Посадка вертолета с выключенным двигателем

Привет, друзья!

Сегодня поговорим о таком интересном и, несомненно, важном режиме работы воздушного винта, как . Слово это произошло от греческого «сам» и латинского «вращение». То есть означает оно самовращение. На этом режиме винт не приводится во вращение от двигателя, а вращается сам от набегающего потока воздуха. Говоря умными словами, в работу его вращения превращается энергия этого потока.

Упрощенную, но достаточно наглядную иллюстрацию к этому, я думаю, видел каждый еще в детстве. Я так достаточно хорошо помню, как мы с мальчишками носились по двору с самодельными пропеллерами из бумаги, укрепленными на палочках, и те довольно бойко вращались, раскручиваемые встречным ветром. Ветряные мельницы тоже сродни этим маленьким пропеллерам, и даже серфингисты, оседлавшие крутые океанские волны, имеют определенное отношение к явлению авторотации:-).

Скоростной напор воздуха давит на расположенные под углом к нему лопасти винта и заставляет их как бы съезжать по нему:-). Лопасти двигаются, а так как один их конец закреплен на оси вращения винта, то движение переходит в обычное вращение. Ну, а дальше с винтом происходит то же самое, что и с крылом при его движении в воздушной среде. Все, кто читал статьи рубрики это уже знает:-). На каждую лопасть (а они все имеют аэродинамический профиль) действуют аэродинамические силы, далее они действуют на винт и, в конечном итоге, на летательный аппарат, в соответствии с его предназначением.

Возможна для любого винта, и самолетного, и вертолетного. Но только для одного летательного аппарата этот режим полета является штатным. Название у этого аппарата несколько необычно для русского уха – :-). О нем я вам расскажу в одной из следующих статей. А сейчас вернемся к нашим…(нет, не баранам:-)) традиционным летательным аппаратам.

Самолет . Для него авторотацияявляется режимом аварийным , то есть явно малоприятным. Возникать она может в случае остановки двигателя в полете (обычно без желания летчика), когда винт перестает приводится от двигателя и начинает раскручиваться набегающим потоком воздуха. Но при этом, особенно на достаточно большой скорости, возникает серьезное сопротивление потоку, которое ощутимо тормозит самолет, а если двигателей несколько, и они расположены на консолях крыла, то возникает еще и достаточно сильный разворачивающий и кренящий момент.

Пример флюгирования винта.

Все это чревато нехорошими последствиями. Поэтому на всех двигателях с изменяемого шага предусмотрена возможность флюгирования , то есть установки лопастей по потоку (по возможности параллельно:-)), чтобы сократить до минимума вредное сопротивление. А потом, если потребуется движок запустить в воздухе (для этого нужна предварительная раскрутка ротора) лопасти могут быть установлены в нужное положение для использования эффекта авторотации.

Турбовинтовой двигатель с зафлюгированными лопастями винта.

Оригинал статьи взят с сайта журнала RCHeli и называется «Understanding autorotation». В процессе перевода я столкнулся с массой иностранных терминов, которым не смог найти однозначных русских аналогов, поэтому по тексту в скобках даю оригинальные термины, чтобы читатели могли сориентироваться, о чем идет речь, а специалисты, возможно, предложили более точный перевод. Более того, в статье много схем сил действующих на лопасти во время полета и авторотации - эти схемы, извините за тавтологию, достаточно схематичны. В конце статьи я приведу ссылку на английскую книгу, из которой черпали вдохновение авторы RCHeli. Всем заинтересовавшимся советую посмотреть эту книгу, поскольку в ней теория авторотации дана более полно.

Итак, теория авторотации.

Первое, что надо понять, изучая авторотацию, что лопасти это вращающиеся крылья. Несложно представить себе самолет, летящий без мотора (планер), но несколько сложнее представить, что вертолет может делать то же самое. Если осознать, что каждая лопасть вертолета работает как крыло планера, то авторотация становится более понятной. Окончательно разобраться в этом вопросе поможет диаграмма сил, действующих на лопасть во время авторотации.

Лопасть во время авторотации.
В то самый неподходящий момент, когда двигатель решает заглохнуть, энергия полета (теперь уже авторотации) должна поступать из другого источника. Источником будет потенциальной энергии, которую вертолет приобрел, набрав высоту. Первые мгновения ротор теряет обороты, расходуя собственную инерцию. Перевод шагов в отрицательную зону прекращает падение оборотов, ток воздуха начинает идти в обратную сторону (up flow), т.е. снизу-вверх. Поскольку вектор подъемной силы всегда направлен перпендикулярно результирующему потоку, горизонтальная составляющая подъемной силы начинает действовать в противоположную сторону, создавая приводящую силу (pro-autorotative force), которая начинает раскручивать ротор. Часть силы сопротивления профиля(Progile drag) действует в обратную сторону, препятствуя приводящей силе.

Зоны лопасти во время авторотации.
В то время, как лопасть движется по кругу, каждая ее часть испытывает различное влияние результирующего потока: от самой низкой скорости у комля лопасти, до высокой скорости у законцовки. Это происходит потому, что за одинаковое время законцовка лопасти проходит большее расстояние по дуге, чем часть лопасти у комля. Во время авторотации на лопасти выделяются три зоны: пропеллерная, авторотационная и зона срыва.

Пропеллерная зона (Prop zone).

Относительно высокая скорость движения внешней части лопасти складывается с восходящим потоком и приводит к тому, что результирующий поток приближается к горизонтальной линии. В этом случае подъемная сила направлена больше вверх, чем вперед и в результате создает меньше приводящей силы. В этой зоне сопротивление профиля наибольшее и создает наибольшую силу сопротивления, которая противодействует приводящей силе. Эта зона увеличивается с уменьшением шага лопастей и увеличением скорости вращения лопастей, поэтому уменьшает зону авторотации и увеличивает скорость спуска.

Набегающий поток складывается с восходящим потоком, отклоняя результирующий поток ниже плоскости диска ротора. Обратите внимание, что вектор подъемной силы наклонен вперед и создает приводящую силу. Эта зона увеличивается и смещается к законцовке лопасти при увеличении шага лопастей. Увеличение шага приводит к уменьшению скорости вращения лопастей и уменьшению скорости спуска.

Зона срыва (Stall).
Эта зона расположена у комля лопасти, где скорость набегающего потока минимальна и не создает подъемную силу, сила сопротивления профиля наибольшая и преобладает над остальными. По мере увеличения шага лопастей обороты снижаются, и зона срыва растет от комля к законцовке лопасти, уменьшая зону авторотации и пропеллерную зону.



Все вместе.

Вместе с изменением шага лопастей и оборотов ротора, три зоны перемещаются и изменяются по все длине лопасти. Во время авторотации важно так управлять шагом и оборотами, чтобы наиболее рационально использовать эти зоны.

Заход на авторотацию.
Если мотор глохнет во время полета при положительных шагах, то в этот момент вектор подъемной силы отклонен назад и обороты быстро снижаются из-за высокой силы аэродинамического сопротивления. Пилоту нужно быстро убавить шаги ротора, что бы остановить рост зоны сваливания.

Снижение.
Во время снижения пилот управляет шагом лопастей для того, что бы регулировать размер зоны авторотации и пропеллерной зоны. Если требуется больше подъемной силы, пилот увеличивает шаги (например, с -4 градусов до -2 градусов), замедляя обороты ротора и увеличивая подъемную силу. Для ускорения спуска пилот убавляет шаги и увеличивает обороты. С помощью управления шагом пилот добивается подходящей скорости спуска для того, что бы модель пришла в желаемую точку посадки.

Торможение (Flare).
Приближаясь к земле, пилот начинает торможение, за счет чего переводит горизонтальную скорость модели в энергию вращения ротора. Во время торможения увеличивается поток восходящего через ротор воздуха, за счет этого вектор подъемной силы сильнее наклоняется вперед и сильнее раскручивает ротор.

Посадка. После того, как горизонтальная скорость погашена, вертолет переходит в висение и здесь энергия ротора начинает интенсивно расходоваться, поддерживая висение модели. Важно не израсходовать всю энергию, а мягко посадить модель до того, как зона срыва покроет всю лопасть.

Заключение.
Надеюсь, это описание поможет лучше понять принцип авторотации. С помощью шага лопастей вы меняете направление и силу результирующего потока, подъемной силы и приводящей силы. Правильная работа шагом во время спуска, торможения и посадки избавит от необходимости покупать новые шасси и позволит выполнить красивую авторотацию, которую непременно оценят ваши зрители.

Оригинальный текст: Art Koral, http://www.rchelimag.com/pages/howto.php?howto=13
Книга INTRODUCTION TO HELICOPTER AERODYNAMICS WORKBOOK
Перевод: Oleg

rotatio - вращение) - режим вращения воздушного винта летательного аппарата или турбины двигателя, при котором энергия, необходимая для вращения, отбирается от набегающего на винт потока. Термин появился между 1915 и 1920 годами в период начала разработок вертолётов и автожиров и означает вращение несущего винта без участия двигателя.

На самолётах, использующих в качестве движителя воздушные винты без изменяемого шага, авторотация винта (вращение от набегающего потока) возникает при отказе или выключении двигателя в полёте. При этом возникает сильное сопротивление потоку и, в случае отказа одного двигателя на консоли крыла, сильный разворачивающий и кренящий момент, что существенно усложняет управление летательным аппаратом и может привести к его падению. Для предотвращения этого неприятного явления все современные турбовинтовые двигатели имеют системы автоматического и ручного флюгирования , в случае остановки двигателя в полёте устанавливающие (поворачивающие) лопасти воздушного винта «по потоку». Винт при этом имеет минимальное лобовое сопротивление и не вращается. Для запуска турбовинтового двигателя в полёте винт выводится из флюгерного положения и начинает раскручивать двигатель. При достижении определённой частоты вращения включается система зажигания и подача топлива - «запуск на авторотации».

Ротор турбореактивных двигателей в случае их выключения в полёте также может вращаться от набегающего потока в режиме авторотации.

Для вертолётов в отечественной практике для обозначения авторотации несущего винта установился термин «самовращение несущего винта» (СНВ). При штатном полёте вертолёта, с включённым двигателем, воздушный поток поступает сверху и выходит снизу - несущий винт работает в режиме «пропеллер». В режиме СНВ несущий винт вертолёта раскручивается от встречного набегающего потока, одновременно создавая подъёмную силу. Авторотация возможна потому, что несущий винт оказывается при таком обтекании в режиме «ветряка». Для снижения механических потерь в режиме СНВ между двигателем и несущим винтом установлена обгонная муфта (существуют несколько её конструктивных решений).

Использование

Обтекание несущего винта воздушным потоком: вверху- нормальный полет, внизу-авторотация.

На вертолётах наиболее частая причина использования авторотации - это неисправность двигателя, но авторотация также может использоваться и в случае полного отказа рулевого винта , поскольку при авторотации отсутствует реактивный момент, создаваемый несущим винтом. В некоторых экстремальных ситуациях авторотация может использоваться для выхода из вихревого кольца, если позволяет высота.

На одновинтовых вертолётах при отказе двигателя несущий винт, продолжая двигаться по инерции, какое-то время будет по прежнему создавать подъёмную силу . Действия пилота при отказе одного или обоих двигателей в первую очередь зависят от направления вращения несущего винта. Например, при правом вращении несущего винта, в момент отказа двигателей, тангаж вертолета самопроизвольно увеличивается, с разворотом по рысканию влево. Пилот парирует угол рыскания отклонением педалей (изменением шага хвостового винта), а тангаж - плавной отдачей ручки от себя. Одновременно пилот должен уменьшить шаг винта до минимально возможного, чтобы не дать винту потерять угловую скорость. Из-за уменьшения шага винта вертолет начинает быстро снижаться, обеспечивая сильный набегающий снизу поток воздуха. Набегающий поток воздуха оказывает сильное воздействие на винт, раскручивая его в том же направлении, в котором он вращался. Направление вращения остается тем же по законам аэродинамики , для понимания процесса можно провести аналогию между лопастью винта и планированием самолёта с выключенным двигателем.

Несколько факторов влияют на скорость снижения в режиме авторотации: плотность воздуха , вес вертолёта, частота вращения винта, скорость набегающего потока воздуха. Для контроля скорости снижения пилот в первую очередь контролирует скорость набегающего потока воздуха. Уменьшение или увеличение скорости регулируется шагом винта, как и при нормальном полете. Установившаяся скорость вертикального снижения составляет приблизительно 25-30 м/с и зависит от модели вертолёта и факторов, описанных выше. Такая скорость не может быть погашена только за счет инерции несущего винта и при отсутствии достаточной для набора горизонтальной скорости высоты посадка невозможна. Военные вертолёты работают на малой высоте, поэтому для спасения экипажа иногда устанавливают катапультируемые кресла и предусматривают отстрел лопастей несущего винта перед катапультированием.

За время снижения несущий винт накапливает большую кинетическую энергию за счёт своей массы и скорости вращения. За несколько метров до земли пилот с определенным темпом увеличивает шаг несущего винта (устоялся жаргонизм «подрыв винта»). За счет кинетической энергии вращения несущий винт при «подрыве» создает дополнительную подъёмную силу, при этом частота вращения винта уменьшается. Вертикальная скорость снижается до приемлемых величин (примерно 5-6 м/с), и вертолёт производит посадку. Вид посадки зависит от полетной массы вертолета. Пустой вертолет может сесть с вертикальным снижением. При наличии груза на борту приходится садиться с пробегом, «по самолётному».

Для более безопасного приземления вертолёт должен иметь или достаточную высоту или достаточную горизонтальную скорость. Высота необходима для раскрутки несущего винта во время снижения. Горизонтальная скорость используется для быстрого перевода кинетической энергии движения вертолёта в энергию вращения винта. При отказе двигателя на малой высоте с большой долей вероятности приземление может закончиться катастрофой.

Зоны лопасти винта при авторотации

Во время вертикальной авторотации, диск, образуемый вращающимися лопастями, можно разделить на три области: ведущую, ведомую и зону отрывного обтекания. Размер этих областей изменяется в зависимости от наклона лопастей, скорости снижения и частоты вращения винта. Когда эти параметры изменяются, изменяется и процентное отношение этих трёх областей.

Ведомая зона располагается на концах лопастей. Обычно составляет около 30 % радиуса. Ведомая зона обеспечивает торможение лопастей и как следствие, снижение частоты вращения винта.

Ведущая зона, или зона авторотации, обычно составляет от 25 до 70 % радиуса винта и является источником движущей силы вращения лопасти при авторотации. Суммарная аэродинамическая сила в этой области направлена немного вперёд относительно оси вращения и вызывает ускорение вращения винта.

Внутренние 25 % лопасти работают на угле атаки больше критического, вызывая замедление вращения винта.

Постоянная скорость вращения винта достигается тогда, когда сила, образуемая ведущей зоной, уравновешивается силами торможения ведомой зоной и зоной отрывного обтекания. Пилот регулирует наклон лопастей, например, увеличивая площадь ведущей зоны, это вызывает ускорение вращения винта и, в свою очередь, увеличение ведомой и закритической зон, поэтому вращение стабилизируется на более высокой частоте. Уменьшение ведущей зоны уменьшает скорость вращения.

Статья посвящается памяти безвременно ушедших коллег по испытаниям вертолета Ми-26 В.А. Изаксону-Елизарову и Б.И. Мешкову

В августе 2005 года исполняется 25лет со дня окончания государственных испытаний вертолета Ми-26. Программу испытаний вертолет прошел за удивительно короткий срок, не только подтвердив заявленные характеристики, но и во многом превзойдя их. Эта уникальная машина, созданная под руководством талантливого конструктора Марата Николаевича Тищенко, по праву стала гордостью российского вертолетостроения и национальным достоянием России.

Вертолет выкатили из сборочного цеха Московского вертолетного завода имени М.Л. Миля 31 октября 1977 года, в декабре бытло выполнено первое висение, 21 февраля 1978 года состоялся первый полет Ми-26. В сентябре 1980 было получено заключение государственной комиссии, рекомендовавшей принять вертолет на вооружение.

К середине 1980 года государственные испытания вертолета Ми-26 подошли к заключительному этапу, на котором должны были проводиться посадки на режиме авторотации с выключенными двигателями. В соответствии с требованиями Норм летной годности каждый новый и внедряемый в эксплуатацию вертолет (вне зависимости от количества двигателей) должен проходить испытания по посадкам на режиме авторотации с выключенными двигателями. Хотя вероятность одновременного отказа двух двигателей и составляет 10-10 , однако анализ летных происшествий показывает, что такие отказы случаются, особенно в боевой обстановке.

Ми-26 имеет ряд серьезных отличий не только от других, более легких, вертолетов, но и от достаточно близкого к нему по своим габаритам и массовым характеристикам вертолета Ми-6. Эти отличия в основном определяются следующими параметрами:

1) широким диапазоном эксплуатационных полетных масс - от 30 до 56 т и, соответственно, более широким диапазоном нагрузки на ометаемую площадь: от 37,5 до 69,7 кг/м2 ;

2) большим количеством лопастей несущего винта и большим коэффициентом заполнения s;

Рис. 1. График уменьшения частоты вращения несущего винта в случае отказа двух двигателей

3) высокой массовой характеристикой лопастей g = 7, которая в 1,5–2 раза выше, чем у других отечественных и зарубежных вертолетов;

4) меньшим относительным моментом инерции вращающихся деталей, что обеспечивается за счет конструктивного совершенства агрегатов несущей системы;

5) меньшим значением величины максимального общего шага несущего винта по сравнению с другими вертолетами.

Теоретические исследования и результаты моделирования показывали, что все вышеперечисленные особенности вертолета Ми-26 и его несущего винта увеличивают вертикальную скорость приземления при заданной поступательной скорости и сокращают время посадки от начала торможения до приземления, делая ее очень динамичной.

Впервые в мировой практике вертолетостроения предстояло выполнить посадки с полетной массой 50 т, что, учитывая особенности вертолета Ми-26, представляло сложную задачу. Позитивные результаты испытаний должны были поставить все точки над i, означая признание вертолета Ми-26 и его запуск в серийное производство.

При выполнении безопасных посадок необходимо соблюдать ряд эксплуатационных ограничений, определяющих посадочные характеристики вертолетов при отказе двигателей. К ним относятся:

Поступательная скорость посадки в момент касания по условиям прочности должна быть ограничена максимально допустимой скоростью касания (V кас. макс. доп.);

Вертикальная скорость приземления не должна превышать максимально допустимую (Vy макс. доп.), для того чтобы обеспечить вертикальную перегрузку не выше нормированной;

При приземлении вертолет должен иметь посадочный тангаж, нулевой крен, не иметь сноса, а угловые скорости по всем осям должны быть близки к нулю.

Возможность выполнения этих требований при посадках на авторотации зависит не только от аэродинамических, конструктивных и массовых характеристик несущего винта вертолета и характеристик управляемости (в особенности на заключительном этапе при «подрыве» общего шага несущего винта), но и от режима полета, определяемого высотой, поступательными и вертикальными скоростями, при которых происходит отказ двигателей.

Как известно, допустимые горизонтальные скорости приземления и установившиеся скорости снижения на авторотации связаны между собой, так как обязательное условие безопасной посадки гласит, что поступательная скорость перед началом предпосадочного маневра не должна быть меньше минимальной поступательной скорости планирования (V x мин).

Это обусловлено значительным увеличением вертикальной скорости снижения на малых поступательных скоростях и снижением на них эффективности торможения из-за уменьшения производной тяги по углу атаки. Кроме того, даже при оптимальной технике выполнения «подрыва» несущего винта вертикальную скорость можно уменьшить на ограниченную величину. Таким образом, при скоростях, меньших минимальной скорости планирования (V пл. мин.), невозможно обеспечить допустимую вертикальную скорость приземления (V y доп.) с необходимым запасом, обусловленным отклонениями техники пилотирования от оптимальной.

Снижение при заходе на посадку на режиме авторотации можно в принципе производить на любой скорости, большей V пл. мин. Однако при скорости планирования, большей экономической (V экон.), трудно добиться уменьшения скорости до максимальной скорости касания (V макс. кас.), определяемой требованиями прочности шасси, так как при этом еще существенно усложняется техника пилотирования.

На основании опыта летных испытаний оптимальная с точки зрения простоты пилотирования и получения приемлемых поступательных и вертикальных скоростей приземления скорость установившегося планирования лежит в пределах V пл. мин. и V экон. . Поэтому планирование и начальное торможение перед посадкой необходимо начинать именно на этой скорости.

При выполнении посадок на Ми-26 при отказе двух двигателей необходимо было учесть ряд аспектов, определяющих безопасность проведения таких посадок. К ним, в частности, относятся:

Уменьшение частоты вращения несущего винта и высоты полета после отказа;

Зависимость вертикальных скоростей на установившейся авторотации от поступательной скорости и частоты вращения несущего винта;

Оптимальная техника пилотирования при выполнении посадки на режиме авторотации несущего винта.

Рис. 2. График зависимости отклонения ручки управления при увеличении утла тангажа от полетной массы

Рис. 3. График зависимости частоты вращения НБ вертолета Ми-26 на скорости авторотации 130–150 км/ч от полетной массы и величины общего шага

Переход на режим самовращения

Типовая техника пилотирования при одновременном отказе двух двигателей, рекомендованная практически для всех одновинтовых вертолетов, связана с уменьшением общего шага несущего винта до минимального значения с последующим увеличением угла тангажа на кабрирование для уменьшения поступательной скорости.

Теоретические исследования и результаты моделирования показали:

1) падение частоты вращения НВ после отказа двух двигателей при такой технике перехода на авторотацию у вертолета Ми-26 идет более динамично (рис. 1). Маховое движение лопастей при отклонении ручки управления на себя для торможения поступательной скорости увеличивается больше, чем на других вертолетах. Так, в горизонтальном полете на скорости 200 км/ч величина Мкр /1нв для вертолета Ми-26 составляет 1,91 1/рад, а для Ми-6 - 1,1 1/рад, на скорости 270 км/ч эти величины соответственно равны 2,5 и 1,41 1/рад;

2) уменьшение тяги несущего винта по мере уменьшения общего шага при полете с перегрузкой меньше 1 после отказа двигателей вызывает увеличение махового движения лопастей. Это, в свою очередь, требует не только отклонения органов управления для парирования появляющихся разбалансировочных моментов, но и дополнительной коррекции возмущений из-за махового движения лопастей при снижении эффективности управления. Достаточно большие отклонения органов управления на Ми-26 связаны еще и с установкой неуправляемого стабилизатора, что приводит к продольной статической неустойчивости по скорости в горизонтальном полете и на режиме авторотации. Эта особенность подтверждается не только теоретическими расчетами, но и материалами летных испытаний.

При переходе на режим авторотации для сохранения постоянной поступательной скорости необходимо довольно значительное отклонение ручки управления на себя для парирования возникающего пикирующего момента. Так, например, для перехода на режим авторотации на постоянной скорости 170 км/ч автомат перекоса отклоняется на 1,5°, что соответствует отклонению ручки управления на себя примерно на 50 мм. При переходе на авторотацию с созданием положительного тангажа для гашения скорости эти отклонения еще больше увеличиваются.

Для создания угла тангажа 15° на кабрирование требуется отклонение автомата перекоса на 2,5°. При этом маховое движение лопасти увеличивается, и в заднем положении угол взмаха равен -2°, а в переднем положении -20°. На вертолете Ми-6 эти величины соответственно составляют: 0° в заднем положении и -12° в переднем;

3) из-за большей нагрузки на ометаемую площадь увеличивается вертикальная скорость снижения. Процесс снижения происходит быстрее и с большей потерей высоты. Это приводит к тому, что посадка вертолета происходит при большей поступательной скорости, чем на вертолете Ми-6.

С учетом результатов теоретических исследований и летных испытаний для вертолета Ми-26 была рекомендована усовершенствованная техника перехода на режим авторотации. Она заключается (как и при отказе одного двигателя на скоростях полета более 200 км/ч) в первоначальном создании угла тангажа на кабрирование с практически одновременным (или с небольшим запаздыванием до 1 с) уменьшением общего шага несущего винта. Такая техника перехода на режим авторотации увеличивает угол атаки несущего винта, создавая благоприятные условия для его раскрутки.

Уменьшение частоты вращения НВ приводит к незначительному снижению эффективности управления. Маховое движение лопастей хотя и увеличивается, но ненамного, что не требует чрезмерных отклонений органов управления, его запасы, следовательно, остаются приемлемыми. Потеря высоты незначительна.

Исследования, проведенные на других вертолетах, показали, что даже летчик средней квалификации уже через 0,7 с замечает резкое изменение мощности, а у опытных летчиков это время еще меньше. Такую технику перехода на режим самовращения при отказе двух двигателей нетрудно освоить, если следовать основному правилу поддержания частоты вращения НВ. Эти особенности перехода на режим самовращения несущего винта при отказе двух двигателей проявляются при всех значениях полетных масс, но для полетных масс, близких к максимальным, ситуация в первоначальный момент после отказа усугубляется.

Рис. 4. График зависимости вертикальной скорости снижения на режиме авторотации от скорости полета

Вертикальные и поступательные скорости на режиме авторотации

В процессе летных испытаний были определены основные характеристики установившегося самовращения во всем диапазоне эксплуатационных полетных масс, которые выявили следующие особенности:

Во-первых, наличие зависимости частоты вращения НВ от полетной массы. Как видно из рис. 3, изменение полетной массы вертолета на 1000 кг приводит к изменению скорости вращения несущего винта на 1 %.

При изменении полетной массы от нормальной до минимальной частота вращения несущего винта снижается почти на 20 %, что приводит к такому же уменьшению эффективности управления, как и в момент отказа двигателей (рис. 1, 2). При минимальной полетной массе потребные отклонения продольного управления увеличиваются почти в полтора раза по сравнению с отклонениями при нормальной полетной массе;

Во-вторых, значительное увеличение вертикальной скорости снижения при поступательных скоростях менее 120 км/ч, что увеличивает крутизну траектории планирования и усложняет условия посадки. Поэтому минимальные скорости планирования выбраны такими, чтобы вертикальные скорости снижения были не более 15–17 м/с при всех значениях эксплуатационных полетных масс. Максимальные скорости на авторотации были приняты равными крейсерским скоростям для каждой полетной массы вертолета. Зависимость Vy =i(V пр) для вертолетов Ми-6 и Ми-26 представлена на графике рис. 4.

В полетах по определению зависимости Vy =|(V пр) при скоростях менее 100 км/ч из- за больших аэродинамических поправок в показаниях скоростей (при существовавшей тогда компоновке приемников ПВД) было выполнено несколько режимов вертикальной авторотации, скорость снижения на которых достигала -35 м/с. Полет на этих режимах характеризовался очень высокой степенью устойчивости вертолета, особенно в продольном отношении, что требовало больших отклонений ручки управления от себя (более чем на 3/4 хода).

Гурген КАРАПЕТЯН, заместитель генерального директора ОАО «МВЗ им. М.Л. Миля», Герой Советского Союза, заслуженный летчик-испытатель СССР (Продолжение в следующем номере)