Чем зашлифовать деталь после 3д принтера. Самый простой способ — обработка погружением. Удаление растворимых поддержек

Наиболее популярными методами доводки распечатанных 3D-объектов являются шлифовка, пескоструйная обработка и обработка парами растворителей.

Это заблуждение, что при 3D-печати нельзя получить такие же гладкие и отполированные объекты, как с помощью традиционных промышленных технологий. На такие заявления можно возразить простой наждачкой, и эта техника доводки очень распространена.

То, какая техника доводки используется, во многом зависит от геометрии и материала детали. Эти факторы определяют и уровень эстетичности, который удастся достичь, и ее функциональность, потому что разные методы позволяют добиваться разных текстур и внешнего вида. Одни методы лучше подходят для прототипов и выставочных моделей, другие - для деталей механизмов.

Ошкуривание

Несмотря на то, что системы послойного наплавления созданы, чтобы получать высококачественные детали непосредственно из принтера, линии соединения слоев остаются видны, а конечному пользователю этого совсем не надо, особенно, если речь идет о решении, в котором эстетический вид является приоритетом. Ошкуривание позволяет устранить эти недостатки и может быть использовано для моделей, торговых образцов или концептов, полнофункциональных прототипов и узлов и механизмов конечного уровня.

Многим высококачественным объектам, изготовленным на 3D-принтере, для придания гладкости и для того, чтобы избавиться от линий в местах наложения слоев, достаточно доводки наждачной шкуркой.

Процесс ошкуривания всем известен. Пластиковые детали обрабатывают руками или на шлифовальном станке, как это делается с деревянными или металлическими элементами. Ошкуривание недорого и эффективно, кроме того, это проверенный метод, с помощью которого можно достичь качественной отделки. По сути, это наиболее распространенный способ доводки распечатанных на 3D-принтере объектов.

Наждачкой можно обработать все, кроме самых маленьких деталей. А большими они могут быть сколько угодно, хотя вручную добираться до мелких дефектов и неровностей бывает сложно. В типовых ситуациях процесс относительно быстр. При послойном наплавлении речь обычно идет о борьбе со ступенчатыми поверхностями. Ступеньки на детали размером где-то с пульт ДУ зачищаются примерно за 15 минут, притом что покраска такой же детали из-за дополнительных шагов, таких как подготовка и сушка, длится 2 часа.
Когда деталь должна быть в первую очередь точной и долговечной, очень важно учитывать, сколько материала будет удалено при ошкуривании. Если его будет удалено много, нужно до печати внести изменения в дизайн, сделать стенки более толстыми. Требования, предъявляемые к детали, определяют также, какая именно техника ошкуривания будет применена, ручная или механическая, и какой будет задействован инструмент.

Пескоструйная обработка

Вторым по распространенности методом доводки является пескоструйная обработка. В этом случае оператор управляет соплом, из которого на деталь, чтобы скрыть на ней следы от слоев, под напором распыляется мелкодисперсный материал. Процесс быстрый, занимает 5-10 минут, результат выглядит цельно.

При на деталь, помещенную в закрытую камеру, направляется поток мелких пластиковых частиц, в результате чего через 5-10 минут поверхность становится гладкой.

Данная технология легко модифицируется, ее можно использовать с большинством материалов. Применяется она и в период разработки и изготовления детали, на любом этапе - от прототипирования до производства. Такого рода гибкость обусловлена тем, что обработка обычно производится мелкими частицами тонко переработанного термопластика. Именно такой «песок», абразивные характеристики которого при распылении находятся в пределах от средних до высоких. Очень хорошо работает пищевая сода, поскольку она не слишком агрессивна. С ней, однако, работать несколько сложнее, чем с пластиком.

Одно из ограничений пескоструйной обработки — размер объекта. Поскольку процесс производится в закрытой камере ограниченного объема, обычно речь идет о габаритах примерно до 60 x 80 x 80 см. Пескоструйная обработка осуществляется вручную, поэтому за один раз доводится только одна деталь и ни о каком «массовом производстве» речи не идет.

Обработка парами

Третий по популярности метод доводки называется обработкой парами или паровая обработкой. В этом случае деталь находится в атмосфере испарений вещества, доведенного до точки кипения. Частицы испаряющегося вещества вплавляются в обрабатываемую поверхность на глубину примерно 2 микрона, делая ее гладкой и блестящей всего за несколько секунд. Те, кто предпочитают матовую поверхность, могут подвергнуть деталь пескоструйной обработке после обработки парами, когда деталь уже сглажена и механическое контактное напряжение снято.

В результате обработки ABS-пластика парами ацетона, поверхность становится гладкой и глянцевой, единственный минус такой технологии — склаживаются углы и мелкие детали.

Поскольку поверхность получается очень гладкой, обработка парами широко применяется для предметов широкого спроса, прототипов и в медицинских приложениях. Метод не сказывается существенно на точности детали. После пескоструйной обработки объект готов для нанесения пленочного, защитного или декоративного слоя. Такие покрытия обычно наносятся на более прочные материалы, к которым предъявляются высокие требования.

К сожалению, как и у пескоструйки, у технологии обработки парами есть ограничения по размерам деталей. В отличие от ошкуривания и пескоструйной обработки, обработка парами имеет ограничения и по материалам. Для обработки используется ацетон. При обработке PLA-пластика используется . Обработанные материалы достаточно практичны и прочны, созданные изделия сохраняют свою изначальную прочность и гибкость.

5. Постобработка

Многие механические детали требуют лишь очевидной очистки от облоя брима и рафта, после чего их можно применять по назначению. Но когда речь идет об объектах дизайнерского направления, где требуется эстетичный внешний вид, мы уже вынуждены взять в руки необходимый инструмент, высунуть кончик языка и приняться за обработку. Скажу также, что иногда данная обработка желательна и «механическим» деталям – обработка крупных зубьев шестерней для уменьшения их дальнейшего износа, шлифовка плотно прилегающих к существующим металлическим и прочим частям различных отпечатанных пластиковых патрубков и прокладок, но здесь я больше говорю именно об обработке в ключе эстетического вида результата.

5.1. Механическая обработка

Такой очевидный процесс, что хочется привести фотографию надфиля и на этом закончить)) Ведь действительно, даже если нет ничего, то уж надфиль найдется практически у всех. Но где лучше использовать именно его и какие еще существуют варианты, об этом можно написать.

Наиболее страдающие при печати участки, это низ модели и места прилегания рафта или суппортов. На этом месте, сонно читая, можно не обратить внимания на расположенные в одном предложении и логически разделенные «низ модели» и «места прилегания рафта», ведь вроде бы это синонимы, а потому не должны противопоставляться. Поясню.

Нижнее основание, лежащее на рафте, гарантированно будет иметь форму «тысячи видов микроколбасок», что требует обработки. Если же мы не используем рафт, то основание будет очень ровным, исключая дефекты наклейки каптона или его вздутия из-за снятия какой-то большой плоской внизу детали. Да, иногда приходится снимать деталь мало того что с помощью ножа, но и без такой-то матери не обходится)) Это одна из причин, по которой лучше использовать каптон на всю ширину стола, а не поклеенный из нескольких частей. Но причем тут тогда обработка низа модели?

Из-за неточной калибровки стола, его выгнутости, в результате чего калибровку приходится делать так, что при печати на некоторых участках экструдер упирается в платформу, и избытой подачи пластика на первом слое, несколько первых слоев могут скататься в откровенный блин с выступающей по бокам поверхностью внизу. Ничего удивительного, ведь у меня разница в высоте середины стола и участков ближе к краям составляет более полумиллиметра.

При этом по периметру модели и есть смысл пройтись тем же надфилем. Нет, вы не выведите им границы до ровных, это сложно сделать даже для вертикальных стенок, но приведете состояние форменного безобразия к безобразию приемлемому.

При обработке таких границ предпочтителен больше надфиль, нежели шкурка (кроме случая шкурки с бруском), т.к. надфиль жесткий, а в случае со шкуркой нельзя распределить усилие рукой.

Шкуркой же есть смысл обрабатывать достаточно гладкие поверхности, вдоль которых можно пройтись рукой с этой шкуркой, будь то плоская стенка или поверхность какого-нибудь большого кольца. Однажды мне требовалось обработать 40 см клееную деталюху, некий зуб экскаватора, состоящую из четырех частей, как раз там хорошо подошла обработка шкуркой.

Также, очень рекомендую обзавестись цанговым ножом. Он также может называться модельный нож и канцелярский скальпель. Под последним названием мне в свое время его и порекомендовали. Представьте, каким я себя чувствовал дураком, когда спрашивал в канцелярских магазинах его именно под таким названием. Думаю, услышанные мною ответы легко представимы: от «Мы такого не завозим» до банального «Чего?»)) Дошло до смешного: когда на сайте поставщика офисных принадлежностей, обозначенный именно как «канцелярский скальпель», он есть в наличии по 180 рублей, а в самом магазине вообще никто про него ничего не слышал… Я это к чему: если соберетесь купить, ищите его именно как цанговый или модельный нож))

Им очень хорошо срезать излишки брима и… он идеально подходит для того, чтобы им резать пальцы, с чем он прекрасно справляется, т.к. деталь при срезе излишков вы будете держать как раз так, что порезаться будет запросто. Потому, как бы банально это не звучало: осторожно, кофе горя… нож острый)) Особенно будьте аккуратны, когда срезаете толстый облой, который требует для этого большого усилия.

В ключе механической постобработки нельзя не упомянуть такое полезное устройство как гравировальная машинка, которые часто, по аналогии с ксероксом, нарицательно называют дремелем. Название это пошло, собственно, от изначального производителя таких устройств для условно домашнего пользования – фирмы Dremel.

Это довольно-таки универсальное устройство, им можно резать, сверлить, гравировать, полировать и много чего еще. В частности, им же можно удалять излишки пластика или шлифовать клееные стыки. Работа при этом производится посредством гибкого вала (вы его можете увидеть на приведенном выше изображении), вам не потребуется держать в руках весь гравер. Как часто бывает, у официального дремеля есть и множество китайских и не очень клонов. При этом, цена отличается в разы, качество же зависит от каждой конкретной модели и нередко от каждого конкретного экземпляра. Из качественных аналогов, вряд ли хуже оригинала, вспоминается только Proxxon, но цены на него уже сравнимы с оригиналом. Дешевые клоны начинаются от 900 рублей до 2500 в среднем на момент написания статьи, «оригинал» идет в районе 6000, в зависимости от модели.
Касаемо граверов скажу еще одну вещь: если соберетесь брать, вам понадобится модель с регулировкой оборотов и, желательно, мощностью в районе 170 ватт, т.к. пластик рекомендуется обрабатывать на пониженных оборотах, иначе есть риск, что вы просто начнете его плавить.

5.2. Шпаклевка

Один из способов выровнять поверхность, это использовать на больших сравнительно ровных частях обычную шпатлевку для пластика. Существует множество одно- и двухкомпонентных шпатлевок для работы с пластиковыми моделями. Их можно достать в магазинах, торгующих этими моделями и расходными материалами к ним, коих существует великое множество. Жидкие шпатлевки обычно используются для заделки клеевых швов, пастообразные же пригодятся в качестве шпатлевок «общего назначения».

Что вам желательно знать еще о шпатлевках? Что однокомпонентные шпатлевки имеют заметную усадку при высыхании, потому те же швы может потребоваться обрабатывать ими несколько раз, прежде чем вы получите отсутствие впадины на этом месте, двухкомпонентные же обычно заметной усадки не имеют и обычно же более просты в хранении. При этом двухкомпонентные могут сильно отличаться по времени застывания.

Т.к. мне лично пришлось иметь дело с достаточно крупной деталью, я пошел другим путем и купил двухкомпонентную шпатлевку фирмы Novol в магазине автоэмалей. Да, там можно купить дешевле, но шпатлевка для бампера может быть недостаточно качественной, чтобы работать с ней с мелкими деталями. Мне не было смысла сильно заморачиваться, т.к. деталь (приведенный выше и ниже на фото некий зуб экскаватора) была большая и достаточно ровная.

Выше я упомянул время застывания. Когда я первый раз замешивал новоловскую шпатлевку, забыл одеть резиновую перчатку – я хотел размазать ее по поверхности прямо пальцем в перчатке… За те три минуты, пока я под аккомпанемент тихих матов под нос натягивал эту перчатку, шпатлевка… ну вы поняли. Пришлось замешивать снова. Скажу, что с такой шпатлевкой работать не очень удобно: 3-5 минут – это слишком короткое время застывания для удобной с ней работы.

Сам процесс шпаклевания достаточно простой. Для этого можно взять небольшой резиновый шпатель из ближайшего магазина с разной бытовой химией, клеями и красками. Он вполне может найтись в том же магазине автоэмалей.

Купленная мною шпатлевка была явно мягче пластика после печати, она значительно легче зачищается шкуркой и надфилем. Поверхность можно сделать очень гладкой, если применять последовательно несколько более мелких шкурок. Для базовой зачистки я использовал шкурку с шероховатостью 320. Обращаю внимание, что шкурку или, соответственно, поверхность, лучше намочить.

Для шлифовки этой детали я использовал две шкурки, если не ошибаюсь, более мелкая была 800, для данной поверхности это было достаточно. Начальную же обработку проводил вообще надфилем.

5.3. Химическая обработка

Химическую обработку после печати производят для сглаживания печатных слоев и придания глянца поверхности модели. Кроме внешнего вида, это улучшает адгезию слоев за счет сплавливания, но может съесть мелкие детали. При обработке химией важно выдержать баланс между выравниванием поверхности и избыточным «расплавлением» модели.

Самый известный метод для обработки ABS пластика – так называемая ацетоновая баня. Она неприменима для обработки PLA, т.к. PLA практически инертен к ацетону.

Здесь я снова позволю себе утянуть с интернета довольно известную фотографию модели совы до и после обработки.

Суть данного метода: модель ставится на изолирующую подложку, можно взять обычный полиэтилен, фольгу или стекло, помещается под колпак из инертного к ацетону материала (опять же, обычное маленькое полиэтиленовое ведерко для продуктов) и все это ставится на нагретую до 40-50 градусов нагреваемую кровать принтера, куда также помещается небольшая емкость с ацетоном или смоченная в нем тряпочка.

Ацетон имеет температуру кипения 56 градусов. При приближении к данной температуре он, будучи и так легко испаряющимся, испаряется еще интенсивнее. Под крышкой из пластикового ведерка вы получаете высокую концентрацию паров, которые начинают плавить наружные слои пластика модели. После достижения нужного результата вы убираете модель из-под колпака и даете полностью застыть. Если ацетон попал внутрь модели, для полного застывания может потребоваться сравнительно продолжительное время.

Плюс этого метода: бесконтактная обработка, которая не оставит следов кисти и не требует лезть кистью или тряпочкой во все труднодоступные участки модели. Минус: не самый приятный запах ацетона, возможность недодержать или передержать модель и вероятность того, что модель может повести при неоднородном распределении паров.

Плюс самого ацетона в том, что он легко доступен к покупке в магазинах, торгующих теми же красками, имеет разумно невысокую цену и, несмотря на вонючесть, испаряется полностью, не оставляя следов. Т.е. невозможно «пропахнуть ацетоном», что в ключе «околодомашней обработки» не может не радовать.

Ацетоном также можно обрабатывать с помощью натирания поверхности смоченной в нем тряпочкой, но т.к. это все-таки статья немного субъективная, то и скажу, что лично мне это кажется сомнительным по причине высокой трудоемкости с получением спорного результата – обработать так ту же сову у вас вряд ли получится.

Также, возможна холодная обработка. В этом случае необходимые к обработке распечатки ставятся в герметично закрытую емкость – можно то же пластиковое ведерко с крышкой и туда же ставится небольшая емкость с ацетоном или даже смоченная в нем тряпка. Такая обработка гораздо более медленная, чем горячая, а также для неплоских деталей (а таких большинство) очень рекомендую наличие какого-то источника для циркуляции паров ацетона в этой «банке», иначе вы получите оплавленный низ детали и не обработанный верх, т.к. холодные пары ацетона будут стремиться осаживаться на дне. Корпус и крыльчатка вентилятора или другого «источника» циркуляции, естественно, должны быть сделаны не из ABS, иначе после часа-другого обработки, вы посмотрите в банку, после чего озабоченно почешете затылок)) Именно необходимость городить огород с циркуляцией или выдумывать иной способ, чтобы однородно обрабатывалась вся модель, отбили у меня весь интерес к такому методу обработки. Потому оставляю ее для вашего изучения.

Еще один метод обработки, подходящий для обработки – обработка дихлорэтаном или дихлорметаном. Как и метиловый и этиловый (да, тот самый це-два-аш-пять-о-аш))) спирты, они сходны по некоторым свойствам, но как метиловый спирт является ядом, так и дихлорэтан ядовит. Обращаю внимание: дихлорэтан, а не дихлорметан. У них наоборот. Дихлорэтан является ядовитым, дихлорметан же имеет «относительно малую токсичность» по версии Википедии. Дихлорэтан продается в уже упомянутых выше универсальных хозяйственных магазинах с различными лаками для полов, инструментом и прочим «у нас все есть». Он проходит в разделе клей для пластика, т.к. он просто напросто растворяет пластики, позволяя спаять их. Продается в небольших флаконах, потому «возьмем большую тряпку и пройдемся по всем поверхностям» с ним не пройдет. К тому же, вряд ли это принесет пользу вашему здоровью. Техника работы с ним локальная: ваткой или ватной палочкой обрабатывается поверхность. Скажу, что именно дихлорэтаном я обработку не производил.

Дихлорметан (он же хлористый метилен, он же метиленхлорид) найти сложнее. Он есть у поставщиков промышленной и технической химии, у которых на складах стоят 200-литровые бочки с кучей разных реактивов. Они обычно торгуют оптом и/или с юрлицами, потому купить его получится по принципу «как договоритесь». Мне повезло найти у нас в Челябинске поставщика, который согласился мне продать бутыль данной жижи, потому появилась возможность проверить такой метод обработки лично. На фото дихлорметан в удобной емкости из-под стеклоомывайки:

Скажу, что этот метод подходит как для обработки ABS, так и PLA пластика, т.к. дихлорметан растворяет их оба. Но я работал с ABS, потому тонкости работы им с PLA оставлю для вашего изучения. Рекомендацию, не буду врать, встретил в интернете в одном из обзоров, по-сути я здесь лишь проверю эту рекомендацию лично и опишу результаты.

Суть простая: окунаете вашу модель в дихлорметан на 3-5 секунд, после чего вытаскиваете и оставляете сушиться. После сушки окунаете еще раз на долю секунды для смачивания поверхности и оставляете сушиться еще раз. Естественно, это требует наличие необходимого количества дихлорметана.

Некоторые рекомендации по работе. Дихлорметан имеет плотность 1330 кг/м3, т.е. на треть тяжелее воды, при этом он в ней не растворяется. Это значит, что не следует сливать отработку в канализацию, снабженную U-образными гидрозатворами (ими снабжены все домашние канализационные сливы), т.к. он просто осядет на дно U-образной трубки и вымывать его оттуда будет затруднительно. Более того, если так случайно окажется, что эта трубка сделана из пластика, растворимого дихлорметаном, последствия вы понимаете. Далее, он очень летуч, субъективно, почти как ацетон. Это значит, он быстро испаряется. Иными словами, воняет. Он не является высокотоксичным веществом, но, субъективно, эта дрянь во всех смыслах неприятнее ацетона, потому рекомендую иметь возможность проветрить помещение, и работайте с ним в резиновых перчатках. Еще одно: не советую наливать его в емкость для хранения доверху, особенно в немного растягивающуюся пластиковую тару, иначе, когда будете его открывать, вспомните, что такое бутылка шампанского, только в роли последнего выступит эта самая химия, а перчатки вы в этот момент надеть, естественно, забудете)) Понятно, что это произошло со мной, потому я вас от этого и предупреждаю. Хранить рекомендую так же, как и ацетон: кроме плотно закрытой крышки рекомендую также закрывать полиэтиленовым пакетом с резинкой для денег.

Суть непосредственной работы проста: делая все в резиновых перчатках, наливаете дихлорметан в емкость, опускаете в него модель, как я уже выше писал, держа ее за наименее ответственные участки, вынимаете. Дихлорметан после этого лучше сразу же слить в емкость для хранения, если нет возможности вашу емкость для обработки условно герметично закрыть. Скажу, что не удивлюсь, если окажется, что вместо дихлорметана можно точно так же использовать ацетон, но не проверял.

Ниже пример обработки выложенной на Thingiverse вертолетной рукоятки. Разница в цвете – это лишь разница в освещении во время съемки. Обработанная рукоять уже высушена, блеск от вспышки именно из-за приобретения глянца поверхностью.

Обращаю внимание, что верхние и нижние (переходные, а не основание) слои имеют в большинстве случаев гораздо меньшую толщину, нежели боковые стенки, потому можно увидеть на этой фотографии, что верхняя скругленная часть местами немного провалилась. Учитывайте это, увеличивая степень заполнения или количество верхних слоев, если планируете подобную обработку.

Следующая и последняя часть статьи будет посвящена процессу склейки и покраски.

Добрый день, Друзья!
Посвящаем данный пост теме постобработки деталей из ABS и PLA пластика.

Всем понятно, что каждый тип пластика от каждого производителя так или иначе отличается своими свойствами и характеристиками: от температуры экструзии до методов постобработки. Мы провели небольшой тест-драйв материалов, в котором подобрали для Prusa i3 Steel оптимальный температурный режим и скорость печати. Химическую обработку делали хлористым метиленом - об этом рассказываем подробно.

Prusa i3 Steel - самая успешная модификация третьего поколения проекта Prusa RepRap. Об этом принтере мы писали в .
Для лучшей адгезии (прилипания) стол покрывали лаком. Скорость и температуру в каждом случае подбирали индивидуально для каждой марки пластика. Стоит отметить, что все принтеры отличаются друг от друга, поэтому температура, которая у нас оказалась рабочей - на вашем принтере может немного отличаться. Вам также следует провести настройку температуры и скорости подачи пластика.

Параметры печати ABS-пластиком

Белый: ABS BestFilament, высота слоя 0,15 мм, скорость печати 45мм/c температура стола 105 градусов, лак NOVA, температура хотенда 235 градусов.

Желтый: ABS REC слой 0,15 мм, скорость печати 45мм/c температура стола 105 градусов, лак NOVA, температура хотенда 230 градусов.

Черный: ABS FL33 слой 0,15мм, скорость печати 45мм/c температура стола 105 градусов, лак NOVA, температура хотенда 225 градусов.

Параметры печати PLA-пластиком

Черный: PLA BestFilament, высота слоя 0,15 мм, скорость печати 35 мм/c, температура стола 30 градусов, лак NOVA, температура хотенда 220 градусов, обдув.

Голубой: PLA REC, высота слоя 0,15 мм, скорость печати 35 мм/c, температура стола 30 градусов, лак NOVA, температура хотенда 220 градусов, обдув.

Золотой: PLA FL33, высота слоя 0,15мм, скорость печати 35 мм/c, температура стола 30 градусов, лак NOVA, температура хотенда 240 градусов, обдув.

Обработка

Очень простая и быстрая, на одну распечатку уходит не более 3 минут. Хлористый метилен (дихлорметан) один из наименее токсичных растворителей ABS и PLA, а его важным свойством является высокая летучесть. Класс опасности IV, также как у ацетона. Пахнет значительно слабее ацетона. Все работы желательно проводить в хорошо проветриваемом помещении!

Внимание! Не путайте дихлорМетан с дихлорЭтаном - последний великое токсичное ядовитое зло смерть гроб могила!

Мы погружали Йоду в дихлорметан на 1-5 секунд, а за последующие 1-2 минуты растворитель полностью испарялся с поверхности. Чтобы сделать глянцевую поверхность, последний раз окуните деталь в растворитель на 0.5 секунды, он не успеет впитаться и сразу испарится, конфетный глянец обеспечен.

Общие впечатления по обработке
Очень быстро, не нужна баня, не нужен ацетон. Дихлорметан универсален для PLA, ABS, HIPS, а также возможно и для многих других экзотических материалов. Литра хватает надолго. Очень важна герметичность емкости для хранения раствора.

Общие впечатления о пластиках
ABS REC - катушки по 750 гр., мало, зато очень яркие насыщенные цвета. Коробка с ручкой. Крутой пластик для поделок, фигурок и игрушек. Вакуумная упаковка - пластик не отсыревает пока хранится, это важно.

ABS BestFilament - катушки 1 кг. Слои ложатся очень ровно, хорошее спекание, слои почти не видны. Модель получается очень прочной.

ABS FL-33 - катушки 1 кг. Спекание и прилипание к столу отличное, минимальная деламинация. Яркие цвета. Упаковка не броская, зато надежная, есть вакуумная упаковка. Обрабатывается дихлорметаном лучше остальных.

PLA REC - 750 гр. Яркие цвета. Пластик капризный к подбору температуры и изменениям температуры, некоторые слои могут оказаться светлее или темнее. Слои сильно заметны после печати. Слипание и адгезия хорошая.

PLA BestFilament - 1 кг. Нужен хороший и сильный обдув хотэнда. Немного сопливый пластик как показалось. В целом хороший.

PLA FL-33 - 1 кг. Хороший пластик, слои спекаются ровно, соплей нет. Есть полупрозрачные PLA, яркая цветовая гамма. Широкий температурный диапазон, от 210 до 250. Лучше всего показал себя на 240.

Многие механические детали требуют лишь очевидной очистки от брима и рафта, после чего их можно применять по назначению. Но когда речь идет об объектах дизайнерского направления, где требуется эстетичный внешний вид, то востребована обработка.

1. Механическая обработка

Наиболее страдающие при печати участки, это низ модели и места прилегания рафта или поддержек. При этом по периметру модели и есть смысл пройтись надфилем или шкуркой. Нет, вы не выведите границы до ровных, это сложно сделать даже для вертикальных стенок, но приведете состояние к приемлемому. При обработке таких границ предпочтителен больше надфиль, нежели шкурка (кроме случая шкурки с бруском), т.к. надфиль жесткий, а в случае со шкуркой нельзя распределить усилие рукой.

Шкуркой же есть смысл обрабатывать достаточно гладкие поверхности, вдоль которых можно пройтись рукой с этой шкуркой, будь то плоская стенка или поверхность какого-нибудь большого кольца.

В ключе механической постобработки нельзя не упомянуть такое полезное устройство как гравировальная машинка, которые часто, по аналогии с ксероксом, нарицательно называют дремелем. Название это пошло, собственно, от изначального производителя таких устройств для условно домашнего пользования – фирмы Dremel.

Это довольно-таки универсальное устройство, им можно резать, сверлить, гравировать, полировать и много чего еще. В частности, им же можно удалять излишки пластика или шлифовать клееные стыки. Вам понадобится модель с регулировкой оборотов и, желательно, мощностью в районе 170 ватт, т.к. рекомендуется обрабатывать на пониженных оборотах, иначе есть риск, что вы просто начнете его плавить.

2. Шпатлевка

Один из способов выровнять поверхность, это использовать на больших сравнительно ровных частях обычную шпатлевку для пластика. Существует множество одно- и двухкомпонентных шпатлевок для работы с пластиковыми моделями. Их можно достать в магазинах, торгующих этими моделями и расходными материалами к ним, коих существует великое множество. Жидкие шпатлевки обычно используются для заделки клеевых швов, пастообразные же пригодятся в качестве шпатлевок «общего назначения».

Сам процесс шпаклевания достаточно простой. Для этого можно взять небольшой резиновый шпатель из ближайшего магазина с разной бытовой химией, клеями и красками. Он вполне может найтись в том же магазине автоэмалей. Поверхность можно сделать очень гладкой, если применять последовательно несколько более мелких шкурок.

3. Химическая обработка

Химическую обработку после печати производят для сглаживания печатных слоев и придания глянца поверхности модели. Кроме внешнего вида, это улучшает адгезию слоев за счет сплавления, но может съесть мелкие детали. При обработке химией важно выдержать баланс между выравниванием поверхности и избыточным «расплавлением» модели.

Самый известный метод для обработки ABS пластика – так называемая ацетоновая баня. Она неприменима для обработки PLA, т.к. PLA практически инертен к ацетону.

Суть данного метода: модель ставится на изолирующую подложку (полиэтилен, фольгу или стекло), помещается под колпак из инертного к ацетону материала (обычное маленькое полиэтиленовое ведерко для продуктов) и все это ставится на нагретую до 40-50 градусов нагреваемую кровать принтера, куда также помещается небольшая емкость с ацетоном или смоченная в нем тряпочка.

Ацетон имеет температуру кипения 56 градусов. При приближении к данной температуре он, будучи и так легко испаряющимся, испаряется еще интенсивнее. Под крышкой из пластикового ведерка вы получаете высокую концентрацию паров, которые начинают плавить наружные слои пластика модели. После достижения нужного результата вы убираете модель из-под колпака и даете полностью застыть. Если ацетон попал внутрь модели, для полного застывания может потребоваться сравнительно продолжительное время.


Еще один метод обработки, подходящий для обработки –

обработка дихлорэтаном или дихлорметаном.

Техника работы с ним локальная: ваткой или ватной палочкой обрабатывается поверхность.

Этот метод подходит как для обработки ABS, так и PLA пластика, т.к. дихлорметан растворяет их оба.

Суть простая: делая все в резиновых перчатках, окунаете вашу модель в дихлорметан на 3-5 секунд, держа ее за наименее ответственные участки, вынимаете, после чего вытаскиваете и оставляете сушиться. После сушки окунаете еще раз на долю секунды для смачивания поверхности и оставляете сушиться еще раз. Дихлорметан после применения лучше сразу же слить в емкость для хранения, если нет возможности вашу емкость для обработки условно герметично закрыть.

Мы надеемся что материал был вам полезен, а в случае возникновения поросов всегда готовы предоставить вам

Ударопрочный полистирол

Ударопрочный полистирол представляет собой продукт сополимеризации стирола с каучуком. В зависимости от назначения ударопрочный полистирол, выпускаемый в соответствии с ГОСТом 28250-89 «Полистирол ударопрочный. Технические условия», имеет 4 группы марок, различающихся по величине ударной вязкости: полистирол сверхударопрочный, высокой, средней и низкой ударопрочности. Ударопрочный полистирол выпускается термо- или светостабилизированнымв виде однородных неокрашенных или окрашенных гранул размером 2-5 мм. Для производства экструзионных изделий технического назначения рекомендуется использовать высоковязкие марки: УПМ-0503, УПМ-0508, УПС-0803Э, УПМ-0703Э, УПС-0801. Новые марки УПС-800ФМ, УПС-825Д, УПС-825Е, УПС-825ТГ с повышенной стойкостью к образованию трещин, стойкостью к низким температурам, трудногорючие выпускаются по ТУ 2214-001-49510617-99, ТУ 2214-009-00203521-94.

Индексы М и С после букв УП, обозначающих ударопрочный полистирол, характеризуют метод его получения: М - полимеризация в массе; С – блочно-суспензионная полимеризация. Индексы Л и Э обозначают рекомендуемые способы переработки данного материала: литьем под давлением или экструзией соответственно.

Регламентируемые показатели ударопрочного полистирола по ГОСТ включают массовую долю остаточного мономера, допустимую влажность, механические показатели (прочность при растяжении, относительное удлинение при разрыве, ударную вязкость по Шарпи на образцах с надрезом), технологические характеристики (ПТР при Т=200 0 С, Р=5 кгс и разброс показателя в пределах партии). Общие справочные показатели материала приведены в таблице 1.

Из-за невысокой по сравнению с НПВХ и АБС-пластиками прочности на удар, низкой атмосферостойкости и повышенной горючести ударопрочный полистирол в настоящее время редко применяется для производства профильных изделий.

АБС-пластики

АБС-пластик является продуктом привитой сополимеризации акрилонитрила, бутадиена и стирола. Материал обладает высокой прочностью на удар и жесткостью, хорошей работоспособностью при низких и повышенных температурах, хорошим сопротивлением к истиранию, высокой химической стойкостью, хорошими диэлектрическими свойствами. Температура применения материала от -40 до +80 0 С, кратковременно - до 100 0 С.

Таблица 1. Справочные показатели ударопрочного полистирола

Показатели

Плотность, кг/м 3 *10 -3 (г/см 3)
Предел прочности при изгибе, МПа
Модуль упругости при изгибе, МПа
Твердость по Роквеллу (шкала R)
Твердость по Бринеллю, МПа
Температура тепловой деформации под нагрузкой 1,85 МПа, 0 С
Влагопоглощение за 24 ч при 20 0 С, %
Удельное электрическое сопротивление, Ом*м
Тангенс угла диэлектрических потерь при частоте 10 6 Гц

4*10 -4 -8*10 -4

3*10 -4 -7*10 -4

Диэлектрическая проницаемость при частоте 10 6 Гц
Литьевая усадка, %
Температура размягчения по Вика в жидкой среде, 0 С
Ударная вязкость на образцах без надреза, кДж/м 2
Ударная вязкость на образцах с надрезом, кДж/м 2 при -20 0 С

снижение 30-40 %

снижение 30-40%

Ударная вязкость на образцах с надрезом, кДж/м 2 при -40 0 С

снижение на 50%

снижение на 50%

АБС относится к непрозрачным пластмассам, хорошо окрашивается в различные цвета. Изделия из обычных марок АБС имеют высокий поверхностный глянец, выпускаются также специальные матовые сорта АБС. В России АБС-пластики производят Узловское ОАО «Пластик» (Тульская обл.) и ПО «Салаватнефтеоргсинтез» (Башкирия).

К экструзионным маркам относятся АБС 1106-30, АБС 2802-30, АБС 1010-30, АБС 1010-31. Неплохо перерабатываются экструзией и переходные марки АБС2020-30, 31, 32. Обозначение пластика АБС состоит из наименования марки, буквенных обозначений, номера рецептуры окраски, указания цвета материала, сорта и обозначения ТУ.

Буквенное обозначение, стоящее после числового, указывает на преимущественный метод переработки, основное назначение или наличие специальных добавок: Э - марка, предназначенная для переработки методом экструзии; К - марка, предназначенная для компаундирования с ПВХ; Т - марка с повышенной теплостойкостью; С - марка со светостабилизирующей добавкой.

Все марки пластиков АБС выпускают термостабилизированными. По требованию потребителя пластики АБС могут выпускаться и светостабилизированными. В таблице 2 приведены основные справочные характеристики АБС-пластиков. Зарубежные экструзионные марки АБС представляют фирмы Dow Chemical (США), BASF, Bayer (ФРГ), General Electric (Бельгия), EniChem (Италия), Kumho, Chi Ime, LG (Южная Корея) и др.

Таблица 2. Справочные характеристики АБС-пластиков

Характеристика

Величина

Плотность, г/см 3

Телостойкость по Вика, 0 С

Коэффициент теплового линейного расширения, 1*10 -5 0 С

Усадка при литье под давлением, %

Твердость по Роквеллу (шкала R)

Твердость по Бринеллю при 20 0 С, кгс/мм 2

Модуль упругости при статическом изгибе, кгс/см 2

15*10 3 -24*10 3

Ударная вязкость по Изоду, кДж/м 2

Водопоглощение за 24 ч при 20 0 С, %

Светостойкость окраски

Термостойкость окраски

Теплопроводность, Вт/(м* 0 С)

Удельная теплоемкость, кДж/(кг* 0 С)

Примечания
(1) Окрашенный материал не изменяет цвета при облучении лампой ПРК-2 в течение 100 ч при температуре 50 0 С на расстоянии 300 мм до источника спета.
(2) Материал не изменяет цвета при выдержке при T= 230 0 С в течение 20 мин.

АБС-пластики обладают повышенной стойкостью к ползучести. Так, при комнатной температуре модуль упругости при действии напряжения 7 МПа в течение 1000 ч изменяется не более чем в 2 раза. При более высоких температурах и уровнях напряжений, особенно выше 65 0 С и 14 МПа, снижение механических показателей может быть значительным и превышать 50%.

Влияние на свойства воздействия окружающей среды

В обычных условиях (при нормальной температуре и влажности) атмосферные факторы не оказывают заметного воздействия на свойства АБС-пластиков. Однако при повышенных температурах, влажности, резкой смене температур, при воздействии солнечного света детали из АБС требуют определенной защиты, так как при этих условиях изменяются механические показатели материала и портится внешний вид изделий: прежде всего снижается глянец деталей и происходит изменение цвета (белые сорта желтеют). В некоторых случаях возможно даже растрескивание детали или значительная потеря прочности. Для улучшения погодостойкости изделий из АБС-пластиков их дублируют поливинилхлоридной или окрашенной полиакрилатной пленкой. Однако дублирование снижает прочность на удар, особенно при низких температурах. Окрашенные марки АБС несколько лучше сопротивляются ствию окружающей среды, наиболее стойкими являются черные композиции.

Хорошие результаты по защите АБС от УФ-излучения и влияния атмосферных факторов дает покрытие поверхности изделия тонким слоем ПММА в процессе соэкструзии, хотя это удорожает выпуск продукции. Такой метод широко применяется при производстве листовых материалов. Нижний слой из АБС обеспечивает листам качественное термоформование, высокую ударопрочность и устойчивость к низким температурам. Слой акрила защищает АБС от УФ-лучей, обеспечивает великолепное качество поверхности с сильным блеском, повышенную химическую стойкость. Материал устойчив к воздействию любых факторов внешней среды: после длительной эксплуатации комбинированных изделий цвет материала практически не меняется. Акриловый слой защищает также поверхность листа от царапин.

Экструзия АБС-пластиков

Материал легко перерабатывается экструзией в широком диапазоне текучести расплава полимера. Поэтому экструзией можно удовлетворительно перерабатывать марки, которые относятся к литьевым. Например, переходная марка АБС 2020-30 (или 32) вполне пригодна для производства простых по форме трубообразных и сплошных профилей. Для изделий более сложной формы лучше использовать более вязкие и формоустойчивые марки.

Подсушка материала

Большое влияние на внешний вид экструдируемых профилей оказывает качество предварительной подготовки сырья. Хотя АБС-пластики не являются сильно гигроскопичными материалами, но при хранении на поверхности гранулированного материала конденсируется влага. Процесс особенно интенсифицируется, когда холодный гранулят со склада доставляется в производственное помещение с теплым влажным воздухом. Обычно гранулы АБС-пластика содержат 0,3-0,4% влаги. При экструзии влажность сырья является причиной образования в изделиях раковин, пустот, шероховатости поверхности и значительного снижения прочности. Для получения качественных профильных изделий влажность материала не должна превышать 0,05-0,09%. В целях устранения повышенной влажности гранулят перед переработкой необходимо подсушивать. Оптимальным считается режим сушки гранул при температуре 80 0 С в течение 3 ч. В бункерных сушилках с продувом горячего воздуха через толщу материала для сушки достаточно 2 ч. При температуре выше 80 0 С наблюдается слипание гранул, особенно вблизи металлических поверхностей, что недопустимо, так как комки гранул могут перекрыть питающее отверстие экструдера и вызвать нарушение технологического процесса.

При хранении подсушенного материала в закрытых полиэтиленовых мешках влага обычно не обнаруживается в течение 4-5 ч. Если после сушки остаточная влага достаточно велика, то на внутренней поверхности мешка обнаруживаются капельки влаги в виде тумана. Следует иметь в виду, что при длительной сушке изменяется текучесть расплава материала. Так, ПТР гранул АБС-пластика при сушке в течение 3 ч при 70 0 С снижается на 10%, в течение 5 ч - на 30%, таким образом, длительная сушка отрицательно влияет на технологические свойства материала.

Оборудование

АБС можно экструдировать на любых стандартных экструдерах для переработки пластмасс. Из-за высокой вязкости расплава для переработки различных марок АБС требуются машины с повышенной мощностью привода (на 25% выше, чем для переработки ударопрочного полистирола). Предпочтительны экструдеры с длиной шнека 20:1, 24:1 или 30:1, поскольку такие шнеки обеспечивают более равномерное распределение температур в расплаве и хорошее перемешивание материала. Экструдеры целесообразно оснащать бункерами с подогревом материала. При применении экструдеров с дегазацией обеспечивается более высокое качество продукта благодаря удалению летучих веществ при переработке и устраняется необходимость подсушки материала.

Шнек экструдера - однозаходный, с постоянным шагом и прогрессивно уменьшающейся глубиной нарезки. Степень сжатия 2:1-2,5:1. АБС-пластики - высоковязкий материал, поэтому шнеки для его переработки должны иметь более глубокие каналы, чем каналы шнеков для ударопрочного полистирола. Шнеки с мелкими каналами улучшают смешение материала, но сдвиговое воздействие значительно повышает температуру расплава, что может оказать неблагоприятное воздействие на качество изделия и стабильность технологического режима переработки. В таблице 3 приведены размеры шнеков длиной 20D.

Улучшение смесительного воздействия достигается в шнеках с зонами интенсив¬ного воздействия на материал. На рисунке 1 показаны возможные варианты смеситель¬ных секций шнека одношнекового экструдера.

Таблица 3. Размеры шнеков для экструзии АБС-пластиков

Технологическая оснастка

Для производства профильных изделий используются прямоточные головки. Для предотвращения разложения материала следует избегать застойных зон в головке. Разбухание АБС-пластиков невелико и составляет по площади поперечного сечения 1,2-1,4. Длина формующей части фильеры обычно принимается равной 20-30 зазорам; величину зазора ориентировочно принимают равной толщине стенки профиля. Детали головки, соприкасающиеся с расплавом, хромируют и полируют. Калибрование профилей, как правило, осуществляется с помощью длинномерных вакуумных устройств, либо коротких пластин или втулок, установленных в вакуумной ванне. Материал быстро приобретает жесткость при охлаждении, поэтому при «запуске» профиля достаточно охладить экструдат в короткой вакуумной охлаждаемой втулке, чтобы профиль приобрел товарный внешний вид, после чего постепенно устанавливают рабочую скорость экструзии, синхронизируя подачу материала шнеком и отвод изделия тянущим устройством.

Особенности переработки

Основными технологическими факторами, влияющими на качество погонажных профильных изделий и производительность агрегата, являются температурный режим по зонам цилиндра и головки экструдера, частота вращения шнека, давление в головке, скорость отвода профиля, степень вытяжки экструдата, режим калибрования и охлаждения изделия.

Температурный режим переработки определяется вязкостью материала. По сравнению с ударопрочным полистиролом вязкость АБС-пластиков выше, поэтому температуры по зонам цилиндра и головки также устанавливают несколько выше. Так, температура по зонам цилиндра в направлении от загрузочной воронки к головке обычно принимается в диапазоне 180-220 0 С, а температура головки - 200-210 0 С. При переработке АБС-пластиков не всегда удается полностью использовать максимальную производительность экструдера. Повышение частоты вращения шнека до верхнего предела может ограничивать недостаточная мощность приводного двигателя, перегрев расплава в результате механического разогрева, возникновение нестабильной работы экструдера (пульсация производительности). Хорошее качество экструдата на выходе из головки достигается при сравнительно высоком давлении в головке. Обычно давление в 10-20 МПа достаточно для экструзии большинства профильных изделий. Давление в головке при заданной геометрии фильеры регулируется с помощью изменения скорости вращения шнека, изменения температуры, подбором оптимальной геометрии шнека, установкой на входе в головку решетки с пакетом фильтрующих сит. Установка фильтрующих решеток и сит целесообразна при изготовлении толстостенных изделий на головках низкого сопротивления.

Рис. 1. Варианты смесительно-диспергирующих элементов шнеков для переработки АБС:
1 - стержневая смесительная секция;
2 - смесительная секция Dulmage;
3 - смесительная секция Saxton;
4 - СТМ-секция;
5 - смесительная секция в виде кольцевого выступа;
6 - секция смешения Union Carbide

Число сеток при переработке АБС принимают от 2 до 6 при количестве отверстий на 1 см равном 40-180. При недостаточно высоком давлении в головке уменьшается производительность экструдера, ухудшается гомогенизация расплава, может возникнуть неравномерность течения, особенно в местах фильеры, значительно удаленных от оси экструзии. При слишком высоком давлении может наблюдаться чрезмерное повышение температуры расплава и уменьшение формоустоичивости экструдата. Возрастает также нагрузка на двигатель привода.

Охлаждение изделий при экструзии

При экструзии профилей, особенно разнотолщинных, требуется обеспечить равномерное охлаждение изделия, иначе возникают термические напряжения, вызывающие коробление изделия, отклонение от прямолинейности, скручивание. Температура воды в охлаждающей ванне должна быть, по возможности, регулируема, чтобы температура поверхности изделия на выходе из ванны составляла 70-80 0 С. Температуру калибрующего устройства рекомендуется поддерживать на уровне 80-90 0 С. Минимальные остаточные напряжения при экструзии труб и трубообразных профилей достигаются при использовании двухсекционных ванн. В первой секции длиной 1-1,25 м поддерживают температуру воды 40-50 0 С. Для снижения остаточных напряжений и последующей усадки при прогреве трубы или профиля рекомендуется степень вытяжки принимать не более 1,10-1,15.

Термический отжиг

Неравномерное охлаждение при калибровании приводит к искривлению профиля. Часто затруднительно подобрать условия, при которых искривление по длине находится в допустимых пределах. В таких случаях «сабельность» приходится устранять термообработкой. В некоторых случаях дифференциальный нагрев-охлаждение участков профиля может устранить проблему еще в линии. При невозможности обеспечить приемлемую прямолинейность изделия используют термический отжиг готовых профилей, для чего прямолинейные отрезки профилей плотно упаковывают в шпули или другую тару с плохой теплопроводностью и погружают в горячую воду (65-75 0 С) на 30-60 мин, после чего медленно охлаждают. Возможен также отжиг в воздушной печи в течение 2-3 ч. При отжиге необходимо обеспечить относительно свободное перемещение профилей по длине и по возможности ограничить поперечное перемещение. Основная трудность в проведении термообработки - найти подходящую по длине ванну или печь.

Литература: «Экструзия профильных изделий из термопластов», издательство Профессия, 2005