являются диоксид серы S02 и сернистый ангидрид S03, обладающие сильными коррозионными свойствами, к тому же еще и весьма токсичные.

Следует заметить, что в печах периодического действия рядовые угли хотя и менее эффективно, но все же могут удовлетворительно сжигаться; для печей длительного горения указанные требования должны категорически выполняться в полной мере.

В печах непрерывного действия, в которых сжигается жидкое или газообразное топливо, процесс горения имеет не циклический, а непрерывный характер. Поступление топлива в печь происходит равномерно, благодаря чему соблюдается стационарный режим горения. Если при сжигании твердого топлива температура в топливнике печи колеблется в широких пределах, что неблагоприятно отражается на процессе горения, то при сжигании природного газа вскоре после включения горелки температура в топочном пространстве достигает 650-700 °С. Далее она постоянно увеличивается с течением времени и достигает в конце топки 850-1100 °С. Скорость повышения температуры при этом определяется тепловым напряжением топочного пространства и временем топки печи (рис. 25). Сжигание газа сравнительно легко поддерживать при постоянном коэффициенте избытка воздуха, что осуществляется с помощью воздушной заслонки. Благодаря этому при сжигании газа в печи создается стационарный режим горения, позволяющий свести к минимуму потери теплоты с уходящими газами и добиться работы печи с высоким КПД, достигающим 80-90%. КПД газовой печи стабилен по времени и существенно выше, чем печи на твердом топливе.

Влияние режима горения топлива и величины площади теп-ловоспринимающей поверхности дымооборотов на КПД печи. Теоретические расчеты показывают, что тепловая экономичность отопительной печи, т. е. величина теплового КПД, зависит от так называемых внешних и внутренних факторов. К внешним факторам относятся величина площади теплоотдающей наружной поверхности S печи в зоне топливника и дымообо-ротов, толщина стенок 6, коэффициент теплопроводности К материала стенок печи и теплоемкость С. Чем больше величины. S, X и меньше 6, тем лучше теплоотдача от стен печи к окружающему воздуху, более полно охлаждаются газы и выше КПД печи.

Рис. 3. Изменение температуры продуктов сгорания в топливнике газовой отопительной печи в зависимости от напряженности топочного пространства и времени топки

К внутренним факторам относится в первую очередь величина КПД топливника, зависящая в основном от полноты сгорания топлива. В отопительных печах периодического действия практически всегда имеются потери теплоты от химической неполноты горения и механического недожога. Эти потери зависят от совершенства организации процесса горения, определяемого удельным тепловым напряжением топочного объема Q/V. Значение QIV для топливника заданной конструкции зависит от расхода сжигаемого топлива.

Исследованиями и опытом эксплуатации установлено, что для каждого вида топлива и конструкции топливника существует оптимальная величина Q/V. При низких Q/V внутренние стенки топливника прогреваются слабо, температуры в зоне горения недостаточны для эффективного сжигания топлива. При повышении Q/V возрастают температуры в топочном объеме, и при достижении определенного значения Q/V достигаются оптимальные условия горения. При дальнейшем повышении расхода топлива уровень температур продолжает повышаться, но процесс горения не успевает завершиться в пределах топливника. Газообразные горючие компоненты увлекаются в газоходы, процесс их горения прекращается и появляется химический недожог топлива. Точно так же при чрезмерном расходе топлива часть его не успевает сгорать и остается на колосниковой решетке, что приводит к механическому недожогу. Таким образом, для того чтобы отопительная печь имела максимальный КПД, необходимо, чтобы ее топливник работал с оптимальным тепловым напряжением.

Потери теплоты в окружающую среду от стен топливника не снижают КПД печи, так как теплота расходуется на полезный обогрев помещения.

Вторым важным внутренним фактором является расход дымовых газов Vr. Даже если печь работает при оптимальной величине теплового напряжения топливника, объем газов, проходящих через дымоходы, может существенно меняться за счет изменения коэффициента избытка воздуха ат, представляющего собой отношение действительного расхода воздуха, поступившего в топку, к теоретически неоходимому его количеству. При данной величине QIV значение ат может изменяться в весьма широких пределах. В обычных отопительных печах периодического действия величина ат в период максимального горения может быть близкой к 1, т. е. соответствовать минимально возможному теоретическому пределу. Однако в период подготовки топлива и на стадии догорания остатков величина ат в печах периодического действия обычно резко возрастает, нередко достигая предельно высоких значений - порядка 8-10. С увеличением ат возрастает объем газов, сокращается время их пребывания в системе дымооборотов и, как следствие, увеличиваются потери теплоты с уходящими газами.

На рис. 4 показаны графики зависимости КПД отопительной печи от различных параметров. На рис. 4, а показаны величины КПД отопительной печи в зависимости от значений ат> из которых видно, что при увеличении ат от 1,5 до 4,5 КПД уменьшается с 80 до 48%. На рис. 4, б показана зависимость КПД отопительной печи от величины площади внутренней поверхности дымооборотов S, из которой видно, что при увеличении S от 1 до 4 м2 КПД возрастает с 65 до 90%.

Кроме перечисленных факторов величина КПД зависит от продолжительности топки печи т (рис. 4, в). По мере увеличения х внутренние стенки печи прогреваются до более высокой температуры и газы соответственно охлаждаются меньше. Поэтому с увеличением продолжительности топки экономичность любой отопительной печи снижается, приближаясь к определенной минимальной величине, характерной для печи данной конструкции.

Рис. 4. Зависимость КПД газовой отопительной печи от различных параметров а - от коэффициента избытка воздуха при площади внутренней поверхности дымооборотов, м2; б - от площади внутренней поверхности дымооборотов при различных коэффициентах избытка воздуха; в - от длительности топки при различных площадях внутренней поверхности дымооборотов, м2

Теплопередача отопительных печей и их аккумулирующая способность. В отопительных печах теплота, которая должна быть передана дымовыми газами отапливаемому помещению, должна пройти через толщу стен печи. С изменением толщины стен топливника и дымоходов соответственно меняются термическое сопротивление и массивность кладки (ее аккумулирующая способность). Например, при уменьшении толщины стен снижается их термическое сопротивление, возрастает тепловой поток и одновременно уменьшаются габариты печи. Однако уменьшение толщины стен печей периодического действия, работающих на твердом топливе, недопустимо по следующим причинам: при периодической кратковременной топке внутренние поверхности топливника и дымоходов нагреваются до высоких температур и температура наружной поверхности печи в периоды максимального горения будет выше допустимых пределов; после прекращения горения вследствие интенсивной теплоотдачи наружных стенок в окружающую среду печь будет быстро охлаждаться.

При больших величинах М температура помещения будет в широких пределах изменяться во времени и выходить из допустимых норм. С другой стороны, если выкладывать печь слишком толстостенной, то за короткий период топки ее большой массив не успеет прогреться и, кроме того, с утолщением стен увеличивается разница между площадью внутренней поверхности дымоходов, воспринимающей теплоту от газов, и площадью наружной поверхности печи, передающей теплоту окружающему воздуху, вследствие чего температура наружной поверхности печи будет слишком низкой для эффективного обогрева помещения. Поэтому существует такая оптимальная толщина стен (1/2- 1 кирпич), при которой массив печи периодического действия накапливает достаточное количество теплоты за время топки и вместе с тем достигается достаточно высокая температура наружных поверхностей печи для нормального обогрева помещения.

При использовании в отопительных печах жидкого или газообразного топлива вполне достижим непрерывный режим горения, поэтому при непрерывной топке нет необходимости в аккумуляции теплоты за счет увеличения массива кладки. Процесс теплопередачи от газов к отапливаемому помещению имеет стационарный характер по времени. В этих условиях толщина стенок и массивность печи может выбираться исходя не из обеспечения определенной аккумулирующей величины, а из соображений прочности кладки и обеспечения должной долговечности.

Влияние перевода печи с периодической топки на непрерывную хорошо видно из рис. 5, на котором показано изменение температуры внутренней поверхности стенки топливника в случае периодической и непрерывной топки. При периодической топке уже через 0,5-1 ч внутренняя поверхность стенки топливника нагревается до 800-900 °С.

Такой резкий нагрев уже после 1-2 лет эксплуатации печи часто вызывает растрескивание кирпичей и их разрушение. Такой режим, однако, является вынужденным, так как снижение тепловой нагрузки приводит к чрезмерному увеличению продолжительности топки.

При непрерывной топке раход топлива резко сокращается и температура нагрева стенок топливника снижается. Как видно из рис. 27, при непрерывной топке для большинства марок каменных углей температура стенки повышается с 200 лишь до 450-500 °С, в то время как при периодической топке она значительно выше - 800-900 °С. Поэтому топливники печей периодического действия обычно футеруются огнеупорным кирпичом, в то время как топливники печей непрерывного действия не нуждаются в футеровке, так как температура на их поверхности не достигает предела огнеупорности обычного красного кирпича (700-750 °С).

Следовательно, при непрерывной топке более эффективно используется кирпичная кладка, намного увеличивается срок службы печей и для большинства марок каменных углей (исключая антрациты и тощие угли) имеется возможность все части печи выкладывать из красного кирпича.

Тяга в печах. Для того чтобы заставить дымовые газы пройти из топливника через дымообороты печи до дымовой трубы, преодолев все встречающиеся на их пути местные сопротивления, необходимо затратить определенное усилие, которое должно превышать эти сопротивления, иначе печь будет дымить. Это усилие принято называть силой тяги печи.

Возникновение силы тяги поясняется на схеме (рис. 6). Дымовые газы, образующиеся в топливнике, как более легкие по сравнению с окружающим воздухом, поднимаются вверх и заполняют дымовую трубу. Столб наружного воздуха противостоит столбу газов в дымовой трубе, но, будучи холодным, он значительно тяжелее столба газов. Если провести через топочную дверку условную вертикальную плоскость, то с правой стороны на нее будет действовать (давить) столб горячих газов высотой от середины топочной дверки до верха дымовой трубы, а с левой - столб наружного холодного воздуха такой же высоты. Масса левого столба больше, чем правого, так как плотность холодного воздуха больше, чем горячего, поэтому левый столб будет вытеснять дымовые газы, заполняющие дымовую трубу, и в системе будет происходить движение газов по направлению от большего давления к меньшему, т. е. в сторону дымовой трубы.

Рис. 5. Изменение температуры на внутренней поверхности стенки топливника а - терморегулятор настроен на нижний предел; б - терморегулятор настроен на верхний предел

Рис. 6. Схема работы дымовой трубы 1-топочная дверка; 2- топливник; 3 - столб наружного воздуха; 4 - дымовая труба

Действие силы тяги состоит, таким образом, в том, что она, с одной стороны, заставляет подниматься вверх горячие газы, а с другой стороны, вынуждает наружный воздух проходить в топливник для горения.

Среднюю температуру газов в дымоходе можно принять равной средней арифметической между температурой газов на входе и выходе дымовой трубы.



- Основные особенности процессов сгорания топлива

Процесс горения твёрдого топлива можно представить в виде ряда последовательно протекающих стадий. Вначале происходит прогрев топлива и испарение влаги. Затем при температуре выше 100 °С начинаются пирогенное разложение сложных высокомолекулярных органических соединений и выделение летучих веществ, при этом температура начала выхода летучих зависит от вида топлива и степени его углефикации (химического возраста). Если температура окружающей среды превышает температуру воспламенения летучих веществ, они загораются, тем самым обеспечивая дополнительный прогрев коксовой частицы до её воспламенения. Чем выше выход летучих, тем ниже температура их воспламенения, при этом тепловыделение увеличивается.

Коксовая частица прогревается за счёт тепла окружающих дымовых газов и тепловыделения в результате сгорания летучих и загорается при температуре 800÷1000 °С. При сжигании твёрдого топлива в пылевидном состоянии обе стадии (горение летучих и кокса) могут накладываться друг на друга, поскольку прогрев мельчайшей угольной частицы происходит очень быстро. В реальных условиях мы имеем дело с полидисперсным составом угольной пыли, поэтому в каждый момент времени одни частицы только начинают прогреваться, другие находятся на стадии выхода летучих, а третьи – на стадии горения коксового остатка.

Процесс горения коксовой частицы играет решающую роль при оценке как суммарного времени горения топлива, так и суммарного тепловыделения. Даже для топлива с высоким выходом летучих (например, подмосковного бурого угля) коксовый остаток составляет 55 % по массе, а его тепловыделение – 66 % общего. А для топлива с очень низким выходом летучих (например, АШ) коксовый остаток может составлять более 96 % веса сухой исходной частицы, а тепловыделение при его сгорании, соответственно, около 95 % полного.

Исследования горения коксового остатка выявили сложность этого процесса.

При горении углерода возможны две первичные реакции прямого гетерогенного окисления:

С + О 2 = СО 2 + 34 МДж/кг; (14)

2С + О 2 = 2СО + 10,2 МДж/кг. (15)

В результате образования СО 2 и СО могут протекать две вторичные реакции:

окисление оксида углерода 2СО + О 2 = 2СО 2 + 12,7 МДж/кг; (16)

восстановление диоксида углерода СО 2 + С = 2СО – 7,25 МДж/кг. (17)

Кроме того, в присутствии водяных паров на раскалённой поверхности частицы, т.е. в высокотемпературной области, происходит газификация с выделением водорода:

С + Н 2 О = СО + Н 2 . (18)

Гетерогенные реакции (14, 15, 17 и 18) свидетельствуют о непосредственном горении углерода, сопровождающемся убылью углеродной частицы в весе. Гомогенная реакция (16) протекает около поверхности частицы за счёт кислорода, диффундирующего из окружающего объёма, и компенсирует снижение температурного уровня процесса, возникающее как следствие эндотермической реакции (17).

Соотношение между СО и СО 2 у поверхности частицы зависит от температуры газов в этой области. Так, например, согласно экспериментальным исследованиям, при температуре 1200 °С протекает реакция

4С + 3О 2 = 2СО + 2СО 2 (Е = 84 ÷ 125 кДж/г-моль),

а при температуре выше 1500 °С

3С + 2О 2 = 2СО + СО 2 (Е = 290 ÷ 375 кДж/г-моль).

Очевидно, что в первом случае СО и СО 2 выделяются примерно в равных количествах, тогда как при повышении температуры объём выделившегося СО в 2 раза превышает СО 2 .

Как уже было отмечено, скорость горения в основном зависит от двух факторов:

1) скорости химической реакции , которая определяется законом Аррениуса и стремительно растёт с увеличением температуры;

2) скорости подвода окислителя (кислорода) к зоне горения за счёт диффузии (молекулярной или турбулентной).

В начальный период процесса горения, когда температура ещё недостаточно высока, скорость химической реакции также невысока, а в окружающем частицу топлива объёме и у её поверхности окислителя более чем достаточно, т.е. наблюдается местный избыток воздуха. Никакое совершенствование аэродинамики топки или горелки, приводящее к интенсификации подвода кислорода к горящей частице, не повлияет на процесс горения, который тормозится только низкой скоростью химической реакции, т.е. кинетикой. Это – область кинетического горения .

По мере протекания процесса горения выделяется теплота, увеличивается температура, а, следовательно, и скорость химической реакции, что приводит к стремительному росту потребления кислорода. Концентрация его у поверхности частицы неуклонно падает, и в дальнейшем скорость горения будет определяться лишь скоростью диффузии кислорода в зону горения, которая почти не зависит от температуры. Это – область диффузионного горения .

В переходной области горения скорости химической реакции и диффузии являются величинами одного порядка.

По закону молекулярной диффузии (закон Фика), скорость диффузионного переноса кислорода из объёма к поверхности частицы

где – коэффициент диффузионного массообмена;

и – соответственно, парциальные давления кислорода в объёме и у поверхности.

Потребление кислорода у поверхности частицы определяется скоростью химической реакции:

, (20)

где k – константа скорости реакции.

В переходной зоне в установившемся состоянии

,

откуда
(21)

Подставив (21) в (20), получим выражение для скорости горения в переходной области по расходу окислителя (кислорода):

(22)

где
– эффективная константа скорости реакции горения.

В зоне сравнительно низких температур (кинетическая область)
, следовательно, k эф = k , и выражение (22) принимает вид:

,

т.е. концентрации кислорода (парциальные давления) в объёме и у поверхности частицы мало отличаются друг от друга, а скорость горения практически полностью определяется химической реакцией.

С повышением температуры константа скорости химической реакции растёт согласно экспоненциальному закону Аррениуса (см. рис.22), в то время как молекулярный (диффузионный) массообмен слабо зависит от температуры, а именно

.

При некотором значении температуры Т * скорость потребления кислорода начинает превышать интенсивность его подвода из окружающего объёма, коэффициенты α Д и k становятся соизмеримыми величинами одного порядка, концентрация кислорода у поверхности начинает заметно снижаться, а кривая скорости горения отклоняется от теоретической кривой кинетического горения (закона Аррениуса), но ещё заметно возрастает. На кривой появляется перегиб – процесс переходит в промежуточную (переходную) область горения. Сравнительно интенсивный подвод окислителя объясняется тем, что за счёт снижения концентрации кислорода у поверхности частицы увеличивается разность парциальных давлений кислорода в объёме и у поверхности.

В процессе интенсификации горения концентрация кислорода у поверхности практически становится равной нулю, подвод кислорода к поверхности слабо зависит от температуры и становится практически постоянным, т.е. α Д << k , и, соответственно, процесс переходит в диффузионную область

.

В диффузионной области увеличение скорости горения достигается интенсификацией процесса перемешивания топлива с воздухом (усовершенствование горелочных устройств) или увеличением скорости обдувания частицы потоком воздуха (усовершенствование аэродинамики топки), в результате чего уменьшается толщина пограничного слоя у поверхности, и интенсифицируется подвод кислорода к частице.

Как уже отмечалось, твёрдое топливо сжигается либо в виде крупных (без специальной подготовки) кусков (слоевое сжигание), либо в виде дроблёнки (кипящий слой и низкотемпературный вихрь), либо в виде мельчайшей пыли (факельный способ).

Очевидно, что наибольшая относительная скорость обдувания частиц топлива будет при слоевом сжигании. При вихревом и факельном способах сжигания частицы топлива находятся в потоке дымовых газов, и относительная скорость их обдувания значительно ниже, чем в условиях стационарного слоя. Исходя из этого, казалось бы, переход из кинетической области в диффузионную раньше всего должен происходить для мелких частиц, т.е. для пыли. К тому же ряд исследований показал, что взвешенная в потоке газовоздушной смеси угольная пылинка так слабо обдувается, что выделяющиеся продукты сгорания образуют вокруг неё облако, сильно тормозящее подвод к ней кислорода. А интенсификация гетерогенного горения пыли при факельном способе предположительно объяснялась исключительно значительным увеличением суммарной реагирующей поверхности. Однако очевидное далеко не всегда является истинным .

Подвод кислорода к поверхности определяется законами диффузии. Исследования по теплообмену малой сферической частицы, обтекаемой ламинарным потоком, выявили обобщённую критериальную зависимость:

Nu = 2 + 0,33Re 0,5 .

Для малых коксовых частиц (при Re < 1, что соответствует скорости витания мелких частиц), Nu → 2, т.е.

.

Между процессами тепло- и массопереноса существует аналогия, поскольку и те, и другие определяются движением молекул. Поэтому законы теплообмена (законы Фурье и Ньютона-Рихмана) и массообмена (закон Фика) имеют схожее математическое выражение. Формальная аналогия этих законов позволяет применительно к диффузионным процессам записать:

,

откуда
, (23)

где D – коэффициент молекулярной диффузии (подобен коэффициенту теплопроводности λ в тепловых процессах).

Как следует из формулы (23), коэффициент диффузионного массообмена α Д обратно пропорционален радиусу частицы. Следовательно, с уменьшением размера частиц топлива процесс диффузии кислорода к поверхности частицы интенсифицируется. Таким образом, при сгорании угольной пыли переход к диффузионному горению сдвигается в сторону более высоких температур (несмотря на отмеченное ранее снижение скорости обдувания частиц).

Согласно многочисленным экспериментальным исследованиям, проведённым советскими учёными в середине ХХ в. (Г.Ф.Кнорре, Л.Н. Хитрин, А.С.Предводителев, В.В.Померанцев и др.), в зоне обычных топочных температур (около 1500÷1600 °С) горение коксовой частицы смещается из промежуточной зоны в диффузионную, где большое значение имеет интенсификация подвода кислорода. При этом с увеличением диффузии кислорода к поверхности торможение скорости горения начнётся при более высокой температуре.

Время сгорания сферической углеродной частицы в диффузионной области имеет квадратичную зависимость от начального размера частицы:

,

где r o – начальный размер частиц; ρ ч – плотность углеродной частицы; D o , P o , T o – соответственно, начальные значения коэффициента диффузии, давления и температуры;
– начальная концентрация кислорода в топочном объёме на значительном расстоянии от частицы;β – стехиометрический коэффициент, устанавливающий соответствие весового расхода кислорода на единицу веса сжигаемого углерода при стехиометрических соотношениях; Т m – логарифмическая температура:

где Т п и Т г – соответственно, температуры поверхности частицы и окружающих дымовых газов.

Человечество на протяжении веков совершенствовало конструкции отопительных печей, в которых изначально задумывалось сжигать доступное повсеместно твердое топливо. В этом плане мало что изменилось, и сегодня в ХХI веке при наличии газа и жидкого топлива мы нередко обращаемся к традиционным отопительным технологиям. Как-то легко становится на сердце, если в современном доме помимо центрального отопления имеется еще и хорошая печь про запас. Ну, а традиционные бани и вовсе не могут обойтись без тепла дровяной печи.

Для эффективного и безопасного управления дровяной печью истопнику необходимо знать о тонкостях сжигания твердого топлива. Многие сегодня уже не помнят, как правильно топить печь, однако эксперименты в данном деле крайне нежелательны. В данном материале мы постараемся максимально осветить тему горения твердого топлива.

Под твердым топливом подразумеваются дрова, каменный уголь, антрацит, кокс, торф и прочее. В традиционных печах все это сжигается слоевым способом на колосниках или без таковых. В топку периодически загружается топливо, а образующийся шлак извлекается. Слоевой способ сжигания носит циклический характер. Замкнутый цикл имеет несколько стадий:

  • разогрев и подсушка слоя;
  • выделение горючих летучих веществ и их сгорание;
  • горение твердого топлива;
  • догорание остатков и остывание шлака (золы);
  • очистка топки от шлака.
  • Каждая из этих стадий имеет собственный тепловой режим, при этом показатели при горении топлива постоянно изменяются. Чтобы обеспечить оптимальный тепловой режим печи, необходимо периодически подкладывать новую порцию топлива (слой). Момент загрузки нового слоя определяется в индивидуальном порядке и зависит от многих факторов. Рассмотрим стадии послойного сжигания твердого топлива подробнее.

    Разогрев и подсушка слоя сопровождается поглощением тепла, т.е. носит эндотермический характер. Поставщиком тепла является пламя стартовой закладки из тонких сухих дров или уже разгоревшееся топливо, а также горячие стенки топливника.

    Стадия воспламенения и тления происходит с нарастающим тепловыделением. Излишнее поступление воздуха в топку в этот период нежелательно, поскольку он будет охлаждать дымовые газы, а, следовательно, дольше будет нагреваться дымоход. Воздушные заслонки на стадии воспламенения и тления должны быть лишь приоткрыты, при этом желательно, чтобы холодный воздух подавался только в зону воспламенения.

    Стадия горения нуждается в больших объемах кислорода воздуха, т.к. данный процесс является ни чем иным, как окислением углеводородов. Пламенный нагрев идет по нарастающей, и, по сути, ограничивается только количеством поступающего кислорода. Если сечение дымохода недостаточное, то пламя может выбиваться из отверстий подачи воздуха. В такой ситуации выход один - немедленно полностью открыть задвижку дымохода и прикрыть подачу воздуха. Когда подача воздуха уменьшается, языки пламени становятся длиннее и даже могут проникнуть в дымоход, что будет являться признаком недожига. Очевидно, что подаваемый воздух в режиме пламенного горения необходимо разделять на два управляемых потока. Первичный поток будет подаваться прямо в дрова, в зависимости от объема, увеличивая или уменьшая скорость выделения летучих веществ; а вторичный - на факел пламени, для регулировки полноты сгорания летучих веществ, т.е. длину языков пламени. Увеличение интенсивности вторичного потока приводит к сокращению длины последних вплоть до исчезновения, но при этом скорость горения дров не замедляется. Однако огневая мощь пламени дров на самом деле не такая большая, как кажется. Она способна разогреть стенки топливника металлической печи не выше 300-400°С.

    Горение углей обеспечивает нагревание металлического топливника докрасна - это наиболее экзотермическая стадия. Эффект тепловыделения увеличивается при увеличении подачи первичного воздуха (пропускание через слой). Вторичный воздух на данном этапе не нужен. Угли выгорят быстрее, если подать в топку сырых чурок: произойдет реакция газификации угля водяным паром. Если дрова сырые, то стадия горения и тления происходят практически одновременно.

    Виды топливных камер и процесс сжигания дров

    В простейшей печной топке каминного типа с глухим подом процесс горения проходит с избытком воздуха, поскольку площадь открытого портала обычно в 8-15 раз больше площади сечения дымовой трубы. В связи тем, что большие объемы засасываемого воздуха не дают трубе камина нагреваться выше 60-80°С, тяга в них значительно меньше, чем в печах с дверцей (250-400°С).

    Если каминную топку оснастить дверцей и поддувалом с заслонкой, то ее КПД существенно изменится в сторону увеличения. Однако у такой конструкции имеется серьезный недостаток - чрезмерное задымление камеры, при открытии которой дым вырывается наружу. Уменьшить дымление можно, переместив трубу максимально вперед, но тогда она перекроет верх печи, используемый для нагрева воды или камней. Компромиссным решением в данном случае может стать наклонная полка при заднем расположении трубы. Полка создаст максимальную тягу у самой дверцы, при открытии которой восходящий поток будет засасывать дым, не давая ему вырваться наружу. Такая конструкция хороша для длительного горения, т.к. воздух идет по поду, попадая под дрова, а в районе дымооборота хорошо перемешивается с летучими веществами, обеспечивая полноту их сгорания.

    Для акцента на пламенном горении используют вводы вторичного воздуха в поток летучих веществ. Реализации данного режима сжигания дров помогают также конструкции с колосниковой решеткой. Они хороши, прежде всего, тем, что обеспечивают подачу кислорода в любую область слоя. Однако большое количество поступающего воздуха снижает температуру стенок дымового канала, а, следовательно, тягу и конвективную теплоотдачу. Данное явление можно минимизировать, прикрыв периферию колосниковой решетки подом, оставив область продувки только в центре.

    Для сжигания дров подойдут любые колосниковые решетки. При необходимости можно их изготовить самостоятельно из арматуры или прута. А вот для сжигания каменного угля понадобятся чугунные колосники, форма сечения которых близка к треугольной. Такая форма не позволяет шлаку забивать собой щели между колосниками. Располагать колосники следует вдоль топки, чтобы можно было шуровать уголь кочергой. Чугунные колосниковые решетки бывают как для угля, так и для дров. У последних колосники тоньше, а щели между ними уже.

    Колосниковые печи способны развивать большую мощность, однако удержать их от разгона непросто. При коэффициенте подачи воздуха равном единице стенки печи разогреваются до красна, и дрова начинают газифицироваться по нарастающей. Пламени становится настолько много, что оно попадает в трубу и в этом случае требуется увеличить подачу воздуха, что в свою очередь вызывает еще большую газификацию и разогрев. Печь успокоится сама по себе только после выхода летучих веществ из дровяной закладки. Горение углей после этого уже хорошо поддается регулировке.

    Важно понять, что основной причиной разгона печи разгона являются разогретые до высокой температуры металлические стенки, которые уже не отбирают тепло дров, при этом последние начинают греть сами себя. Не допустить разгона печи можно, если при протопке держать заслонку трубы открытой только наполовину, а когда из топки станут раздаваться характерные газовые хлопки, - приоткрыть дверцу топливника и одновременно полностью открыть трубу. От резкого появления избытка воздуха стенки печи станут остывать, а когда они перестанут светиться, можно будет закрыть дверцу топливника и воздухозабор. Дымоход снова прикрывается наполовину. От этого печь плавно перейдет в режим тления.

    Немаловажный момент, влияющий на разгон печи, - порция закладываемых дров. Чтобы уменьшить вероятность условий разгона, дрова нужно закладывать небольшими порциями от 1 до 3 кг за один раз. При этом, чем крупнее диаметр полена, тем большей может быть масса закладки. С помощью регулировки подачи воздуха нужно стараться не допустить перегрев стенок. Разгон печи опасен, прежде всего, тем, что может привести к короблению или прогоранию металлических частей печи.

    В первую очередь от разгона страдает нижняя часть стенок топливника. Если металлическая печь раз от раза разгоняется, то стенки можно изнутри защитить огнеупорным кирпичом на высоту 20-30 см. Ошибкой будет обкладка стенок снаружи, т.к. это приведет к еще более сильному разогреву металла. Проблему разгона полностью снимает водяная рубашка - котел. Однако если говорить банных печах, то такое решение подходит не для саун, а для хаммама.

    Сквозные прогары топливника или скрытые трещины реально опасны при спонтанном разгоне металлической печи. Если при нормальном режиме горения они будут работать как воздухозаборные отверстия, то в режиме разгона станут «соплами», через которые станут вырываться наружу горящие летучие вещества.

    Горючие газы и пары смол (так на­зываемые летучие), выделяющиеся при термическом разложении натурального твердого топлива в процессе его нагрева­ния, смешиваясь с окислителем (возду­хом), при высокой температуре сгорают достаточно интенсивно, как обычное га­зообразное топливо. Поэтому сжигание топлив с большим выходом летучих (дро­ва, торф, сланец) не вызывает затрудне­ний, если, конечно, содержание балласта в них (влажность плюс зольность) не настолько велико, чтобы стать препят­ствием для получения нужной для горе­ния температуры.

    Время сгорания топлив со средним (бурые и каменные угли) и небольшим (тощие угли и антрациты) выходом лету­чих практически определяется скоростью реакции на поверхности коксового остат­ка, образующегося после выделения ле­тучих. Сгорание этого остатка обеспечи­вает и выделение основного количества теплоты.

    Реакция, протекающая на поверхно­сти раздела двух фаз (в данном случае на поверхности коксового кусочка) на­зывается гетерогенной. Она состо­ит по крайней мере из двух последова­тельных процессов: диффузии кислорода к поверхности и его химической реакции с топливом (почти чистым углеродом, оставшимся после выхода летучих) на поверхности. Увеличиваясь по закону Аррениуса, скорость химической реакции при высокой температуре становится столь большой, что весь кислород, подводимый к поверхности, немедленно вступает в реакцию. В результате ско­рость горения оказывается зависящей только от интенсивности доставки кисло­рода к поверхности горящей частицы пу­тем массообмена и диффузии. На нее практически перестают влиять как тем­пература процесса, так и реакционные свойства коксового остатка. Такой ре­жим гетерогенной реакции называется диффузионным. Интенсифициро­вать горение в этом режиме можно толь­ко путем интенсификации подвода реа­гента к поверхности топливной частицы. В разных топках это достигается различ­ными методами.

    Слоевые топки. Твердое топливо, за­груженное слоем определенной толщины на распределительную решетку, поджи­гается и продувается (чаще всего снизу вверх) воздухом (рис. 28, а). Фильтру­ясь между кусочками топлива, он теряет кислород и обогащается оксидами (СО 2 , СО) углерода вследствие горения угля, восстановления углем водяного пара и диоксида углерода.

    Рис. 28. Схемы организации топочных процессов:

    а - в плотном слое; б - в пылевидном состоянии; _в - в циклонной топке;

    г - в кипящем слое; В - воздух; Т, В - топливо, воздух; ЖШ - жидкий шлак

    Зона, в пределах которой практиче­ски полностью исчезает кислород, назы­вается кислородной; ее высота со­ставляет два-три диаметра кусков топли­ва. В выходящих из нее газах со­держатся не только СО 2 , Н 2 О и N 2 , но и горючие газы СО и Н 2 , образовавшиеся как из-за восстановления СО 2 и Н 2 О уг­лем, так и из выделяющихся из угля летучих. Если высота слоя больше, чем кислородной зоны, то за кислородной следует восстановительная зо­на, в которой идут только реакции СО 2 + С = 2СО и Н 2 О + С = СО + Н 2 . В ре­зультате концентрация выходящих из слоя горючих газов увеличивается по мере увеличения его высоты.


    В слоевых топках высоту слоя стара­ются держать равной высоте кислород­ной зоны или большей ее. Для дожига­ния продуктов неполного сгорания (Н 2 , СО), выходящих из слоя, а также для дожигания выносимой из него пыли в то­почный объем над слоем подают допол­нительный воздух.

    Количество сгоревшего топлива про­порционально количеству поданного воз­духа, однако увеличение скорости воз­духа сверх определенного предела нару­шает устойчивость плотного слоя, так как воздух, прорывающийся через слой в отдельных местах, образует кратеры. Поскольку в слой всегда загружается полидисперсное топливо, увеличивается вынос мелочи. Чем крупнее частицы, тем с большей скоростью можно продувать воздух через слой без нарушения его устойчивости. Если принять для грубых оценок теплоту «сгорания» 1 м 3 воздуха в нормальных условиях при α в =1 рав­ной 3,8 МДж и понимать под w н при­веденный к нормальным условиям расход воздуха на единицу площади решетки (м/с), то теплонапряжение зеркала го­рения (МВт/м 2) составит

    q R = 3,8W н / α в (105)

    Топочные устройст­ва для слоевого сжигания классифици­руют в зависимости от способа подачи, перемещения и шуровки слоя топлива на колосниковой решетке. В немеханизированных топках, в кото­рых все три операции осуществляют вручную, можно сжигать не более 300 - 400 кг/ч угля. Наибольшее распростра­нение в промышленности получили пол­ностью механизированные слоевые топ­ки с пневмомеханическими забрасывателями и цепной решеткой об­ратного хода (рис. 29). Их особен­ность - горение топлива на непрерывно движущейся со скоростью 1 -15 м/ч колосниковой решетке, сконструированной в виде полотна транспортерной ленты имеющей, привод от электродвигателя. Полотно решетки состоит из отдельных колосниковых элементов, закрепленных на бесконечных шарнирных цепях, при водимых в движение «звездочками». Необходимый для горения воздух подводится под решетку через зазоры между элементами колосников.

    Рис. 29. Схема топки с пневмомеханическим забрасывателем и цепной решеткой обратного хода:

    1 - полотно колосниковой решетки; 2 - приводные «звездочки»; 3 - слой топлива и шлака; 4 – 5 - ротор забрасывателя; 6 - ленточный питатель; 7 - топливный бункер; 8 - топочный объем; 9 - экранные трубы; 10 - 11 - обмуровка топки; 12 - заднее уплотнение; 13 - окна для подвода воздуха под слой

    Факельные топки . В прошлом веке для сжигания в слоевых топках (а дру­гих тогда не было) использовали только уголь, не содержащий мелочи (обычно фракцию 6 - 25 мм). Фракция мельче 6 мм - штыб (от немецкого staub - пыль) являлась отходом. В начале этого века для ее сжигания был разработан пылевидный способ, при котором угли измельчали до 0,1 мм, а трудносжигае­мые антрациты - еще мельче. Такие пы­линки увлекаются потоком газа, относи­тельная скорость между ними очень ма­ла. Но и время их сгорания чрезвычайно мало - секунды и доли секунд. Поэтому при вертикальной скорости газа менее 10 м/с и достаточной высоте топки (де­сятки метров в современных котлах) пыль успевает полностью сгореть на лету в процессе движения вместе с газом от горелки до выхода из топки.

    Этот принцип и положен в основу факельных (камерных) топок, в которые тонко размолотая горючая пыль вдувается через горелки вместе с необходимым для горения воздухом (см. рис. 28, б) аналогично тому, как сжигаются газообразные или жидкие топлива. Таким образом, камерные топки пригодны для сжигания любых топлив, что является большим их преимуществом перед слоевыми. Второе преимущест­во - возможность создания топки на любую практически сколь угодно боль­шую мощность. Поэтому камерные топки занимают сейчас в энергетике доминиру­ющее положение. В то же время пыль не удается устойчиво сжигать в маленьких топках, особенно при переменных режи­мах работы, поэтому пылеугольные топки с тепловой мощностью менее 20 МВт не делают.

    Топливо измельчается в мельничных устройствах и вдувается в топочную ка­меру через пылеугольные горелки. Транспортирующий воздух, вдувае­мый вместе с пылью, называется пер­вичным.

    При камерном сжигании твердых топлив в виде пыли летучие вещества, выделяясь в процессе ее прогрева, сгора­ют в факеле как газообразное топливо, что способствует разогреву твердых частиц до температуры воспламенения и облегчает стабилизацию факела. Коли­чество первичного воздуха должно быть достаточным для сжигания летучих. Оно составляет от 15 - 25 % всего количества воздуха для углей с малым выходом ле­тучих (например, антрацитов) до 20 - 55 % для топлив с большим их выходом (бурых углей). Остальной необходимый для горения воздух (его называют вто­ричным) подают в топку отдельно и перемешивают с пылью уже в процессе горения.

    Для того чтобы пыль загорелась, ее нужно сначала нагреть до достаточно высокой температуры. Вместе с нею, естественно, приходится нагревать и транспортирующий ее (т. е. первич­ный) воздух. Это удается сделать только путем подмешивания к потоку пылевзвеси раскаленных продуктов сгорания.

    Хорошую организацию сжигания твердых топлив (особенно трудносжига­емых, с малым выходом летучих) обеспечивает использование так называемых улиточных горелок (рис. 30).

    Рис. 30. Прямоточно-улиточная горелка для твердого пылевидного топлива: В - воздух; Т, В - топливо, воздух

    Угольная пыль с первичным воздухом подается в них через центральную трубу и благо­даря наличию рассекателя выходит в топку в виде тонкой кольцевой струи. Вторичный воздух подается через «улит­ку», сильно закручивается в ней и, вы­ходя в топку, создает мощный турбулент­ный закрученный факел, который обеспе­чивает подсос больших количеств раска­ленных газов из ядра факела к устью го­релки. Это ускоряет прогрев смеси топ­лива с первичным воздухом и ее вос­пламенение, т. е. создает хорошую стаби­лизацию факела. Вторичный воздух хо­рошо перемешивается с уже воспламе­нившейся пылью благодаря сильной его турбулизации. Наиболее крупные пылин­ки догорают в процессе их полета в по­токе газов в пределах топочного объема.

    При факельном сжигании угольной пыли в каждый момент времени в топке находится ничтожный запас топлива - не более нескольких десятков килограм­мов. Это делает факельный процесс весь­ма чувствительным к изменениям расхо­дов топлива и воздуха и позволяет при необходимости практически мгновенно изменять производительность топки, как при сжигании мазута или газа. Одновре­менно это повышает требования к на­дежности снабжения топки пылью, ибо малейший (в несколько секунд!) перерыв приведет к погасанию факела, что связа­но с опасностью взрыва при возобновле­нии подачи пыли. Поэтому в пылеугольных топках устанавливают, как правило, несколько горелок.

    При пылевидном сжигании топлив в ядре факела, расположенном недалеко от устья горелки, развиваются высокие температуры (до 1400-1500 °С), при ко­торых зола становится жидкой или тестообразной. Налипание этой золы на стенки топки может привести к их за­растанию шлаком. Поэтому сжигание пылевидного топлива чаще всего приме­няют в котлах, где стены топки закрыты водоохлаждаемыми трубами (экрана­ми), около которых газ охлаждается и взвешенные в нем частицы золы успе­вают затвердеть до соприкосновения со стенкой. Пылевидное сжигание может применяться также в топках с жидким шлакоудалением, в которых стены по­крыты тонкой пленкой жидкого шлака и расплавленные частицы золы стекают в этой пленке.

    Теплонапряжение объема в пылеугольных топках обычно составляет 150-175 кВт/м 3 , увеличиваясь в небольших топках до 250 кВт/м 3 . При хорошем пе­ремешивании воздуха с топливом прини­мается α в =1,2÷1,25; q мех = 0,5÷6 % (большие цифры - при сжигании ан­трацитов в небольших топках); q хим = 0 ÷1%.

    В камерных топках удается после дополнительного размола сжигать отхо­ды углей, образующиеся при их обогаще­нии на коксохимических заводах (пром-продукт), коксовые отсевы и еще более мелкий коксовый шлам.

    Циклонные топки. Специфический способ сжигания осуществлен в циклон­ных топках. В них ис­пользуют достаточно мелкие частицы уг­ля (обычно мельче 5 мм), а необходимый для горения воздух подают с огромными скоростями (до 100м/с) по касательной к образующей циклона. В топке создает­ся мощный вихрь, вовлекающий частицы в циркуляционное движение, в котором они интенсивно обдуваются потоком. В результате интенсивного горения в топке развиваются температуры, близ­кие к адиабатным (до 2000 °С). Зола угля плавится, жидкий шлак стекает по стенкам. По ряду причин от применения таких топок в энергетике отказались, и сейчас они используются в качестве технологических - для сжигания серы с целью получения SO 2 в производстве H 2 SO 4 , обжига руд и т. д. Иногда в циклонных топках осуществляют огневое обезвреживание сточных вод, т. е. выжи­гание содержащихся в них вредностей за счет подачи дополнительного (обычно газообразного или жидкого) топлива.

    Топки с кипящим слоем. Устойчивое горение пылеугольного факела возможно только при высокой температуре в его ядре - не ниже 1300-1500 °С. При этих температурах начинает заметно окис­ляться азот воздуха по реакции N 2 + O 2 = 2NO. Определенное количество NO образуется и из азота, содержащего­ся в топливе. Оксид азота, выброшенный вместе с дымовыми газами в атмосферу, доокисляется в ней до высокотоксичного диоксида NO 2 . В СССР предельно до­пустимая концентрация NO 2 (ПДК), бе­зопасная для здоровья людей, в воздухе населенных пунктов составляет 0,085 мг/м 3 . Чтобы обеспечить ее, на крупных тепловых электростанциях при­ходится строить высоченные дымовые трубы, разбрасывающие дымовые газы на возможно большую площадь. Однако при сосредоточении большого количества станций недалеко друг от друга и это не спасает.

    В ряде стран регламентируется не ПДК, а количество вредных выбросов на единицу теплоты, выделенной при сгора­нии топлива. Например, в США для крупных предприятий допускается вы­брос 28 мг оксидов азота на 1 МДж теп­лоты сгорания. В СССР нормы выбросов составляют для разных топлив от 125 до 480 мг/м 3 .

    При сжигании топлив, содержащих серу, образуется токсичный SO 2 , дейст­вие которого на человека к тому же сум­мируется с действием NO 2 .

    Эти выбросы служат причиной образования фотохи­мического смога и кислотных дождей, вредно влияющих не только на людей и животных, но и на растительность. В Западной Европе, например, от таких дождей погибает значительная часть хвойных лесов.

    Если в золе топлива оксидов кальция и магния недостаточно для связывания всего SO 2 (обычно нужен двух- или трех­кратный его избыток по сравнению со стехиометрией реакции), к топли­ву подмешивают известняк СаСО 3 . Из­вестняк при температурах 850-950 °С интенсивно разлагается на СаО и СО 2 , а гипс CaSO 4 не разлагается, т. е. реак­ция справа налево не идет. Таким образом, токсичный SO 2 связывается до безвредного практически нерастворимого в воде гипса, который удаляется вместе с золой.

    С другой стороны, в процессе дея­тельности человека образуется большое количество горючих отходов, которые не считаются топливом в общепринятом смысле: «хвосты» углеобогащения, отва­лы при добыче угля, многочисленные от­ходы целлюлозно-бумажной промышлен­ности и других отраслей народного хо­зяйства. Парадоксально, например, что «порода», которую около угольных шахт складывают в огромные терриконы, за­частую самовозгорается и длительное время загрязняет дымом и пылью окру­жающее пространство, но ни в слоевых, ни в камерных топках ее не удается сжечь из-за большого содержания золы. В слоевых топках зола, спекаясь при горении, препятствует проникновению кислорода к частицам горючего, в камер­ных не удается получить нужную для устойчивого горения в них высокую тем­пературу.

    Возникшая перед человечеством на­стоятельная необходимость разработки безотходных технологий поставила во­прос о создании топочных устройств для сжигания таких материалов. Ими стали топки с кипящим слоем.

    Псевдоожиженным (или кипящим) называется слой мелко­зернистого материала, продуваемый снизу вверх газом со скоростью, превы­шающей предел устойчивости плотного слоя, но недостаточной для выноса частиц из слоя. Интенсивная циркуляция частиц в ограниченном объеме камеры создает впечатление бурно кипящей жидкости, что и объясняет происхождения названия.

    Физически продуваемый снизу плот­ный слой частиц теряет устойчивость по­тому, что сопротивление фильтрующе­муся сквозь него газу становится рав­ным весу столба материала на единицу площади поддерживающей решетки. По­скольку аэродинамическое сопротивле­ние есть сила, с которой газ действует на частицы (и соответственно по треть­ему закону Ньютона - частицы на газ), то при равенстве сопротивления и веса слоя частицы (если рассматривать иде­альный случай) опираются не на решет­ку, а на газ.

    Средний размер частиц в топках с ки­пящим слоем обычно составляет 2-3 мм. Им соответствует рабочая скорость псев­доожижения (ее берут в 2-3 раза боль­ше, чем w к ) 1,5 ÷ 4 м/с. Это определяет в соответствии площадь газо­распределительной решетки при задан­ной тепловой мощности топки. Теплонап­ряжение объема q v принимают примерно таким же, как и для слоевых топок.

    Простейшая топка с кипящим слоем (рис. 31) во многом напоминает слое­вую и имеет с ней много общих конструктивных элементов. Прин­ципиальное различие между ними за­ключается в том, что интенсивное пере­мешивание частиц обеспечивает постоянство температуры по всему объему кипящего слоя.


    Рис. 31. Схема топки с кипящим слоем: 1 - выгрузка золы; 2 - подвод воздуха под слой; 3 - кипящий слой золы и топлива; 4 - подвод воздуха к забрасывателю; 5 - ротор забрасывателя; 6 - ленточный питатель; 7 - топливный бункер; 8 - топоч­ный объем; 9 - экранные трубы; 10 - острое дутье и возврат уноса; 11- обмуровка топки; 12 - тепло-воспринимающие трубы в кипящем слое; В - вода; П – пар.

    Поддержание температуры кипящего слоя в необходимых пределах (850 - 950 °С) обеспечивается двумя различны­ми способами. В небольших промышлен­ных топках, сжигающих отходы или де­шевое топливо, в слой подают значитель­но больше воздуха, чем это необходимо для полного сжигания, устанавливая α в ≥ 2.

    При том же количестве выделен­ной теплоты температура газов умень­шается по мере увеличения α в, ибо та же теплота тратится на нагрев большого количества газов.

    В крупных энергетических агрегатах такой метод снижения температуры горе­ния неэкономичен, ибо «лишний» воздух, уходя из агрегата, уносит и теплоту, за­траченную на его нагрев (возрастают потери с уходящими газами - см. да­лее). Поэтому в топках с кипящим слоем крупных котлоагрегатов размещают тру­бы 9 и 12 с циркулирующим в них рабо­чим телом (водой или паром), восприни­мающим необходимое количество тепло­ты. Интенсивное «омывание» этих труб частицами обеспечивает высокий коэф­фициент теплоотдачи от слоя к трубам, что в некоторых случаях позволяет уменьшить металло­емкость котла по сравнению с традици­онным. Топливо устойчиво горит при его содержании в кипящем слое, составляю­щем 1 % и менее; остальные 99 % с лиш­ним - зола. Даже при столь неблагоп­риятных условиях интенсивное переме­шивание не позволяет зольным частицам блокировать горючие от доступа к ним кислорода (в отличие от плотного слоя). Концентрация горючих при этом оказы­вается одинаковой по всему объему ки­пящего слоя. Для удаления золы, вводи­мой с топливом, часть материала слоя непрерывно выводится из него в виде мелкозернистого шлака - чаще всего просто «сливается» через отверстия в по­дине, поскольку кипящий слой способен течь как жидкость.

    Топки с циркуляционным кипящим слоем. В последнее время появились топ­ки второго поколения с так называемым циркуляционным кипящим слоем. За эти­ми топками устанавливают циклон, в ко­тором улавливаются все недогоревшие частицы и возвращаются обратно в топ­ку. Таким образом, частицы оказывают­ся «запертыми» в системе топка - цик­лон- топка до тех пор, пока не сгорят полностью. Эти топки имеют высокую экономичность, не уступающую камерно­му способу сжигания, при сохранении всех экологических преимуществ.

    Топки с кипящим слоем широко ис­пользуются не только в энергетике, но и в других отраслях промышленности, например, для сжигания колчеданов с целью получения SО 2 , обжига различ­ных руд и их концентратов (цинковых, медных, никелевых, золотосодержащих) и т. д. (С точки зрения теории горения обжиг, например, цинковой руды по ре­акции 2ZnS+3O 2 = 2ZnO + 2SO 2 есть сгорание этого специфического «топли­ва», протекающее, как и все реакции горения, с выделением больших коли­честв теплоты.) Большое распростране­ние, особенно за рубежом, топки с кипя­щим слоем нашли для огневого обезвре­живания (т. е. сжигания) различных вредных отходов производства (твердых, жидких и газообразных) - шламов осветления сточных вод, мусора и т.д.

    Тема 12. Печи химической промышленности. Принципиальная схема топливной печи. Классификация печей химической промышленности. Основные типы печей, особенности их конструкции. Тепловой баланс печей

    Печи химической промышленности. Принципиальная схема топливной печи

    Промышленная печь представляет собой энерготехнологический агрегат, предназначенный для термической обработки материалов с целью придания им необходимых свойств. Источником теплоты в топливных (пламенных) печах служат различные виды углеродного топлива (газ, мазут и др.). Современные печные установки часто представляют собой крупные механизированные и автоматизированные агрегаты высокой производительности.

    Наибольшее значение для выбора технологического режима процесса имеет оптимальная температура технологического процесса, которая определяется термодинамическим и кинетическим расчетами процессов. Оптимальным температурным режимом процесса называют температурные условия, при которых обеспечивается максимальная производительность по целевому продукту в данной печи.

    Обычно рабочая температура в печи несколько ниже оптимальной, она зависит от условий сжигания топлива, условий теплообмена, изоляционных свойств и стойкости футеровки печи, теплофизических свойств перерабатываемого материала и др. факторов. Например, для обжиговых печей рабочая температура находится в интервале между температурой активного протекания окислительных процессов и температурой спекания продуктов обжига. Под тепловым режимом печи понимают совокупность процессов инерции теплоты, теплоты массообмена и механики сред, обеспечивающих распределения теплоты в зоне технологического процесса. Тепловой режим зоны технологического процесса определяет тепловой режим всей печи.

    На режим работы печей оказывает большое влияние состав газовой атмосферы в печи, необходимый для правильного протекания технологического процесса. Для окислительных процессов газовая среда в печи должна содержать кислород, количество которого колеблется от3 до 15% и больше. Для восстановительной среды характерно низкое содержание кислорода (до 1-2%) и присутствие восстанавливающих газов (СО, Н 2 и др.) 10-20% и больше. Состав газовой фазы определяет условия сжигания топлива в печи и зависит от количества воздуха, поступающего на горение.

    Движение газов в печи оказывает существенное влияние на технологический процесс, на горение и теплопередачу, а в печах, «кипящего слоя» или вихревых печах движение газов является основным фактором устойчивой работы. Принудительное движение газов осуществляется дымососами и вентиляторами.

    На скорость технологического процесса влияет движение материала, подвергающегося термообработке.

    Схема печной установки включает следующие элементы: топочное устройство для сжигания топлива и организации теплообмена; рабочее пространство печи для выполнения целевого технологического режима; теплообменные устройства для регенерации теплоты дымовых газов (подогрев газа, воздуха); утилизационные установки (запечные котлы-утилизаторы) для использования теплоты уходящих газов; тяговое и дутьевое устройство (дымососы, вентиляторы) для удаления сгорания топлива и газообразных продуктов термической обработки материалов и подачи воздуха к горелкам, форсункам под колосники; очистительные устройства (фильтры и т.п.).

    Тема 15. ТВЕРДОЕ И ЖИДКОЕ ТОПЛИВО И ИХ СЖИГАНИЕ

    15.1.Расчет горения твердого и жидкого топлива

    Для расчета процессов горения твердого и жидкого топлива составляют материальный баланс процесса горения.

    Материальный баланс процесса горения выражает количественные соотношения между исходными веществами (топливо, воздух) и конечными продуктами (дымовые газы, зола, шлак), а тепловой баланс - равенство между приходом и расходом теплоты. Для твердого и жидкого топлива материальный и тепловой балансы составляют на 1 кг топлива, для газообразной фазы - на 1 м 3 сухого газа при нормальных условиях (0,1013 МПа, О °С). Объемы воздуха и газообразных продуктов также выражают в метрах кубических, приведенных к нормальным условиям.

    При сжигании твердого и жидкого топлива горючие вещества могут окисляться с образованием оксидов различной степени окисления. Стехиометрические уравнения реакций горения углерода, водорода и серы можно записать так:



    При расчете объемов воздуха и продуктов сгорания условно принимают, что все горючие вещества окисляются полностью с образованием только оксидов с наивысшей степенью окисления (реакции а, в, г).

    Из уравнения (а) следует, что для полного окисления 1 кмоль углерода (12 кг) расходуется 1 кмоль, т. е. 22,4 м 3 , кислорода и образуется 1 кмоль (22,4 м 3) оксида углерода. Соответственно для 1 кг углерода потребуется 22,4/12 = 1,866 м 3 кислорода и образуется 1,866 м 3 СО 2 . В 1 кг топлива содержится С p /100 кг углерода. Для его горения необходимо 1,866·С p /100 м 3 кислорода и при сгорании образуется 1,866 С p /100 м 3 CO 2 .

    Аналогично из уравнений (в) и (г) на окисление горючей серы (μ s = 32), содержащейся в 1 кг топлива, потребуется (22,4/32) S p л /100 м 3 кислорода и образуется такой же объем SO 2 . А на окисление водорода (), содержащегося в 1 кг топлива, потребуется 0,5·(22,4/2,02) Н p /100 м 3 кислорода и образуется (22,4/2,02) Н p /100 м 3 водяного пара.

    Суммируя полученные выражения и учитывая кислород, находящийся в топливе (
    ), после несложных преобразований получим формулу для определения количества кислорода, теоретически необходимого для полного сжигания 1 кг твердого или жидкого топлива, м 3 /кг:


    В процессе полного горения с теоретически необходимым количеством воздуха образуются газообразные продукты, которые состоят из CO 2 , SO 2 , N 2 и H 2 O - оксиды углерода и серы являются сухими трехатомными газами. Их принято объединять и обозначать через RO 2 = CO 2 + SO 2 .

    При горении твердых и жидких топлив теоретические объемы продуктов сгорания, м 3 /кг, вычисляют по уравнениям (15.1) с учетом содержания соответствующих компонентов в топливе и воздухе.

    Объем трехатомных газов в соответствии с уравнениями (15.1, а и б)


    Теоретический объем водяного пара , м 3 /кг, складывается из объема, полученного при горении водорода, равного (22,4/2,02)·(H p /100), объема, полученного при испарении влаги топлива, равного , и объема, вносимого с воздухом:
    ,
    - удельный объем водяного пара, м 3 /кг; ρ в = 1,293 кг/м 3 - плотность воздуха, d в = 0,01 - содержание влаги в воздухе кг/кг. После преобразований получим:


    Действительный объем воздуха V может быть больше или меньше теоретически необходимого, подсчитанного по уравнениям горения. Отношение действительного объема воздуха V к теоретически необходимому V 0 называется коэффициентом расхода воздуха α = V/V 0 . При α > 1 коэффициент расхода воздуха обычно называется коэффициентом избытка воздуха .

    Для каждого вида топлива оптимальное значение коэффициента избытка воздуха в топке зависит от технических его характеристик, способа сжигания, конструкции топки, способа образования горючей смеси и др.

    Действительный объем продуктов сгорания будет больше теоретического за счет азота, кислорода и водяного пара, который содержится в избыточном воздухе. Так как воздух не содержит трехатомных газов, то их объем не зависит от коэффициента избытка воздуха и остается постоянным, равным теоретическому, т. е.
    .

    Объем двухатомных газов и водяного пара (м 3 /кг или м 3 /м 3), определяют по формулам:


    При сжигании твердых топлив концентрация золы в дымовых газах (г/м 3) определяется по формуле



    где - доля золы топлива, уносимая газами (ее значение зависит от вида твердого топлива и способа его сжигания и принимается из технических характеристик топок).

    Объемные доли сухих трёхатомных газов и водяного пара, равные их парциальным давлениям при общем давлении 0,1 МПа, подсчитывают по формулам




    Все формулы для подсчета объемов применимы тогда, когда происходит полное сгорание топлива. Эти же формулы с достаточной для расчета точностью применимы и для неполного сгорания топлива, если не превышаются нормативные значения, приведенные в технических характеристиках топок.

    15.2.Три стадии горения твердого топлива

    Горение твердого топлива имеет ряд стадий: подогрев, подсушка топлива, возгонка летучих и образование кокса, горение летучих и кокса. Из всех этих стадий определяющей является стадия горения коксового остатка, т. е. стадия горения углерода, интенсивность которой и определяет интенсивность топливосжигания и газификации в целом. Определяющая роль горения углерода объясняется следующим.

    Во-первых, твердый углерод, содержащийся в топливе, является главной горючей составляющей почти всех натуральных твердых топлив. Так, например, теплота сгорания коксового остатка антрацита составляет 95% теплоты сгорания горючей массы. С увеличением выхода летучих доля теплоты сгорания коксового остатка падает и в случае торфа составляет 40,5% теплоты сгорания горючей массы.

    Во-вторых, стадия горения коксового остатка оказывается наиболее длительной из всех стадий и может занимать до 90% всего времени, необходимого для горения.

    И, в третьих, процесс горения кокса имеет решающее значение в создании тепловых условий протекания других стадий. Следовательно, основой правильного построения технологического метода сжигания твердых топлив является создание оптимальных условий для процесса горения углерода.

    В некоторых случаях определяющими процесс горения могут оказаться второстепенные подготовительные стадии. Так, например, при сжигании высоко влажного топлива определяющей может быть стадия подсушки. В этом случае рациональным является усиление предварительной подготовки топлива к сжиганию, например, использованием технологического способа сжигания с подсушкой топлива газами, отбираемыми из топки.

    В мощных парогенераторах расходуются большие количества топлива и воздуха. Например, для парогенератора 300 МВт расход топлива - антрацитового штыба составляет 32 кг/с, а воздуха 246 м 3 /с а в парогенераторе блока 800 МВт ежесекундно расходуется 128 кг березовского угля и 555 м 3 воздуха. В ряде случаев в пылеугольных парогенераторах как резервное используется жидкое или газовое топливо.

    Процесс горения пылевидных топлив совершается в объеме топочной камеры в потоках больших масс топлива и воздуха, к которым подмешиваются продукты сгорания.

    Основой горения пылевидных топлив является химическое реагирование горючих составляющих топлива с кислородом воздуха. Однако химические реакции горения в топочной камере протекают в мощных пылегазовоздушных потоках за чрезвычайно короткое время (1-2 с) пребывания топлива и окислителя в топочной камере. Эти реакции совершаются в условиях сильного взаимного влияния с одновременно протекающими физическими процессами. Такими процессами являются:

    Процесс движения подаваемых в топочную камеру составляющих горючую смесь газовых и твердых диспергированных веществ в системе струй, переходящих в поток и распространяющихся в ограниченном пространстве топочной камеры с развитием вихревых течений, в совокупности составляющих сложную структуру аэродинамики топки;

    Турбулентная и молекулярная диффузия и конвективный перенос исходных веществ и продуктов реакции в газовом потоке, а также перенос газовых реагентов к диспергированным частицам;

    Теплообмен в газовых потоках продуктов сгорания и исходной смеси и между газовыми потоками и содержащимися в них частицами топлива, а также передача тепла, выделяющегося при химическом превращении в реагирующей среде;

    Радиационный теплообмен частиц с газовой средой и пылегазовоздушной смеси с экранными поверхностями в топочной камере;

    Нагрев частиц, возгонка летучих, перенос и горение их в газовом объеме и др.

    Таким образом, горение угольной пыли является сложным физико-химическим процессом, состоящим из химических реакций и физических процессов, протекающих в условиях взаимной связи и взаимного влияния.

    15.3.Слоевой, факельный и циклонный способы сжигания твердого топлива

    Топочные устройства котлов могут быть слоевые - для сжигания крупнокускового топлива и камерные - для сжигания газообразного, жидкого и твёрдого пылевидного топлива.

    Некоторые из вариантов организации топочных процессов представлены на рис.15.1.

    Слоевые топки бывают с плотным и кипящим слоем, камерные подразделяются на факельные и циклонные.

    Рис. 15.1. Схемы организации топочных процессов


    При сжигании в плотном слое воздух для горения проходит через слой, не нарушая его устойчивости, т.е. сила тяжести частиц топлива больше динамического напора воздуха.

    При сжигании в кипящем слое из-за повышенной скорости воздуха нарушается устойчивость частиц в слое, они переходят в состояние «кипения», т.е. переходят во взвешенное состояние. При этом происходит интенсивное перемешивание топлива и окислителя, что способствует интенсификации процесса горения.

    При факельном сжигании топливо сгорает в объёме топочной камеры, для чего частицы твердого топлива должны иметь размер до 100 мкм.

    При циклонном сжигании частицы топлива под влиянием центробежных сил отбрасываются на стенки топочной камеры и, находясь в закрученном потоке в зоне высоких температур, полностью выгорают. Допускается размер частиц больший, чем при факельном сжигании. Минеральная составляющая топлива в виде жидкого шлака удаляется из циклонной топки непрерывно.

    15.4.Особенности сжигания жидкого топлива

    Каждое жидкое горючее, так же как любое жидкое вещество, при данной температуре обладает определенной упругостью пара над своей поверхностью, которая увеличивается с ростом температуры.

    При зажигании жидкого горючего, имеющего свободную поверхность, загорается его пар, содержащийся в пространстве над поверхностью, образуя горящий факел. За счет тепла, излучаемого факелом, испарение резко увеличивается. При установившемся режиме теплообмена между факелом и зеркалом жидкости количество испаряющегося, а следовательно, и сгорающего горючего достигает ма­ксимального значения и далее остается постоянным во времени.

    Опыты показывают, что при сжигании жидких топлив со свободной поверхностью горение протекает в паровой фазе; факел устанавливается на некотором удалении от поверхности жидкости и ясно видна темная полоска, отделяющая факел от обреза тигля с жидким горючим. Интенсивность излучения зоны горения на зеркало испарения не зависит от его формы и величины, а зависит только от физико-химических свойств горючего и является характерной константой для каждого жидкого горючего.

    Температура жидкого горючего, при которой пары над его поверхностью образуют с воздухом смесь, способную воспламениться при поднесении источника зажигания, называется температурой вспышки.

    Поскольку жидкие горючие сгорают в паровой фазе, то при установившемся режиме скорость горения определяется скоростью испарения жидкости с ее зеркала.

    Процесс горения жидких горючих со свободной поверхностью происходит следующим образом. При установившемся режиме горения за счет тепла, излучаемого факелом, жидкое горючее испаряется. В восходящий поток горючего, находящегося в паровой фазе, посредством диффузии проникает воздух из окружающего пространства. Полученная таким образом смесь образует горящий факел в виде конуса, отстоящего от зеркала испарения на 0,5-1 мм. Устойчивое горение протекает на поверхности, где смесь достигает пропорции, соответствующей стехиометрическому соотношению горючего и воздуха. Это предположение следует из тех же соображений, что и в случае диффузионного горения газа. Химическая реакция протекает в очень тонком слое фронта факела, толщина которого не превышает нескольких долей миллиметра. Объем, занимаемый факелом, зоной горения делится на две части: внутри факела находятся пары горючей жидкости и продукты сгорания, а вне зоны горения - смесь продуктов горения с воздухом.

    Горение восходящих внутри факела паров жидких топлив можно представить состоящим из двух стадий: диффузионного подвода кислорода к зоне горения и самой химической реакции, протекающей во фронте пламени. Скорости этих двух стадий не одинаковы; химическая реакция при имеющих место высоких температурах протекает очень быстро, тогда как диффузионный подвод кислорода является медленным процессом, ограничивающим общую скорость горения. Следовательно, в данном случае горение протекает в диффузионной области, а скорость горения определяется скоростью диффузии кислорода в зону горения.

    Так как условия подвода кислорода к зоне горения при сжигании различных жидких горючих со свободной поверхности примерно одинаковы, следует ожидать, что скорость их горения, отнесенная к фронту пламени, т. е. к боковой поверхности факела, также должна быть одинаковой. Длина факела будет тем больше, чем больше скорость испарения.

    Специфической особенностью горения жидких горючих со свободной поверхности является большой химический недожог. Каждое горючее, представляющее собой углеродистое соединение при сжигании со свободной поверхности, имеет свойственную ему величину химического недожота, которая составляет, %:

    для спирта......... 5,3

    для керосина........ 17,7

    для бензина........ 12,7

    для бензола......... 18,5.

    Картину возникновения химического недожога можно представить следующим образом.

    Парообразные углеводороды при движении внутри конусообразного факела до фронта пламени при нахождении в области высоких температур при отсутствии кислорода, подвергаются термическому разложению вплоть до образования свободного углерода и водорода.

    Свечение пламени обусловливается нахождением в нем частиц свободного углерода. Последние, раскалившись за счет выделяемого при горении тепла, излучают более или менее яркий свет.

    Часть свободного углерода не успевает сгорать и в виде сажи уносится продуктами сгорания, образуя коптящий факел.

    Кроме того, наличие углерода вызывает образование СО.

    Высокая температура и пониженное парциальное давление СО и СО 2 в продуктах сгорания благоприятствуют образованию СО.

    Присутствующие в продуктах сгорания количества углерода и СО обусловливают величину химического недожога. Чем больше содержание углерода в жидком топливе и чем меньше он насыщен водородом, тем больше образование чистого углерода, ярче факел, больше химический недожог.

    Таким образом, исследования горения жидких горючих со свободной поверхности показали, что:

    1) горение жидких топлив происходит после их испарения в паровой фазе. Скорость горения жидких топлив со свободной поверхности определяется скоростью их испарения за счет тепла, излучаемого зоной горения, при установившемся режиме теплообмена между факелом и зеркалом испарения;

    2) скорость горения жидких горючих со свободной поверхности растет с увеличением температуры их подогрева, с переходом к горючим с большей интенсивностью излучения зоны горения, меньшей теплотой парообразования и теплоемкостью и не зависит от величины и формы зеркала испарения;

    3) интенсивность излучения зоны горения на зеркало испарения, горящего со свободной поверхности жидкого горючего, зависит только от его физико-химических свойств и является характерной константой для каждого жидкого горючего;

    4) теплонапряжение фронта диффузионного факела над поверхностью испарения жидкого горючего практически не зависит от диаметра тигля и рода топлива;

    5) горению жидких горючих со свободной поверхности присущ повышенный химический недожог, величина которого характерна для каждого горючего.

    Имея в виду, что горение жидких топлив происходит в паровой фазе процесс горения капли жидкого горючего можно представить следующим образом.

    Капля жидкого топлива окружена атмосферой, насыщенной парами этого горючего. Вблизи от капли по сферической поверхности устанавливается зона горения. Химическое реагирование смеси паров жидкого топлива с окислителем происходит весьма быстро, поэтому зона горения весьма тонка. Скорость горения определяется наиболее медленной стадией - скоростью испарения горючего.

    В пространстве между каплей и зоной горения находятся пары жидкого топлива и продукты горения. В пространстве вне зоны горения - воздух и продукты сгорания.

    В зону горения изнутри диффундируют пары топлива, а снаружи - кислород. Здесь эти компоненты смеси вступают в химическую реакцию, которая сопровождается выделением тепла. Из зоны горения тепло переносится наружу и к капле, а продукты сгорания диффундируют в окружающее пространство и в пространство между зоной горения и каплей. Однако механизм передачи тепла еще не представляется ясным.

    Ряд исследователей считает, что испарение горящей капли происходит за счет молекулярного переноса тепла через застойную пограничную пленку у поверхности капли.

    По мере выгорания капли из-за уменьшения поверхности общее испарение уменьшается, зона горения суживается и исчезает при полном выгорании капли.

    Так протекает процесс горения капли полностью испаряющихся жидких топлив, находящейся в покое в окружающей среде или движущейся вместе с ней с одинаковой скоростью.

    Количество кислорода, диффундирующее к шаровой поверхности при прочих равных условиях, пропорционально квадрату ее диаметра, поэтому установление зоны горения на некотором удалении от капли обусловливает большую скорость ее горения по сравнению с такой же частицей твердого топлива, при горении которой химическая реакция практически протекает на самой поверхности.

    Так как скорость горения капли жидкого топлива определяется скоростью испарения, то время ее выгорания можно рассчитать на основе уравнения теплового баланса ее испарения за счет тепла, получаемого из зоны горения.

    Так как горение жидких топлив происходит после их испарения в паровой фазе, то его интенсификация связана с интенсификацией испарения и смесеобразования. Это достигается за счет увеличения поверхности испарения путем распыления жидкого топлива на мельчайшие капельки и хорошего смешения образовавшихся паров с воздухом при равномерном распределении мелкодисперсного топлива в нем. Эти две задачи выполняют, применяя горелки с форсунками, которыми распыляют жидкое топливо в потоках воздуха, подаваемых в камерную топку через воздухонаправляющие аппараты горелок.

    Воздух, необходимый для горения, подается в устье форсунки, захватывает тонко распыленное жидкое топливо и образует в топочной камере неизотермическую затопленную струю. Струя, распространяясь, нагревается за счет увлечения продуктов сгорания высокой температуры. Мельчайшие капельки жидкого топлива, нагреваясь благодаря конвективному теплообмену в струе, испаряются. Нагрев распыленного топлива происходит также за счет поглощения ими тепла, излучаемого топочными газами и раскаленной обмуровкой.

    На начальном участке и в особенности в пограничном слое струи интенсивный нагрев факела вызывает быстрое испарение капель. Пары горючего, смешиваясь с воздухом, создают газовоздушную горючую смесь, которая, воспламеняясь, образует факел.

    Таким образом, процесс горения жидкого топлива можно разбить на следующие фазы: распыление жидкого топлива, испарение и образование газовоздушной смеси, воспламенение горючей смеси и горение последней.

    Температура и концентрация газовоздушной смеси изменяются по сечению струи. По мере приближения к внешней границе струи температура повышается, а концентрация компонентов горючей смеси падает. Скорость распространения пламени в паровоздушной смеси зависит от состава, концентрации и температуры и достигает максимальной величины в наружных слоях струи, где температура близка к температуре окружающих топочных газов несмотря на то, что здесь горючая смесь сильно разбавлена продуктами сгорания. Поэтому воспламенение в мазутном факеле начинается у корня с периферии и затем распространяется вглубь струи на все сечение, достигая ее оси на значительном расстоянии от форсунки, равном перемещению центральных струй за время распространения пламени от периферии до оси. Зона воспламенения принимает форму вытянутого конуса, основание которого находится на малом расстоянии от выходного сечения амбразуры горелки.

    Положение зоны воспламенения зависит от скорости смеси; зона занимает такое положение, при котором во всех ее точках устанавливается равновесие между скоростью распространения пламени и скоростью движения. Центральные струи, имеющие наибольшую скорость, затухают по мере продвижения в топочном пространстве, определяя длину зоны воспламенения местом, где скорость падает до абсолютной величины скорости распространения пламени.

    Горение основной части парообразных углеводородов происходит в зоне воспламенения, занимающей наружный слой факела небольшой толщины. Горение высокомолекулярных углеводородов, сажи, свободного углерода и неиспарившихся капель жидкого топлива продолжается за зоной воспламенения и требует определенного пространства, обусловливая общую длину факела.

    Зона воспламенения делит пространство, занимаемое факелом, на две области: внутреннюю и наружную. Во внутренней области протекает процесс испарения и образования горючей смеси.

    Во внутренней области парообразные углеводороды подвергаются нагреву, который сопровождается окислением и расщеплением их. Процесс окисления начинается при сравнительно низких температурах - порядка 200-300°С. При температурах 350-400°С и выше наступает процесс термического расщепления.

    Процесс окисления углеводородов благоприятствует последующему процессу горения, так как при этом выделяется некоторое количество тепла и повышается температура, а наличие кислорода в составе углеводородов способствует дальнейшему их окислению. Напротив, процесс термического расщепления является нежелательным, так как образующиеся при этом высокомолекулярные углеводороды сгорают трудно.

    Из нефтяных топлив в энергетике применяется лишь мазут. Мазут представляет собой остаток от перегонки нефти при температуре порядка 300°С, но ввиду того, что процесс перегонки происходит не полностью, мазут при температурах ниже 300°С еще выделяет некоторое количество паров более легких погонов. Поэтому при входе распыленной струи мазута в топку и постепенном нагревании часть его превращается в пары, а часть еще может находиться в жидком состоянии даже при температуре порядка 400°С.

    Поэтому при сжигании мазута необходимо способствовать протеканию окислительных реакций и всемерно препятствовать термическому разложению при высоких температурах. Для этого весь воздух, необходимый для горения, следует подавать в корень факела. В этом случае наличие большого количества кислорода во внутренней области будет, с одной стороны, благоприятствовать окислительным процессам, а с другой - понижать температуру, что обусловит расщепление молекул углеводородов более симметрично без образования значительного количества трудно сжигаемых высокомолекулярных углеводородов.

    Смесь, получающаяся при сжигании мазута, содержит паро- и газообразные углеводороды, жидкие более тяжелые погоны, а также твердые соединения, образующиеся в результате расщепления углеводородов (т. е. все три фазы - газообразную, жидкую и твердую). Паро- и газообразные углеводороды, смешиваясь с воздухом, образуют горючую смесь, горение которой может протекать по всем возможным способам горения газов. Аналогично сгорает и СО, образовавшийся при горении жидких капель и кокса.

    В факеле зажигание капель осуществляется за счет конвективного нагрева; вокруг каждой капли устанавливается зона горения. Горение капли сопровождается химическим недожогом в виде сажи и СО. Капли высокомолекулярных углеводородов при горении дают твердый остаток - кокс.

    Образующиеся в факеле твердые соединения - сажа и кокс сгорают так же, как происходит гетерогенное горение частиц твердого топлива. Наличие накаленных частиц сажи обусловливает свечение факела.

    Свободный углеводород и сажа в среде с высокой температурой при наличии достаточного количества воздуха могут сгореть. В случае же местного недостатка воздуха или недостаточно высокой температуры они сгорают не полностью с определенной химической неполнотой горения, окрашивая продукты сгорания в черный цвет - коптящий факел.

    Зона догорания газообразных продуктов неполного сгорания и твердых частиц, следующая за зоной горения, увеличивает общую длину факела.

    Химический недожог, характерный для горения жидких топлив со свободной поверхности при сжигании их в факеле, соответствующими режимными мероприятиями может и должен быть сведен практически к нулю.

    Таким образом, для интенсификации сжигания мазута необходимо хорошее распыление. Предварительный подогрев воздуха и мазута способствует газификации мазута, поэтому будет благоприятствовать зажиганию и горению. Весь воздух, необходимый для горения, следует подавать в корень факела. При этом рациональной конструкцией воздухонаправляющего устройства горелки, правильной установкой форсунки и соответствующей конфигурацией амбразуры горелки необходимо обеспечить хорошее перемешивание распыленного топлива с воздухом, а также перемешивание в горящем факеле и в особенности в конечной его части. Температура в факеле должна поддерживаться на достаточно высоком уровне и для обеспечения интенсивного завершения процесса горения в конце факела должна быть не ниже 1000-1050°С.

    Факелу должно быть обеспечено достаточное пространство для развития процесса горения, так как в случае соприкосновения продуктов сгорания (до завершения процесса горения) с холодными поверхностями нагрева парогенератора температура может настолько понизиться, что содержащиеся в газах не догоревшие частицы сажи и свободного углерода, а также высокомолекулярные углеводороды не смогут гореть.

    Процесс горения нефтяного факела в закрученной струе протекает аналогично рассмотренному случаю при прямоточной струе. При закрученном движении на оси струи создается зона разрежения, вызывающая приток горячих продуктов сгорания к корню факела. Это обеспечивает устойчивое зажигание.

    Использование центробежного эффекта в механических и вращающихся форсунках приводит к разрыву сплошного потока. Жидкость внутри выходного канала форсунки принимает форму полого цилиндра, заполненного парами и газами. Из сопла вытекает эмульсия, образуя жидкую пленку в виде раскрывающегося гиперболоида. В направлении движения сечение гиперболоида увеличивается, а пленка жидкости утоньшается, начинает пульсировать и, наконец, распадается на быстродвижущиеся капельки, которые в потоке подвергаются дальнейшему измельчению.

    В паровых форсунках первичное дробление производится за счет кинетической энергии пара, истекающего из сопла форсунки. Капли первичного дробления приобретают скорость паровой струи, обычно соответствующую критической скорости.

    15.5.Сжигание топлива и защита окружающей среды

    15.5.1.Черная металлургия как источник загрязнения окружающей среды

    Металлургический завод, производящий 1 млн. т. стали в год, за сутки выбрасывает в атмосферу 350 т. пыли, 400 т. окиси углерода и 200 т. двуокиси серы. От общего количества выбросов на долю металлургических заводов приходится 20% выбросов пыли, 43% окиси углерода, 16% сернистого ангидрида и 23% окислов азота. Больше всего выбросов у аглофабрики и ТЭЦ. От общего количества выбросов металлургического завода аглофабрика даёт 34% пыли, 82% сернистого ангидрида, 23% окислов азота. ТЭЦ выбрасывает 36% пыли. Таким образом, аглофабрика и ТЭЦ вместе выбрасывают в атмосферу около 70% общезаводских выбросов пыли.

    Различают очистку газов от взвешенных твёрдых частиц (пыли) и улавливание вредных газообразных веществ химическими методами газоочистки. В настоящее время очистка выбрасываемых в атмосферу газов от вредных газообразных веществ почти не применяется (и не только у нас) за исключением коксохимического производства, где такая очистка широко распространена в связи необходимостью улавливания ряда ценных веществ.

    На заводах чёрной металлургии, главным образом, осуществляют механическую очистку газов от пыли. По принципу действия применяемые методы очистки делят на сухие и мокрые. Мокрые пылеуловители позволяют одновременно с улавливанием пыли частично очищать газы от диоксида серы (SO 3). Однако эти пылеуловители повышают расход воды и требуют применения устройств для её очистки.

    15.5.2.Аппараты для сухой механической очистки газов

    Делятся на пылеуловители и фильтры. В свою очередь пылеуловители подразделяются на гравитационные и инерционные. Гравитационные пылеуловители имеют пылевые камеры различной конструкции. В этих пылеуловителях осаждение пыли происходит, в основном, под действием сил тяжести. Силы инерции здесь оказывают незначительное влияние на процесс извлечения пыли из потока газа.

    На рисунке 15.2 приведена схема радиального пылеуловителя. В него через центральный газоход поступает запыленный газ, который в бункере снижает скорость своего движения и меняет направление движения на 180 0 . Пыль, содержащаяся в газе, под действием сил тяжести и по инерции, оседает в бункере, а газ удаляется в очищенном виде.

    Гравитационные пылеуловители эффективны при удалении частиц пыли с размерами большими 100 мкм, т.е. достаточно крупных частиц.

    В инерционных (центробежных) пылеуловителях (рис.15.3) на частицы пыли действует сила инерции, возникающая при повороте или вращении газового потока. Так как эта сила значительно превосходит гравитационную, то и удаляются из газового потока частицы более мелкие, чем при гравитационной очистке.

    Пример такого пылеуловителя - циклон, удаляющий из газового потока частицы пыли с размерами большими 20 мкм. Запыленный газовый поток вводится в верхнюю часть корпуса циклона через патрубок, расположенный тангенциально относительно корпуса. Поток приобретает вращательное движение, тяжелые частицы пыли силами инерции отбрасываются к стенкам циклона и под действием сил тяжести опускаются в бункер, а очищенный газ удаляется из циклона.

    Фильтры (рис.15.4) - это аппараты, обеспечивающие тонкую очистку газа. По типу фильтрующего элемента подразделяются на фильтры с волокнистым фильтрующим элементом, с тканевым, зернистым, металлокерамическим, керамическим. Типичным примером являются фильтры с тканным фильтрующим элементом: из натуральных и синтетических тканей или металлотканый, выдерживающий температуру до 600 0 С.

    Регенерация тканевого фильтра осуществляется обратной продувкой сжатым воздухом.

    Запыленный газ проходит через рукавную ткань, оставляя на ней частички пыли, и очищенным удаляется из фильтра. Пыль оседает в бункер по мере её накопления на ткани. Когда сопротивление ткани существенно возрастает, обратной продувкой воздухом тканевый рукав отчищается от пыли.


    15.5.3.Электрофильтры

    Электрофильтры (рис.15.5) - аппараты для тонкой очистки газа. Принцип действия этих фильтров основан на силовом взаимодействии заряженных частиц между собой и с металлическими электродами. Вы знаете, что одноимённо заряженные частицы отталкиваются, а разноименно заряженные - притягиваются. В электрофильтре частицы пыли, попадая в электрическое поле, заряжаются и затем под действием сил взаимодействия с осадительными электродами притягиваются к ним, осаждаются на них и теряют свой заряд. В качестве примера рассмотрим работу трубчатого электрофильтра. Фильтр состоит из корпуса и центрального электрода, конструкция которого на схеме не раскрыта. Корпус фильтра заземляется. Центральный электрод состоит из пластин, часть из которых подсоединена к корпусу, а другая часть - изолирована от него.


    Изолированные и подсоединённые к корпусу электроды чередуются. Между ними создаётся разность потенциалов порядка 25-100 кВ. Величина разности потенциалов определяется геометрией электродов и тем больше, чем больше расстояние между ними. Это связано с тем, что электрофильтр работает, если между электродами существует коронный разряд.

    Газ, проходя между электродами, ионизируется. Частицы пыли взаимодействуют с йонами, приобретают отрицательный заряд и притягиваются к осадительным электродам. Осаждаясь на электродах частицы пыли теряют свой заряд и частично осыпаются в бункер.

    Производится периодическая очистка фильтра встряхиванием или промывкой. На время очистки фильтр отключается.

    При работе на доменном газе фильтр промывают через каждые 8 часов в течение 15 минут. Максимальная температура очищаемого газа не должна превышать 300 0 С. Рабочая температура очищаемого газа 250 0 С. Высота электродов до 12 м.

    Электрофильтр очищает газ от частиц пыли с размерами меньшими 1 мкм.

    15.5.4.Мокрая очистка газов

    В аппаратах мокрой очистки запыленный газ промывается водой, что позволяет отделить значительную часть пыли.

    Наибольшее применение в чёрной металлургии нашли скрубберы различной конструкции и турбулентные газопромыатели.

    Скрубберы (рис.15.6) - это агрегаты, в которых запыленный газ поднимается навстречу орошающей воде. С целью защиты от коррозии внутренние поверхности скруббера футеруются керамической плиткой. Максимальная температура газа в скруббере 300 0 С. Размеры скруббера: диаметр - 6-8 м, высота - 20-30 м. Расход воды - 1,5-2 кг/м 3 газа. В скрубберах осуществляется полутонкая очистка от пыли.


    Рис. 15.6. Схема скруббера


    Скоростной газопромыватель (рис.15.7) - эффективный аппарат тонкой очистки, применяемый как самостоятельно, так и для подготовки газа перед электрофильтром. Состоит из трубы-распылителя и циклона каплеуловителя. Улавливает частицы пыли размерами до 0,1 мкм. Производительность по газу 40000 м 3 /ч и более. Удельный расход орошающей воды 0,15-0,5 кг/м 3 . Скорость газа в горловине трубы-распылителя 40-150 м/с.


    Принцип действия скоростного газопромывателя основан на улавливании в циклоне мелких частиц пыли утяжелённых смачивающей их водой. Смачивание частиц пыли осуществляется в трубе-распылителе.


    В заключение следует отметить, что пыль с частицами крупнее 10-20 мкм хорошо улавливается в большинстве аппаратов газоочистки. Для очистки от пыли с частицами меньшими 1 мкм пригодны только аппараты тонкой очистки: пористые фильтры, электрофильтры, скоростные газопромыватели.