Аэрофотоснимок и карта. Их отличие и сходство. Что точнее физическая карта или аэрофотоснимок

Рельеф является главным фактором перераспределения тепла и влаги на поверхности Земли. К литогенной основе, и, в первую очередь, к рельефу приспосабливается биота, от него же зачастую прямо зависит и характер почвообразующих процессов. Поэтому гра­ницы ПТК очень часто совпадают с границами форм или элемен­тов форм рельефа. Отсюда и особый интерес к анализу топо­графической карты при подготовке к ландшафтному картографи­рованию.

Основой составления предварительной ландшафтной карты явля­ется перевод изображения рельефа поверхности Земли с помощью горизонталей, как это делается на топографических картах, в дру­гую модель - в изображение рельефа контурами, свойственное большинству отраслевых карт. Затем производится наполнение этих контуров содержанием и составление легенды. Контуры вырисо-


Вываются, в первую очередь, по топографической основе, а также по аэрофото- и космоснимкам и корректируются по отраслевым картам. По этим же материалам раскрывается, насколько это воз­можно в камеральных условиях, и их содержание.

Работа с топографическими картами. Изображение рельефа го­ризонталями, применяемое на топографических картах, - заме­чательный способ передачи объемов на плоскости, своего рода непрерывное изображение, тогда как карта форм рельефа в конту­рах - чисто плоскостное дискретное изображение. По ней слож­нее оценить динамику, особенно гравитационных (эрозия, сток) и других процессов. В идеале на ландшафтной карте лучше было бы совместить оба способа рисовки рельефа, но это трудно осуще­ствить по техническим причинам и прежде всего потому, что ланд­шафтная карта сама по себе часто получается очень загруженной и трудно читаемой.

Весьма полезно перед началом работы с топографическими картами просмотреть «Альбом изображения рельефа на топогра­фических картах» (1968), где каждый фрагмент карты сопровожда­ется еще стереопарой аэрофотоснимков и текстом. Примечатель­но, что по топографической карте в сочетании с аэрофотоснимка­ми зачастую хорошо читается не только строение поверхности, но и состав пород, генезис отложений и форм рельефа.



Краткое содержание метода поконтурного изображения рельефа. Сначала на топографической основе выделяют речную и эрозион­ную сеть: оконтуривают речные долины, овраги, балки, лощины. Затем оставшиеся участки междуречий разделяют по степени кру­тизны на контуры с примерно одинаковым сгущением горизон­талей.

Как показывает практика, труднее всего дается первый шаг: «оторваться от горизонтали», т. е. понять, что контур эрозионной формы всегда пересекает горизонтали, а не идет вдоль них.

Последующее изложение является ключом к пониманию азов техники ландшафтного картографирования. Поэтому рекоменду­ется, прочитав его, попробовать самостоятельно выполнить подоб­ную работу, при необходимости снова возвращаясь к изучению текста и иллюстраций. Полезно иметь несколько вариантов учеб­ных карт на плотной бумаге, где мягким карандашом можно было бы опробовать разные варианты решений. Этот текст должен быть проработан досконально, включая все подписи к рисункам.

Удобнее всего начинать учиться рисовать контуры, во-первых, на картах крупного масштаба 1: 10 000 (или крупнее), в крайнем случае - на 1:25 000 и, во-вторых, на картах с изображением эрозионного рельефа, где хорошо показана балочная сеть и ярко выражены уклоны.

Для учебных занятий обычно готовят несколько вариантов карт-бланковок, где вся топографическая нагрузка снята, кроме релье-


фа в горизонталях. Таким образом, снимаются все факторы, кроме эрозионного. Это делается, чтобы быстрее приобрести навыки формальной рисовки сначала без привлечения других отраслевых карт и аэрофотоснимков. Научиться «чувствовать рельеф» полезно для географов всех специальностей.

«Решив» такую задачу на нескольких фрагментах топокарт, т.е. «выловив» и оконтурив все эрозионные формы и разделив осталь­ную территорию по степени крутизны, можно начать привлекать аэрофото- и различные отраслевые материалы, попытаться дать характеристику каждого полученного выдела, раскрыть его содер­жание. С этого момента и начинается процесс анализа-синтеза - искусство оптимального воплощения в картографическую модель всех своих знаний. Скорее всего, первоначальную рисовку конту­ров при этом придется несколько изменить.

Формальная рисовка ландшафтных контуров не столь уж слож­на (при приобретении первоначального навыка), и поддается ав­томатизации. Однако, на наш взгляд, только карты самого круп­ного масштаба дают более или менее реальное изображение рель­ефа и соответственно выделенных контуров ПТК. На картах же среднего и мелкого масштабов генерализация топографической основы и рисовка по ней контуров природных компонентов или комплексов приводят к искажению как характера самих контуров, так и соотношения площадей различных видов картографируемых природных объектов.

Рекомендуем обратиться к разработкам А. В.Гедымина (1992). На примерах эрозионно расчлененных ландшафтов лесостепи и степи Русской равнины он кратко и ясно изложил сущность мето­да рисовки контуров крупномасштабных почвенных карт по рель­ефу в горизонталях, что приемлемо и для составления предвари- ; тельных ландшафтных карт.

Приведем его рисунки в горизонталях: склонов различной фор­мы и крутизны, элементов речных долин, эрозионных форм и др. (рис. 16, 17, 18, 19), сопровождаемые некоторыми пояснениями.

На фрагменте А (рис. 16) по густоте горизонталей возможно выделение трех контуров подурочищ склонов разной крутизны; на фрагменте Б также трех подурочищ и одного либо двух простых урочищ лощин. Фрагмент В по крутизне однороден и представляет собой участок урочища без подурочищ. На рис. 17 Гедымин дает образцы рисовки элементов рельефа в контурах с краткой лито-лого-морфологической характеристикой и указанием на главные особенности условий почвообразования (увлажнение, процессы оглеения, смыва, намыва). На рис. 19 отчетливо прослеживаются контуры днищ эрозионной балочной сети, которые на рис. 20 даны под номером 8. Аналогичный рисунок могут иметь и днища до­лин ручьев и малых рек при более мелком масштабе картогра­фирования.








На рис. 20 отчетливо видно, что контур днища сечет горизонта­ли в месте их резкого перегиба, в так называемом замке, и шири­на его не превышает ширину замка. Там, где сливаются две или несколько балок, их днища соединяются, как правило, под острым углом, хотя места между горизонталями может быть достаточно, чтобы нарисовать прямой или тупой угол. Это было бы неправиль­но, так как при слиянии двух потоков воды они обычно форми­руют здесь «стрелку», как при впадении одной реки в другую.

В верховьях, где повороты горизонталей становятся плавными, днище и балка заканчиваются.


На рис. 20 отрисовывается привершинный водосбор (9), кон­тур которого также сечет горизонтали в месте их плавного переги­ба. В глубь водораздельной поверхности контур прорисовывается до тех пор, пока прослеживается изгиб горизонталей или чуть выше последнего изгиба; нижняя часть прилегающего к водосборному понижению склона междуречья увлажнена больше, чем собствен­но выпуклая привершинная его часть, и по условиям почвообра­зования она близка к условиям привершинного водосбора.

Нередко привершинные водосборы двух балок сливаются друг
с другом, образуя широкие седловины (10 на рис. 20) с ослаблен­
ной дренированностью в своей средней части. Если присмотреть­
ся, то можно увидеть, что границы склонов балок (4, 5 на рис. 20),
склонов междуречной поверхности (3 на рис. 20) также секут го­
ризонтали, вырисовывая контуры, если не рав­
ной, то близкой крутизны. ____________


I наклона. При этом вычисленные для каждого угла наклона значе-? ния должны быть переведены в миллиметры и в масштаб исполь-I зуемой карты.

В левой части рис. 21 показан отрезок, равный заложению гори-[ зонталей на склоне заданной крутизны. С помощью этого отрезка, г вычерченного на кальке, были найдены те места, где расстояние | между соседними горизонталями равно данному заложению и, [ следовательно, крутизна равна заданной.

Там, где расстояние между горизонталями равно заложению if, I вычерченному и построенному заранее для заданного угла накло-I на поверхности, на карте были поставлены точки А, В и С, и через I них проведена искомая линия, выше которой поверхность имеет Руглы наклона меньше, а ниже - больше заданной. При проведе-I нии линии через эти точки учитывалось, что расстояние между I соседними горизонталями (заложение) изменяется постепенно, а | значит, постепенно меняется и крутизна склона. Вся полоса между I соседними горизонталями, расположенная ниже точки С, мень­ше (уже) заложения, соответствующего заданной крутизне. По­этому крайняя левая часть линии проведена уже как перегиб кру­тизны - бровка склона (см. также рис. 22 и 23).

На практике всегда хочется проводить бровку и подошву скло­на по верхней и нижней горизонталям густого «пучка». Но эту тен­денцию следует преодолевать. Во-первых, потому, что бровка и


верхность именно по этой линии (а не выше или ниже ее) весьма мала. Значит, следует проводить границу выше или ниже. Вторая трудность возникает в том месте, где горизонтали начинают рас­ходиться (разреживаться) и их приходится пересекать. Оба случая рассматриваются на рис. 22, 23.

На рис. 22 дано несколько схематизированное изображение гори­зонталями рельефа участка склона долины реки в виде «пачки» (или «пучка») горизонталей, близко расположенных друг к другу. В запад­ной части склона это горизонтали 3, 4, 5, 6, 7, 8, ав восточной - 2, 3, 4, 5, 6, 7. К северу склон долины четко переходит в слабо наклонную и довольно ровную водораздельную поверхность, а к югу в слабонаклонную поверхность террасы. Верхняя горизонталь 8 западной части склона, сделав небольшой поворот примерно в середине участка, далее следует уже по водораздельной поверхно­сти, и в восточной части склона верхней его горизонталью ста­новится соседняя нижележащая горизонталь 7. При этом горизон­таль 8 перед выходом на водораздельную поверхность делает пово­рот как раз на бровке склона (точка А). Примерно в этой же сред-


ней части участка происходит смена нижней горизонтали склона: i вместо горизонтали 3 в западной части склона в восточной ниж-" ней становится горизонталь 2, проходившая до этого по поверхно­сти террасы. Все это говорит о том, что и водораздельная поверх­ность, и склон, и поверхность террасы, т.е. весь изображенный участок, постепенно снижаются с запада на восток, что, кстати, соответствует тому же направлению течения реки, расположен­ной южнее изображенного на рисунке участка.

В трех местах на рис. 22 проведены кривые линии СЕ, KL и ОР, пересекающие горизонтали примерно под прямым углом. При этом линия KL проведена через точку А горизонтали 8, т.е. там, где она пересекает бровку склона. По этим линиям построены три профи­ля, изображенные на рис. 23. На нем условно показаны также отрезки горизонталей (под профилями) и линии соответствующих им гори­зонтальных плоскостей. Места перемены крутизны, т. е. места пово­рота самих линий профилей, строились примерно. В этих местах с некоторым приближением были найдены точки бровки склона (на профилях СЕ и ОР), а также подошвы (на всех трех профилях). Эти точки были перенесены на рис. 22 и через них и точку А были проведены сами линии бровки и подошвы. Имея некоторый опыт в работе, линии бровки и подошвы склона можно проводить пря­мо по рисунку горизонталей (но, как показано, не по самим гори­зонталям) без предварительного построения профилей.

Очевидно, что полученные путем графических построений ли­нии бровки и подошвы склона все же являются несколько при­ближенными. Однако проведение границ между различными поч­вами и ПТК прямо по горизонтали искажает действительное по­ложение этих границ. И здесь возникает вопрос, а как вести линию такой границы в том месте, где одна верхняя горизонталь склона, отходя от него на водораздельную поверхность, сменяется сосед­ней нижележащей горизонталью (как на рис. 22 на участке около точки А)? Подобный вопрос неизбежен и при смене нижней го­ризонтали склона. Горизонталь при уходе со склона или при вхо­де в него не всегда делает такой четкий поворот, как в точке А на рис. 22. Например, поворот горизонтали 2 при входе ее в склон с поверхности террасы не дает такой четкой картины, и точка по­дошвы на горизонтали в этом случае определяется менее точно.

Влияние рельефа на формирование ПТК, как указывалось выше, заключается в первую очередь в перераспределении им влаги и тепла.

Поэтому, если при разделении склонов на части по крутизне поверхности встречаются случаи, когда какой-то значительный участок склона мог бы быть выделен по крутизне в определенную категорию, но в его средней части имеется небольшая полоска более пологого склона, выделять эту полоску отдельно нецеле­сообразно, так как стекающая по поверхности влага не успеет


Существенно уменьшить скорость движения и как бы проскочит эту полоску. Также нецелесообразно выделять отдельную не­большую полоску склона с большей крутизной, оказавшейся внут­ри значительной его части, выделяемой в категорию с меньшей крутизной.

Экспозиционные различия по теплообеспеченности на крутых склонах проявляются ярче, чем на пологих, на южных (и юго-западных) и северных (и северо-восточных) лучше, чем на запад­ных и восточных. Поэтому при составлении предварительной кар­ты ПТК крутым склонам северной и южной экспозиций следует давать разные номера. Выпуклые склоны как на профиле, так и плане отличаются от вогнутых по увлажнению, и это тоже надо учитывать при рисовке контуров ПТК.

Мы рассмотрели лишь частные примеры выявления контуров форм и элементов рельефа в условиях эрозионных равнин средней полосы Русской равнины при крупном масштабе картографирова­ния. В иных физико-географических условиях возникнут новые во­просы. Например, в условиях холмисто-грядового моренного релье­фа, чередующегося с водно-ледниковыми поверхностями, где эро­зионная сеть может быть слабо развитой, для первого, наиболее общего разграничения территории на разные природные комп­лексы А. А. Видина (1974) рекомендует раскрасить карту в гори­зонталях по разным высотным уровням. И действительно, этот прием позволяет без особого труда разобраться в сложном «пере­плетении» моренных и водно-ледниковых образований. На морен­ных холмах могут выявиться вершинные поверхности, пологонак-лонные или с мелкими всхолмлениями, а на водно-ледниковых равнинах будут видны террасовидные поверхности разных уров­ней. Впрочем, этот прием ярусной раскраски по горизонталям мо­жет оказаться полезным и на эрозионно-расчлененной террито­рии. В обоих случаях это позволяет выявить ярусность ПТК, в част­ности склоновую микрозональность.

От масштаба карты зависит и ранг ПТК, выделяемого в само­стоятельный контур. Например, на карте масштаба 1: 10000 в пой­ме более или менее значительной реки хорошо читается по гори­зонталям гривистый рельеф, и каждую гриву и межгривное пони­жение (урочища) можно выделить контуром. На картах масштаба 1: 25 000 это уже не всегда возможно и часто выделяется целиком участок гривистой поймы, т.е. целая совокупность взаимосвязан­ных урочищ. На карте же масштаба 1: 200 000 даже целиком всю пойму практически невозможно проследить по горизонталям, так как сечение горизонталей 20 м, а относительные превышения тер­рас над поймой могут составлять 5- 10 м.

В этом случае помогают другие косвенные признаки, читаемые по топографической карте, например граница луга и пашни (хотя пойма может тоже оказаться распаханной, а терраса луговой). Иног-


да вдоль реки на карте показана заболоченность, позволяющая «нащупать» пойму. Может помочь и размещение населенных пунк­тов, которые, как правило, находятся вне поймы. Во всяком слу­чае, многоэтажной застройки на пойме не будет нигде, если толь­ко это не искусственная насыпь на бывшей пойме. Шоссейная до­рога «без нужды» также не пойдет по пойме, а пойдет по террасе; или коренному берегу. Если же она пересекает речную долину, то ее отрезок на пойме выделится знаком насыпи. Скотный двор или водонапорная башня в пойме реки почти однозначно отмечают островок надпойменной террасы, не выразившийся в горизонта­лях карты и т.д.

Рисовка контуров ПТК по топографической основе чаще всего идет параллельно с работой над аэрофото- и космоматериалами, а также над отраслевыми картами, поэтому многие вопросы снима­ются. Отметим лишь, что при работе с топографическими картами среднего и мелкого масштабов хорошо иметь и более крупномасш­табные карты для более уверенной и точной рисовки.

Работа с аэрофото- и космическими материалами и отраслевыми картами. Использование аэрофотоматериалов можно рекомендо­вать как для крупного, так и для среднего масштабов исследова­ний. Космические снимки удобны для работ мелкого и среднего масштабов, а при условии их увеличения и для крупного.

Обычно при крупномасштабных исследованиях используются черно-белые контактные отпечатки аэрофотоснимков разных масш­табов (чаще 1:17 000 и 1:12 000, но возможны и другие - от 1:5000 до 1:60 000) в зависимости от наличия в фондах Госгеонадзора готовых негативов, так как заказывать специально новую аэрофо­тосъемку часто невозможно из-за финансовых соображений. Вы­бираются материалы более свежих полетов, лучше начала лета, когда контрастность в увлажнении разных ПТК фиксируется наи-[ более четко.

На аэрофотоснимках обычно хорошо просматриваются типы местностей со специфичной для них урочищной структурой. Мож­но распознать на них и подурочища, и отдельные крупные фации. На космических снимках, охватывающих большую территорию, видны уже разные ландшафты, приуроченные к определенным тектоническим структурам, или, может быть, «просвечивают» тек­тонические структуры через разный рисунок ландшафтов.

По возможности используются цветные или спектрозональ-ные снимки, особенно для дешифрирования растительности, а также (дополнительно) аэрофотоснимки прежних лет разной дав­ности, по которым можно проследить скорость протекания неко­торых процессов (например, эоловых, эрозионных, заболачива­ния, зарастания, смену угодий, изменений в размещении насе­ленных пунктов и т.д.). Практикуется также просмотр парных сним­ков под стереоскопом. На снимках выявляются контуры, отлича-


Ющиеся по форме, фототону, рисунку (структуре) фотоизображе­ния, его тени.

Выявляются, в первую очередь, естественные границы, свя­занные с изменениями природного характера. Резкая смена фото­изображения по прямолинейным границам часто отражает резуль­таты хозяйственной деятельности человека (смену угодий, полей севооборота и др.). Такие границы интересны как границы произ­водных (антропогенных модификаций) фаций и урочищ, обычно они тоже фиксируются, но иным способом, чем природные (на­пример, точечным пунктиром).

При дешифрировании используются как прямые признаки объектов, непосредственно видимые на аэрофотоснимке, так и косвенные, базирующиеся на закономерных связях, существу­ющих в ПТК. Например, если на террасе отдешифрирован сосно­вый лес, то вполне вероятно, что она песчаная. Или, если распа­ханный участок вблизи бровки балки имеет более светлый тон, чем соседние, то, скорее всего, его почвы значительно эродиро­ваны, и т.д.

Зачастую изменение рисунка либо тона вполне объяснимо и со­ответствует или изменению растительности, или увлажнения, или же слагающих поверхность пород, или сразу нескольких компо­нентов, в чем можно убедиться, сверившись с топокартой и (или) отраслевыми природными картами. Но нередко в камеральных условиях объяснить причину изменения характера изображения на аэрофотоснимке не удается, и расшифровка его откладывается на полевой период.

Результаты дешифрирования вырисовывают на матовой плен­ке, наложенной поверх аэрофотоснимка, мягким простым каран­дашом и (или) гуашью. Можно сразу переносить их на топоосно-ву, дополняя или уточняя те контуры, которые на ней уже были отрисованы по горизонталям как формы и элементы форм релье­фа. Параллельно составляют табличную (рабочую) легенду, где для каждого выделенного и пронумерованного контура раскрывают его основное содержание: местоположение и рельеф, породы, увлаж­нение, почвы, растительность. В примечании указывают, необхо­димо ли полевое уточнение свойств ПТК, и чего именно (опозна­ние слагающих пород, почв и т.д.).

Составление предварительной ландшафтной карты среднего масштаба отличается меньшей степенью детальности дешифриро­вания. Известные трудности возникают при этом в связи с разно-масштабностью материалов. Как правило, масштаб аэрофотосним­ков намного крупнее составляемой карты. В связи с этим удобнее пользоваться не отдельными контактными отпечатками, а накид­ными монтажами или, еще лучше, фотосхемами, либо увеличен­ными космоснимками (и космопланами с нанесенными на них горизонталями), позволяющими обозревать одновременно боль-


; Шую территорию, выявлять на ней природные территориальные комплексы, и укладывать их на топографическую основу избранного масштаба или на наложенную на нее кальку (пленку). Просмотр всей массы контактных отпечатков аэрофотоснимков под стерео­скопом в этом случае практически невозможен из-за слишком боль­шого их количества. Однако в отдельных случаях это вполне целе­сообразно, например при выявлении границ, совпадающих с пе­регибами склонов коренных берегов речной долины, террас и др. Как правило, в учебных планах физико-географов-ландшафто-ведов есть специальные курсы по дешифрированию аэрофото- и космических снимков, поэтому мы не будем на этом останавли­ваться, лишь назовем для интересующихся некоторые источники: Земля - планета людей. Взгляд из космоса. - М.: Варяг, 1995. Дешифрирование многозональных аэрокосмических снимков:

£ Сканирующая система. Фрагмент. Методика и результаты. - Бер­лин: Академи-форлаг. - М.: Наука, 1988.

Альбом образцов топографического дешифрирования аэросним-

| ков // Труды ЦНИИГАиК. - М., 1967. - Вып. 180.

Дешифрирование четвертичных отложений. - М., Л.: Наука,

Очень наглядные иллюстрации результатов дешифрирования аэро-

I, фотоснимков (особенно по горным регионам) приведены М. Н. Пет-русевичем (1962, 1976). Можно назвать также работы В. Г. Госпо-динова (1961), С.П.Альтера (1966), А.А.Видиной (1982) и др.

При любом масштабе работ для наполнения контуров конкрет­ным содержанием одновременно с анализом аэрофото- и космо-материалов используются имеющиеся по изучаемой территории специальные (компонентные) карты: почвенная, четвертичных отложений, дочетвертичных отложений, структурно-тектониче­ские, гидрогеологические, инженерно-геологические, геоморфо­логические, карты (планы) лесной таксации и другие, показыва­ющие растительный покров. Однако растительность - компонент, как правило, наиболее измененный человеком. Эти изменения могут быть недолговечны и случайны, а сами карты (и планы) часто слишком мозаичны, что затрудняет их использование. Поэтому материалы по растительному покрову территории используются уже после всех других. Особое внимание обращается на типы мес­тообитаний, для чего пользуются шкалами Л. Г. Раменского (1971), В. В. Погребняка (в переработке А.А. Видиной, 1974, 1982), эко­логическими рядами (С.В.Викторов, 1979), с тем, чтобы за сегод­няшней картиной сильно измененной растительности разглядеть ее коренные варианты.

В случае несоответствия контуров специальных карт с характе­ром фотоизображения предпочтение отдается аэрофотоматериа­лам, однако возникший вопрос фиксируется для дальнейшего выяснения.


Составленные по аэрофото- и (или) космоматериалам и спе­циальным картам (геологическим, геоморфологическим и др.) предварительные ландшафтные карты имеют, как правило, до­вольно хорошую рисовку контуров, но схематичную легенду, еще недостаточно полную и точную по содержанию.

Однако несмотря на всю неполноту, легенда предварительной ландшафтной карты не должна представлять собой хаотичный пе­речень контуров различного содержания. Уже в подготовительный период надо стремиться систематизировать материал, произвести первоначальную классификацию ПТК, соблюдая структурно-ге­нетический принцип и избегая логических ошибок.

А. А. Видина (1973) по материалам Среднерусской экспедиции географического факультета МГУ разработала типологическую классификацию морфологических частей ландшафтов равнин (уро­чищ, подурочищ) для целей крупномасштабного картографиро­вания в масштабах 1:10 000- 1:100 000. На базе этой классифика­ции можно создать достаточно подробную легенду в текстовом либо табличном варианте. Фрагменты тех и других легенд ландшафтных карт разного масштаба приведены нами в приложениях 3 - 6.

В процессе полевой работы основная задача заключается в рас­крытии содержания выявленных контуров (по их типологическим группам) и в выяснении спорных вопросов, возникших при ана­лизе разнородных материалов. Границы же контуров ПТК обычно мало изменяются после полевых работ, так как аэрофото- и кос-моматериалы позволяют положить их на карту даже с большей степенью точности, чем при непосредственном наблюдении в поле.

По предварительной ландшафтной карте еще до выезда в поле рекомендуется разработать сеть маршрутов и наметить точки ком­плексных описаний. А. А. Видина (1982) считает возможным для круп­ного масштаба работ (1:10 000- 1: 25 000) в лесной зоне средней полосы России задавать одной рабочей паре (специалист и рабо­чий или коллектор) на однодневный маршрут протяженностью 2-3 км 20 - 23 точки комплексного описания (полного на основ­ных точках и сокращенного на картировочных). В лесостепной зоне при большей сложности описания почвенных профилей серых лес­ных почв и черноземов дневная норма снижается до 12- 15 точек на рабочую пару, но одновременно увеличивается длина полевого маршрута до 3 - 4 км. Последнее связано, по нашему мнению, с меньшей сложностью морфологической структуры ландшафтов эрозионно-денудационных равнин лесостепи по сравнению с ланд­шафтами моренных и моренно-водноледниковых равнин лесной зоны, что позволяет делать сеть точек более разреженной.

На 1 км 2 может быть задано от 2 - 3 до 20 - 25 точек. В среднем необходимая плотность точек на 1 км 2 в лесной зоне составляет 10-15, в лесостепной 6 - 8, а на ключевых участках до 10-12 точек и больше. Это несколько более высокие нормы, чем приве-


I денные ниже расчеты, заимствованные из опыта почвенной съем-I ки. Может быть, это и правомерно, так как ландшафтная съемка, i по-видимому, сложнее почвенной, по крайней мере, по мнению [" И. И. Мамай, указанные выше нормы занижены. Ландшафтоведы; давно уже отказались от практиковавшегося ранее в отраслевых | исследованиях регулярного размещения точек по сети квадратов, ) так как использование аэрофотоснимков, хороших топографиче­ских карт и других материалов и составление предварительных ланд-| шафтных карт позволяет сделать эту сеть более рациональной - { разреженной на крупных контурах относительно однородной тер-[ ритории и более густой на площадях с мелкоконтурными и раз-I ными по характеру ПТК. Однако использование компьютерной тех-I ники при составлении ландшафтных карт вновь вынуждает нас [признать правомерность метода регулярного размещения точек [ наблюдения.

Нормативы отдельных видов работ ландшафтных исследований I еще не выработаны. Для комплексного дешифрирования аэрофото-I снимков при составлении ландшафтной карты масштаба 1: 10 000 на среднеосвоенную территорию средней полосы Русской равни­ны А. А. Видина (1974) определяет норму в 5 -8 км 2 (или 5 -8 дм 2 в масштабе карты) на одного человека в день. Наш опыт работы; показал, что для масштаба 1: 100 000 можно за это же время отде-шифрировать 100 км 2 (или 1 дм 2 в масштабе карты). Но как бы ни были значительны затраты времени на составление предваритель­ных ландшафтных карт, они оправдываются существенным повы­шением качества всей работы в целом и более сжатыми сроками полевых работ.

Полевая документация

Фиксация материалов полевых наблюдений производится в полевом дневнике, а также в журналах, бланках и прочих доку­ментах, которые разрабатываются исходя из целенаправленно­сти, масштаба работ и других специфических особенностей экс­педиции.

Дневник (наряду с полевой картой и бланками) - один из | основных документов, требующих тщательного хранения и акку-I ратного обращения. На правой стороне страниц простым мягким [ карандашом предельно четко ведутся текстовые записи по ходу [ наблюдений, на левой стороне делаются зарисовки, составляются [ схематические планы, колонки геологических обнажений, запи-I сываются фотокадры, вносятся поправки, относящиеся к тексту правой стороны.

Полевой дневник в первый же день работы должен иметь за-I полненный титульный лист, на котором указываются: название


Организации, экспедиции, номер полевого дневника, фамилия, имя, отчество исследователя, дата начала ведения дневника и но­мер точки, с которой начата работа, а позже - дата окончания работы и номер последней точки. В конце титульного листа запи­сывается почтовый адрес и телефон для того, чтобы в случае уте­ри дневника нашедший мог бы связаться с его автором. По окон­чании дневника в начале или в конце его дается «Содержание» с названиями маршрутов и перечнем точек, описанных в каждом из них. Впрочем, лучше «Содержание» составлять в процессе полевых работ, по мере окончания каждого из маршрутов, с указанием страниц (дневник должен быть заранее пронумерован).

Если основная часть полевого материала документируется на бланках, то в дневниках записываются лишь специализированные точки (см. раздел 3.7), наблюдения по маршруту между точками, поконтурная характеристика выявленных ПТК, более сложных, чем фация (она описывается на бланке). Необходим ежевечерний просмотр полевых записей с целью контроля их полноты и пра­вильности и первичных обобщений материала.

Обычно при работе в среднем и особенно в крупном масштабах наблюдения на точках носят массовый характер, и их фиксация производится на бланках. Преимущество бланков перед полевым дневником заключается в строго определенном перечне фикси­руемых сведений. Бланк - своего рода сокращенная программа наблюдений. Чем строже будет соблюдаться требование едино­образия и сравнимости собранного материала, тем более пра­вильные и точные выводы могут быть сделаны на основании их обработки. Другое преимущество бланков - удобство «сортиров­ки» материала по нужным признакам описанных фаций. Недостат­ки бланка - его привязанность к «точке» (фации) и некоторая его «формалистичность». Последнее качество уже упоминалось как по­ложительное, помогающее обработке полевого материала, но жест­кая форма не всегда вмещает в себя все. Обстановка может требо­вать записей дополнительных фактов, не предусмотренных графа­ми бланков. Вот почему даже при наличии бланков ведение поле­вого дневника остается обязательным для исследователя.

Форма бланка (бланков) вырабатывается в экспедиции в под­готовительный период или заимствуется из имеющихся образцов. Она может и должна изменяться в зависимости от направления исследований и от условий района работ. Применение универсаль­ных бланков «на все случаи жизни» неудобно. Однако разнообра­зие форм бланков не должно быть беспредельным, иначе матери­алы полевых исследований различных экспедиций могут оказаться плохо сопоставимыми. Чтобы получить сравнимые материалы, не­обходима максимально однородная информация. И в дневнике, и в бланках нельзя ничего стирать, можно лишь зачеркивать и пи­сать заново. Нельзя уничтожать бесследно записи, показавшиеся


I ошибочными, чтобы не лишить себя возможности вновь подумать | над неясными вопросами. К тому же правка по стертому может I вызвать у кого-либо сомнение в достоверности написанного. По-| левой бланк, полевая карта, дневник - это документы и отноше-[ ние к ним должно быть соответствующим.

3.4. Рекогносцировка и выбор участков для детальных исследований Прежде чем начать полевые исследования, руководство экс-едиции проводит предварительную разведку - рекогносцировку. Исследования мелкого масштаба, как правило, охватывающие весьма обширные территории, нередко проводятся без рекогно-i сцировки, так как сами они носят характер маршрутных наблюде-рний, в меньшей степени - ключевых. Трудно предпослать этим I исследованиям еще более быстрый предварительный осмотр тер-| ритории. В этом случае наиболее эффективны аэровизуальные на-I блюдения с самолета или вертолета, но это далеко не всегда воз-I можно.

При среднемасштабных исследованиях рекогносцировка необ-■ ходима.

Первая ее задача - предварительное ознакомление с террито-I рией и выбор ключевых участков, подлежащих детальному изуче-? нию и охватывающих по возможности все разнообразие ландшаф-[ тов, представленных на изучаемой территории.

Вторая задача - выявление степени соответствия картографи-» ческого и аэрофотоматериала и сведений, полученных из литера-г турных и фондовых источников, действительной обстановке на I местности. Это может касаться и границ лесных массивов, пашни, | луговых угодий, и наличия или отсутствия дорог и населенных | пунктов, и характера грунтов и т.д. Если в процессе такой провер-} ки окажется, что имеющиеся материалы полноценны и им можно доверять, то это существенно облегчит работу и, возможно, по-" зволит сделать несколько более разреженной сеть маршрутов, за­планированную ранее. В противном случае объем работ увеличи­вается.

Виды изображений земной поверхности

Перед принятием решения о строительстве новых заводов, школ, спортивных учреждений, о прокладке дорог, о размещении сельскохозяйственных земель необходимо иметь изображение данной местности.

Небольшую по площади местность можно нарисовать или сфотографировать, но многие объекты земной поверхности по таким изображениям будет тяжело определить.

Наиболее распространенными изображениями земной поверхности являются аэрофотоснимки, снимки из космоса, карты и планы местности.

План – чертеж уменьшенного изображения местности, выполненный в условных знаках в крупном масштабе (обычно 1: 5000 и крупнее). Обычно планы составляют на небольшой участок местности, размером в несколько квадратных километров, кривизна поверхности Земли при этом не учитывается. Первые в истории карты были планами. Планы используются в самых разных отраслях промышленности и сельского хозяйства. При строительстве зданий, прокладке дорог и коммуникаций без них не обойтись.

Размещенные на поверхности объекты (леса, реки, поселки, поля и т.п.) будет видно лучше, если участок фотографировать сверху, например с самолета. Такое изображение местности называется аэрофотоснимок. На нем объекты похожи на их истинный вид на местности, видны их размеры и взаимное расположение. Между планом и аэрофотоснимком существует много различий. План местности – это чертеж на бумаге, изображающий небольшой участок земной поверхности в уменьшенном виде. От других изображений поверхности план отличается тем, что все объекты на ней показаны условными знаками. В целом удобнее и информативнее использовать план.

Рис. 2. Аэрофотоснимок и план местности ()

Направления на плане указывают стрелкой, острие которой всегда показывает на север. Обычно север на плане бывает наверху, юг – внизу, восток – справа, запад – слева. По плану можно определить взаимное положение предметов по сторонам горизонта, измерить расстояние между ними, пользуясь единым масштабом.

Рис. 4. План местности и условные знаки к нему

Условные знаки плана, во-первых, простые, во-вторых, непохожие друг на друга, в-третьих, напоминают самые предметы. При таких условиях они понятны всем, кто читает план. Так, реки и озера показаны голубым цветом воды, а леса – зеленым – цветом растительности. Для полей, огородов специального знака нет, поэтому такие участки оставляют на плане белыми. Знак лугов напоминает стебли травы. Пески изображены коричневыми точками. Небольшие ручьи, дороги, узкие улицы изображают условными знаками в виде линий. Такие условные знаки являются общепринятыми. Их используют на всех планах местности.

Группы условных знаков :

1. Площадные

Рис. 6. Площадные условные знаки ()

2. Внемасштабные

Рис. 7. Внемасштабные условные знаки ()

3. Линейные

Рис. 8. Линейные условные знаки ()

Планы местности активно используются в различных направлениях хозяйственной деятельности человека.

Домашнее задание

Параграф 4.

1. Что такое план местности?

Список литературы

Основная

1. Начальный курс географии: Учеб. для 6 кл. общеобразоват. учреждений / Т.П. Герасимова, Н.П. Неклюкова. – 10-е изд., стереотип. – М.: Дрофа, 2010. – 176 с.

2. География. 6 кл.: атлас. – 3-е изд., стереотип. – М.: Дрофа, ДИК, 2011. – 32 с.

3. География. 6 кл.: атлас. – 4-е изд., стереотип. – М.: Дрофа, ДИК, 2013. – 32 с.

4. География. 6 кл.: конт. карты. – М.: ДИК, Дрофа, 2012. – 16 с.

Энциклопедии, словари, справочники и статистические сборники

1. География. Современная иллюстрированная энциклопедия / А.П. Горкин – М.: Росмэн-Пресс, 2006. – 624 с.

Литература для подготовки к ГИА и ЕГЭ

1. География: начальный курс. Тесты. Учеб. пособие для учащихся 6 кл. – М.: Гуманит. изд. центр ВЛАДОС, 2011. – 144 с.

2. Тесты. География. 6-10 кл.: Учебно-методическое пособие / А.А. Летягин. – М.: ООО «Агентство «КРПА «Олимп»: «Астрель», «АСТ», 2001. – 284 с.

Материалы в сети Интернет

1. Федеральный институт педагогических измерений ().

2. Русское Географическое Общество ().

4. Ukrmap — Украинские учебники ().


Аэрофотосъемка Аэрофотосъемка – комплекс работ для получения топографических планов, карт и ЦММ с использованием материалов фотографирования местности с летательных аппаратов или из космоса. Материалы аэросъемки являются основой для составления планшетов, планов, схематических карт и других графических документов, служащих для решения оперативных задач и для планирования долговременных мероприятий в лесном хозяйстве. Виды аэрофотосъемки (по конструктивным особенностям АФА) 1. Кадровая (серия отдельных кадров); 2. Щелевая (щелевой снимок - в виде сплошной «ленты» вдоль маршрута 3. Панорамная (прямоугольные снимки с большим поперечным углом поля зрения) (по высоте полета летательного аппарата) 1. Космофотосъемка земной поверхности (первые сотни км) выполняется с искусственных спутников Земли. 2. Аэрофотосъемка (АФС) выполняется с самолетов и вертолетов: 2 а – высотная (5-10 км). 2 б – стандартная (1-5 км). 2 в – низковысотная (м)


(по использованию зон спектра) 1. Цветная – снимки получают в естественных цветах местности; 2. Черно-белая – снимки получают в оттенках серого. Это позволяет снять излишнюю пестроту изображения территории, сохраняя фототон – интенсивность серого цвета и фактуры изображения. 3. Спектрозональная – с помощью фильтров получают снимки определенных частей спектра и раскрашивают их в условные цвета. Технология позволяет совмещать и комбинировать изображения отдельных частей видимого спектра. 4. Радиолокационная – получение изображения по отраженным от точке местности радиоволнам – всепогодная съемка. 5. Инфракрасная (тепловая) – с помощью тепловизоров. 6. Многозональная –сразу несколькими синхронно работающими камерами. (по способу организации работ) 1. Маршрутная. Разновидность плановой съемки. Производится вдоль определенных направлений, долин рек, горных дорог и т.д. 2. Площадная (многомаршрутная) –основной вид съемки при изысканиях площадных и линейных объектов. 3. Комбинированная. Сочетание АФС с одним из видов наземной топографической съемки..



(по положению оптической оси АФА) 1. Плановая. Фотографирование производится в вертикальном направлении, сверху вниз, с отклонением от вертикали не более 3º. Этим видом съемки покрывают большие территории, пролетая над ней галсами (залетами). Обычно залеты имеют широтную ориентировку. Это наиболее часто используемый вид съемки. I-1 I-2 I-4 I-6 I-7 I-8




Планово-высотное обоснование аэросъемки Плановое положение контурных точек определяют в камеральных условиях фототриангуляцией. На местности во время полевых наземных геодезических работ определяют координаты соответствующего числа точек местности, необходимого для создания триангуляции. Опознавательный знак – контурная точка аэроснимка, координаты которой определены на местности в результате привязки к пунктам ГГС. Плановые опознаки совмещают с четкими, легко опознаваемыми на аэроснимке контурами местности. Местоположение опознаков тщательно определяют и накалывают на аэроснимке.


АЭРОФОТОСЪЕМОЧНОЕ ОБОРУДОВАНИЕ АЭРОСЪЕМОЧНЫЙ ПРОЦЕСС Аэрофотоустановка – крепления АФА к корпусу летательного аппарата; амортизирует фотокамеру. Управляющий (командный) прибор: дистанционное управление и контроль за работой АФА. Навигационное оборудование (радио- или лазерный высотомер: определяет высоту полета; статоскоп: определяет колебания высоты полета). Аэрофотосъемочный процесс включает в себя: Подготовительные работы: определение объектов и сроков проведения АФС. Летно-съемочные работы: фотографирование с летательного аппарата в благоприятное для съемок время. Фотолабораторные работы состоят в проявлении аэрофильмов и получении на их основе аэроснимков и диапозитивов.


Накидной монтаж аэроснимков получают, накладывая их друг на друга перекрывающимися частями. Репродукция накидного монтажа – это копия накидного монтажа на фотобумаге. С помощью накидного монтажа оценивают качество летно-съемочных работ. Определяют: -отклонения фактических продольных и поперечных взаимных перекрытий смежных аэрофотоснимков от допустимых значений (допустимые минимальные перекрытия: 35% для продольного и 15% для поперечного); -- неизменность высоты фотографирования (допустимые изменения высоты полета – до 5%); -- прямолинейность маршрута (допустимые отклонения маршрута от прямой – не более 3% от общей его длины).


АЭРОФОТОСНИМОК Аэрофотоснимок – это центральная проекция участка местности, которая образуется связкой проектирующих образуется связкой проектирующих лучей. лучей. Точка пересечения оптической оси аэрофотоаппарата с плоскостью светочувствительного слоя (О) называется главной точкой и принимается за начало прямоугольной системы координат снимка. S - центр проекции (задняя узловая точка аэрофотоаппарата); Аа, Be, Oo, Cc. Dd - световые лучи; Аа, Be, Oo, Cc. Dd - световые лучи;


О - главная точка снимка; So = t - фокусное расстояние объектива АФА; SO - высота фотографирования; о, в. о, с, d - изображение на светочувствительном слое. Проекция, в которой изображение предметов на плоскости предметов на плоскости получается с помощью проектирующих лучей, пересекающихся в одной точке, называется центральной, а точка пересечения этих лучей – центром проекции.


Перекрытие АФС Перекрытие аэрофотоснимка – "общая" часть земной поверхности, изображенная двух соседних снимках. По ходу залёта перекрытие должно составлять не менее 60%, по соседним залетам – 15% (ГОСТ) Масштабы АФС Ограничение накладывает разрешающая способность глаза (0,1–0,2 мм). Поэтому для решения различных задач используют АФС разного масштаба. По нормативам масштаб используемых АФС должен быть по крайней мере в 2 раза крупнее масштаба работ. 1. Региональные задачи – м-б АФС 1: – 1: (космофотосъемка). 2. Среднемасштабные геологосъемочные работы – м-б АФС 1: – 1: (высотная и стандартная аэрофотосъемка). 3. Крупномасштабные и детальные геологосъемочные работы – м-б АФС 1: – 1: (низковысотная аэрофотосъемка).


Геометрия снимка 1. Рабочая часть и поля снимка. На полях (1 а) помещают номер снимка и дополнительную информацию (номер заказа, дату и время съемки, пузырьковый уровень). 2. Главная точка снимка. Изображение точки поверхности, куда нацелена оптическая ось камеры. 3. Координатные вершины снимка. Метки, помогающие установить главную точку снимка. 4. Базис снимка. Расстояние между главной точкой текущего снимка и положением на нем главной точки предыдущего снимка. 5. Точка надира. Изображение на снимке точки на поверхности земли, находящейся точно под самолетом. 6. Направление съемки. Линия, проходящая через главную точку и точку надира. Самолет не может лететь абсолютно ровно, ветры крутят его как хотят, т.е. в момент съемки самолет всегда в той или иной степени наклонен: тангаж кренрысканье


Искажения на АФС 1. Искажения, связанные с непостоянством масштаба Снимок представляет собой центральную проекцию, а не плановую, как карта. Стандартный масштаб снимка 1 / М = f / H, где f – фокусное расстояние камеры, H – высота съёмки над местностью Очевидно, что SA = SB > H, поэтому M H H, поэтому M H


2. Искажения из-за наклона самолета Масштаб объектов А и Б одинаков В идеальном случае, т.е. когда самолет расположен совершенно горизонтально и ориентирован строго по курсу, центральная точка снимка (o) совпадает с точкой надира (n). В реальном полете так не бывает, поэтому центральная точка снимка "гуляет" вокруг точки надира. кабрировании пикировании При тангаже самолет либо задирает нос (кабрирование), либо опускает его (пикирование). При кабрировании центральная точка "уходит" вперед от точки надира, из-за чего масштаб части АФС, расположенной по ходу полета, становится мельче. При пикировании центральная точка "уходит" назад от точки надира, из-за чего масштаб части АФС, расположенной по ходу полета, становится крупнее. n,o n о n о БА Масштаб объекта Б мельче, чем масштаб объекта А Б А Б А Масштаб объекта Б крупнее, чем масштаб объекта А


Масштаб объектов А и Б одинаков левом крене мельче правом крене При крене самолет качается относительно продольной оси (качает крыльями). При левом крене центральная точка "уходит" вправо от точки надира, из-за чего масштаб части АФС, расположенной справа по лёту, становится мельче. При правом крене всё наоборот. n,o n о n о БА Масштаб объекта Б мельче, чем масштаб объекта А Б А Б А Масштаб объекта Б крупнее, чем масштаб объекта А При рыскании изменяется угол между продольной осью самолета и направлением полета. Это не приводит к дополнительным искажениям масштаба, в пределах одного снимка, однако зона перекрытия становится трапециевидной, что затрудняет дальнейшую интерпретацию.


3. Искажения, связанные с рельефом При фотографировании территории с расчлененным рельефом, разные точки находятся на меняющемся расстоянии от центра проекции, что приводит к искажению изображения по сравнению с плановой проекцией. Точки, находящиеся на возвышенностях, на снимке "отодвигаются" дальше от главной точки снимка, а находящиеся в понижениях – "приближаются" к ней. При этом, естественно, искажается и масштаб: объекты на возвышенностях выглядят крупнее, объекты в низинах – мельче. r – смещение на снимке до положения на плановой проекции (поправка), r – расстояние от точки до главной точки снимка, Н – средняя высота съемки над местностью, h – превышение точки над средней высотой местности.




ЭЛЕМЕНТЫ ОРИЕНТИРОВАНИЯ СНИМКОВ Элементы ориентирования аэрофотоснимка – величины, определяющие его положение в момент фотографирования относительно выбранной пространственной прямоугольной системы координат. Различают элементы внутреннего и внешнего ориентирования снимка.


ЭЛЕМЕНТЫ ВНУТРЕННЕГО ОРИЕНТИРОВАНИ АЭРОФОТОСНИМКОВ. Три элемента внутреннего ориентирования – фокусное расстояние фотокамеры f, координаты x 0, y 0 главной точки о. Они определяют положение центра проекции относительно аэрофотоснимка. S f y o o" x y0y0 x0x0


ЭЛЕМЕНТЫ ВНЕШНЕГО ОРИЕТИРОВАНИЯ АЭРОФОТОСНИМКОВ Элементы внешнего ориентирования позволяют установить положение снимка (связки), которое она занимала в момент фотографирования относительно заданной пространственной прямоугольной системы координат. Для снимков, полученных АФА, на практике используют две таких системы. Рис.1 Рис.2


В первую систему ЭВО (рис. 1) входят координаты Xs, Ys, Zs точки фотографирования, а также углы поворота снимка α, ω и κ. Продольный угол наклона снимка α образуется осью Z΄ и проекцией главного луча Sо на плоскость X΄ Z΄. Поперечный угол наклона снимка ω заключён между главным лучом Sо и его проекцией на плоскость X΄ Z΄. Угол поворота снимка κ образуют ось у снимка и след плоскости, проходящей через главный луч Sо и ось Y΄ (в этой плоскости находится угол ω). На рис. 1 углы κ и ω положительные, угол α - отрицательный. Вторая система (рис.2) ЭВО содержит: координаты Xs, Ys, Zs точки фотографирования; t – дирекционный угол оптической оси фотокамеры – он образуется следом плоскости главного вертикала W и положительным направлением оси X΄; ε - угол наклона снимка, находится в плоскости главного вертикала между главным и надирным лучами; κ – угол поворота в плоскости снимка, образуется главной вертикалью и осью y плоской системы координат x y.


ОСНОВЫ СТЕОФОТОГРАММЕТРИИ Главной задачей фотограмметрии в применении ее для топографии является определение координат точек местности по аэрофотоснимкам. Используя одиночный аэрофотоснимок, можно определить лишь плановое положение точек, изобразившихся на нем. Для определения высот точек местности необходимо иметь два аэрофотоснимка данного участка, полученных из двух разных точек или с двух концов базиса фотографирования. Два снимка с изображениями одного и того же участка местности, полученные с двух точек пространства, имеющие между собой перекрытие не менее 55%, называются стереоскопической парой снимков (стереопарой). Снимок, полученный с точки фотографирования S 1, называется левым, а с S 2 – правым.


На рис. изображена пара снимков в положении, которое она занимала в момент фотографирования. А – точка местности, изобразившаяся на снимках в точках а 1 и а 2. Они называются соответственными или одноимёнными точками. Проектирующие лучи S 1 A и S 2 A, проходящие через эти точки называются соответственными или одноимёнными проектирующими лучами. A a1a1 a2a2 A S1S1 S2S2 S 2 a 2 W1W1 W2W2 bпbп


Расстояние В между точками фотографирования S 1 и S 2 – базис фотографирования. Плоскость W A, проходящая через базис и точку А местности есть базисная плоскость. Плоскости, проходящие через базис фотографирования и главные лучи являются главными базисными плоскостями (W 1 - левого W 2 - правого снимков). Любая пара соответственных лучей пересекается, если снимки занимают положение, которое было в момент фотографирования. Совокупность их точек пересечения образует поверхность. Ее называют стереомоделью или просто моделью местности. Если одна из связок (например, правая) поступательно перемещается вдоль базиса из положения S 2 в S 2, одель при этом не разрушится, но изменится ее масштаб. Расстояние b п между центрами проекций двух связок, по которым построена модель, называется базисом проектирования. Если одна из связок (например, правая) поступательно перемещается вдоль базиса из положения S 2 в S 2, то модель при этом не разрушится, но изменится ее масштаб. Расстояние b п между центрами проекций двух связок, по которым построена модель, называется базисом проектирования. Ее масштаб вычисляется по формуле: i/t = b n B i/t = b n B


ПРОДОЛЬНЫЙ И ПОПЕРЕЧНЫЙ ПАРАЛЛАКСЫ При измерении стереопары кроме координат точек используют разности этих координат на обоих снимках, называемые параллаксами При стереосъёмке точки объекта изображаются в разных частях левого и правого снимков. Например, на левом снимке точка объекта изобразилась в точке m. В системе координат o" Л x Л y Л этого снимка она будет иметь координаты x Л, y Л. На правом снимке та же точка объекта изобразилась в точке m", и в системе координат o" П x П y П она имеет координаты x П, y П.


По координатам x Л, y Л нанесём на правом снимке положение точки m. Смещения точки m" относительно точки m вдоль координатных осей х и у являются, соответственно, продольным (буква р) и поперечным (буква q) параллаксами. Их величины рассчитывают по формулам: p = x Л - x П, q = y Л - y П. Продольный параллакс р является базисом фотографирования b в масштабе съёмки данной точки. Это видно из формулы, где В - базис фотографирования, Н - высота фотографирования, f - фокусное расстояние фотокамеры, m - знаменатель масштаба съёмки. Продольный параллакс р имеет переменную величину по площади снимка из-за изменений высоты фотографирования Н в зависимости от рельефа местности. Следовательно, измерив на стереопаре снимков продольные параллаксы, можно рассчитать высоты на местности. Поперечный параллакс q возникает из-за различия в величинах элементов внешнего ориентирования левого и правого снимков. B X = X Sп - X Sл не изменяет координат у П по сравнению с координатами у Л и, следовательно, не вызывает появления поперечного параллакса. B Y = Y Sп - Y Sл изменяет ординаты на правом снимке на величину. B Z = Z Sп - Z Sл изменяет масштаб правого снимка относительно левого. Разность углов w Л и w П, a Л и a П, k Л и k П вызывают изменения координат на снимках относительно друг друга.


Получение стереоскопического эффекта Стереоскопический эффект – объемное видение взаимного расположения объектов – получается из-за того, что каждый из двух глаз видит взаимное расположение объектов под своим углом зрения. левый правый Мозг обрабатывает информацию, создавая общую объемную картину. Важно, что при этом зрачки находятся в постоянном движении, и эта объемная картина непрерывно корректируется.


Из-за взаимного перекрытия, на двух соседних снимках будет изображен один участок местности, снятый с двух разных точек. Если создать такие условия, при которых каждое из изображений будет видеть только один глаз, то мозг обработает эту информацию, создавая объемную картину рельефа территории. Зона перекрытия на рабочих частях снимков Задачу разделения изображений (левый глаз видит только левый снимок, а правый глаз – только правый) решает стереоскоп: 1 – большое зеркало; 2 – линза; 3 – малое зеркало; 4 – место для носа 1234 Стереоскоп зеркально- линзовой


Кроме термина стереомодель, используют другой термин - стереоэффект. Различают прямой, обратный и нулевой стереоэффекты. Прямой стереоэффект возникает при рассматривании левого снимка левым глазом, а правого - правым (рис. а, перекрывающиеся части снимков покрыты сетчатым полем). Если снимки поменять местами (рис. б), то физиологические параллаксы поменяют знак, и будет наблюдаться обратный стереоэффект, т.е., например, возвышенности будут восприниматься как углубления. Если оба снимка повернуть на 90 0 и сместить вверх-вниз относительно друг друга (рис. в), то будет наблюдаться нулевой стереоэффект, т.е. два плоских изображения сольются в одно плоское. Это объясняется тем, что вдоль глазного базиса установятся ординаты точек, разности которых вызываются разными положениями снимков в пространстве, а не рельефом местности. Измерения стереопары выполняют при прямом стереоэффекте.


Фотосхема. Фотоплан Некоторые технологические варианты стереотопографической АФС предусматривают составление фотопланов или ортофотопланов. Фотоплан (ортофотоплан) - это фотографическое изображение местности, составленное из трансформированных снимков (ортофотоснимков) одного масштаба. Фотографическое изображение местности, составленное из плановых снимков, называется фотосхемой. Их точность ниже точности фотопланов, поэтому они используются для приближенных количественных оценок в лесоустройстве, землеустройстве и т.д. Фотоплан (ортофотоплан) - это фотографическое изображение местности, составленное из трансформированных снимков (ортофотоснимков) одного масштаба. Фотографическое изображение местности, составленное из плановых снимков, называется фотосхемой. Их точность ниже точности фотопланов, поэтому они используются для приближенных количественных оценок в лесоустройстве, землеустройстве и т.д. Фотосхемы бывают одномаршрутные и многомаршрутные. Трансформирование – процесс преобразование фотоснимков из наклонных в горизонтальные с одновременным приведением их к заданному масштабу. Принцип трансформирования состоит в том, что по снимку можно восстановить связку проектирующих лучей такой, какой получался в АФА при съемке, а при помощи этих лучей спроектировать изображение снимка на горизонтальную поверхность. Прибор, с помощью которого реализуется, технология трансформирования называется фототрансформатор. В зависимости от целевого назначения различают фотопланы топографические и специальные. Первые составляют в общегосударственной разграфке с соблюдением инструкций и наставлений по топографическим съемкам. Специальные фотопланы составляют, как правило, в произвольной разграфке, и они должны удовлетворять требованиям ведомственных инструкций.


Фотопланы составляют из трансформированных снимков путем монтажа их на основе по опорным точкам. Фотоплан составляют на жесткой основе (бумаге, наклеенной на алюминий, авиационной фанере или пластике), на которой по координатам в заданном масштабе нанесены опознаки, пункты геодезической сети и трансформационные точки. Выполняют это либо путем монтажа отдельных фотоснимков либо путем оптического монтажа с одновременным трансформированием по зонам. Основными процессами составления первым из названных способов являются: подготовительный, монтаж снимков, контроль качества фотоплана и его оформление. Подготовительные работы включают: подбор фотоснимков по трапециям и по маршрутам в пределах трапеции; контроль их качества и точности трансформирования; пробивку пуансоном отверстий диаметром около 1 мм на всех опорных, трансформационных точках, и пунктах геодезической сети.


Монтаж начинают с левого снимка северного маршрута. Его укладывают на основу, усредняют погрешности совмещения центров отверстий с точками на основе и закрепляют грузиками. Затем на основу укладывают второй снимок, так же совмещают отверстия с опорными точками и, закрепив его, проверяют сходимость контуров в зоне перекрытия. Для этого накалывают четкий контур на верхнем снимке и проверяют, где он оказался на нижнем снимке. Отклонение накола от контура не должно превышать 0.7 мм. После этого разрезают оба снимка одновременно примерно посередине продольного перекрытия. Линия пореза не должна проходить через ответственные контуры и вдоль линейных объектов. Обрезки от каждого снимка сохраняют для последующего контроля, а соответствующие части первого и второго снимков наклеивают на основу. Аналогичные операции выполняют при соединении второго и последующих снимков маршрута, а также при монтаже снимков смежных маршрутов. Но в последнем случае контроль сходимости контуров, а также порез, осуществляют и по поперечным перекрытиям.


Дешифрирование АФС Под дешифрированием понимается выявление, распознавание и определение характеристик объектов местности, изобразившихся на фотоснимках. Виды дешифрирования: - топографическое; - специальное (с/х, лесное, геологическое, экологическое, военное, гидрологическое и т. д.). Топографическое - показывает информацию об элементах на поверхности Земли (количественно и качественно). Специальное - позволяет проводить региональное и топологическое районирование местности для изучения процессов, происходящих на поверхности Земли для решения специальных задач. Методы дешифрирования: а) полевое; б) аэровизуальное; в) камеральное; г) комбинированное; Дешифровочные признаки: прямые, косвенные, комплексные.


Прямые - те свойства объектов, которые передаются непосредственно и воспринимаются дешифровщиком однозначно. К прямым относятся: форма, размер, тень, фототон, структура, протяженность. Косвенные дешифровочные признаки указывают на наличие или характеристику объекта, не изобразившегося на снимке или неопределённого по прямым признакам, а также устраняют многозначность или неопределённость прямых признаков. Комплексные дешифровочные признаки - это сочетание прямых и косвенных признаков. Топографическое дешифрирование выполняют с целью выявления, распознавания и определения характеристик объектов местности, которые должны наноситься на план в соответствии с требованиями действующих условных знаков. Дешифрирование снимков в процессе обследования местности в натуре называется полевым. Распознавание на фотоизображениях объектов и контуров без обследования их в натуре называется камеральным дешифрированием. В зависимости от топографической изученности картографируемого района и принятой технологии работ полевое дешифрирование проводится до камерального или после него.

Аэрофотоснимок теоретически и практически резко отличается от карты, например, по внешнему виду. Вместе с тем карта и аэрофотоснимок имеют много общего, так как оба эти документа являются изображением местности. Это изображение как на карте, так и на аэрофотоснимке получено в определенном масштабе, которому свойственны размеры изображений тех или иных топографических объектов.

Существенное отличие аэрофотоснимка от топографической карты вытекает из геометрической сущности их получения.

Топографическая карта – ортогональная проекция местности (рис.99, а), т.е. такая проекция, в которой изображение объектов местности на плоскости получают с помощью проектирующих лучей, перпендикулярных к плоскости проецирования.

Рис. 99. Проекция: а) ортогональная; б) центральная

Ортогональная проекция характеризуется двумя основными свойствами: расстояния на карте пропорциональны горизонтальным проложениям соответствующих расстояний на местности; углы с вершинами в любой точке карты равны соответствующим горизонтальным углам на местности.

В отличие от карты на аэрофотоснимках изображение объектов местности строится проектирующими лучами, пересекающимися в объективе аэрофотоаппарата.

Проекция, в которой изображение предметов на плоскости получается с помощью проектирующих лучей, пересекающихся в одной точке, называется центральной (рис.99, б), а точка пересечения этих лучей – центром проекции. Следовательно, изображение аэрофотоснимка – центральная проекция местности.

Лекция 17. Фототопографические съемки (продолжение)

17.1.Летносъемочные работы

17.2. Масштаб аэрофотоснимка

17.3. Смещение точки на снимке за счет рельефа

17.4. Трансформирование аэрофотоснимков

17.5.Сгущение планов – высотного обоснования аэросъемки

17.6 Дешифрирование аэрофотоснимков

17.7 Создание топографических карт по аэрофотоснимкам

17.8. Вопросы для самоконтроля


Летносъемочные работы

Как правило аэрофотосъемку выполняют в более мелком масштабе по сравнению с заданным масштабом изготовляемой карты или плана.



Аэрофотосъемку выполняют так, чтобы продольное перекрытие было не менее 60%, а поперечное не менее 40%.

Для обеспечения заданной величины перекрытий необходимо соблюдать базис фотографирования. Базисом фотографирования называется расстояние, которое пролетает самолет между двумя соседними точками фотографирования. Базис фотографирования вычисляется по формулам:

,

,

– продольный базис фотографирования по маршруту;

– расстояние между осями двух смежных маршрутов;

– размеры продольной и поперечной стороны аэрофотоснимка;

– знаменатель масштаба аэрофотосъемки.

Для облегчения вождения самолета и захода его с маршрута на маршрут заранее намечают на карте хорошо видимые с воздуха ориентиры.

После выполнения аэрофотосъемки, заснятые кассеты обрабатывают, и с полученных после проявления и закрепления негативов путем контактной печати изготавливают аэрофотоснимки.

Для проверки летносъемочных работ выполняют накидной монтаж, представляющий собой приближенное соединение аэрофотоснимков по их одноименным контурам в одну сплошную картину заснятой местности.

Оценка качества летносъемочных работ выполняется по следующим критериям:

1) по качеству фотографического изображения;

2) величине продольного и поперечного перекрытия;

3) уклонению оси фотоаппарата от вертикали;

4) прямолинейности маршрута;

5) уклонению от заданной высоты полета самолета.

Выявленные недостатки аэрофотосъемки устраняются. Накидной монтаж фотографируют в мелком масштабе – получают репродукцию накидного монтажа. Её используют для предварительного изучения местности.

Масштаб аэрофотоснимка

Аэрофотоснимок горизонтального участка плоской местности, полученный при отвесном положении оптической оси АФА, представляет собой контурный план этой местности пригодный для различных измерений.

Рис. 100. Масштаб горизонтального аэрофотоснимка

Масштаб такого аэрофотоснимка (рис. 100) называется горизонтальным, выражается отношением

,

где m – знаменатель численного масштаба аэрофотоснимка; – отрезок на снимке; ОА – отрезок на местности;f k – фокусное расстояние АФА; H – высота полета самолета.

Если же оптическая ось отклонится от отвесного положения, то полученный аэрофотоснимок будет иметь в каждой своей точке разный масштаб. В этом случае можно говорить только о среднем масштабе снимка.