Сильная коррозия. Коррозия металлов. Влияние окружающей среды при эксплуатации

Все мы в своей жизни периодически сталкиваемся с различными видами коррозий. Бывают коррозии металла, бетона и некоторых видов пластмасс. Что бы научиться правильно бороться с коррозией первоначально необходимо понять, что же такое коррозия.

Коррозия – это разрушение твердых тел, вызванное химическими и электрохимическими процессами, развивающимися на поверхности тела при его взаимодействии с внешней средой. Даже само слово коррозия произошло от позднелатинского corrosio – разъедание. Особенный ущерб приносит коррозия металлов. Распространенный и наиболее знакомый всем нам вид коррозии – ржавление железа. Термин «коррозия» применим к металлам, бетону, некоторым пластмассам и другим материалам. Кроме коррозии, металлические (в частности, строительные) конструкции подвергаются действию эрозии – разрушению поверхности материала под влиянием механического воздействия. Эрозию провоцируют дожди, ветры, песчаная пыль и прочие природные факторы. Поэтому арки мостов, строительные фермы и другие сооружения надо защищать комплексно. Таким образом, коррозия – это физико-химическое взаимодействие металла со средой, ведущее к разрушению металла. В результате коррозии металлы переходят в устойчивые соединения – оксиды или соли, в виде которых они находятся в природе. Коррозия съедает до 10 процентов производимого в стране металла. Трудно учесть более высокие косвенные потери от простоев и снижения производительности оборудования, подвергшегося коррозии, от нарушения нормального хода технологических процессов, от аварий, обусловленных снижением прочности металлических конструкций и т.п.

Почему коррозия называется коррозией?

Слово коррозия происходит от латинского «corrodo» – «грызу». Некоторые источники ссылаются на позднелатинское «corrosio» – «разъедание». Не следует путать понятия «коррозия» и «ржавчина». Если коррозия – это процесс, то ржавчина один из его результатов. Это слово применимо только к железу, входящему в состав стали и чугуна. В дальнейшем под термином «коррозия» мы будем подразумевать коррозию металлов. Согласно международному стандарту ISO 8044 под коррозией понимают физико-химическое или химическое взаимодействие между металлом (сплавом) и средой, приводящее к ухудшению функциональных свойств металла (сплава), среды или включающей их технической системы. РЖАВЧИНА – это слой частично гидратированных оксидов железа, образующийся на поверхности железа и некоторых его сплавов в результате коррозии. Коррозионному разрушению подвержены также бетон, строительный камень, дерево, другие материалы; коррозия полимеров называется деструкцией.

Среда, в которой металл подвергается коррозии (корродирует) называется коррозионной или агрессивной средой. В случае с металлами, говоря об их коррозии, имеют ввиду нежелательный процесс взаимодействия металла со средой.

Физико-химическая сущность изменений, которые претерпевает металл при коррозии, является окисление металла. Любой коррозионный процесс является многостадийным:

  1. Необходим подвод коррозионной среды или отдельных ее компонентов к поверхности металла.
  2. Взаимодействие среды с металлом.
  3. Полный или частичный отвод продуктов от поверхности металла (в объем жидкости, если среда жидкая).

Известно, что большинство металлов (кроме Ag, Pt ,Cu, Au) встречаются в природе в ионном состоянии: оксиды, сульфиды, карбонаты и др., называемые обычно рудами металлов. Ионное состояние более выгодно, оно характеризуется меньшей внутренней энергией. Это заметно при получении металлов из руд и их коррозии. Поглощенная энергия при восстановлении металла из соединений свидетельствует о том, что свободный металл обладает более высокой энергией, чем металлическое соединение. Это приводит к тому, что металл, находящийся в контакте с коррозионно-активной средой стремится перейти в энергетически выгодное состояние с меньшим запасом энергии. То есть можно сказать, что первопричиной коррозии является термодинамическая неустойчивость системы, состоящей из металла и компонентов окружающей (коррозионной) среды. Мерой термодинамической неустойчивости является свободная энергия, освобождаемая при взаимодействии металла с этими компонентами. Но свободная энергия сама по себе ещё не определяет скорость коррозионного процесса, т. е. величину, наиболее важную для оценки коррозионной стойкости металла. В ряде случаев адсорбционные или фазовые слои (плёнки), возникающие на поверхности металла в результате начавшегося коррозионного процесса образуют настолько плотный и непроницаемый барьер, что коррозия прекращается или очень сильно тормозится. Поэтому в условиях эксплуатации металл, обладающий большим сродством к кислороду, может оказаться не менее, а более стойким (так, свободная энергия образования окисла у Cr или Al выше, чем у Fe, а по стойкости они часто превосходят Fe).

Классификация коррозионных процессов

По виду (геометрическому характеру) коррозионных разрушений на поверхности или в объёме металла.

Коррозию, захватившая всю поверхность металла, называется сплошной . Её делят на равномерную и неравномерную , в зависимости от того, одинакова ли глубина коррозионного разрушения на разных участках. При местной коррозии поражения локальны и оставляют практически незатронутой значительную (иногда подавляющую) часть поверхности. В зависимости от степени локализации различают коррозионные пятна, язвы и точки (питтинг) . Точечные поражения могут дать начало подповерхностной коррозии, распространяющейся в стороны под очень тонким (например, наклёпанным) слоем металла, который затем вздувается пузырями или шелушится. Наиболее опасные виды местной коррозии – межкристаллитная (интеркристаллитная) , которая, не разрушая зёрен металла, продвигается вглубь по их менее стойким границам, и транскристаллитная, рассекающая металл трещиной прямо через зёрна. Почти не оставляя видимых следов на поверхности, эти поражения могут приводить к полной потере прочности и разрушению детали или конструкции. Близка к ним по характеру ножевая коррозия, словно ножом разрезающая металл вдоль сварного шва при эксплуатации некоторых сплавов в особо агрессивных растворах. Иногда специально выделяют поверхностную нитевидную коррозию, развивающуюся, например, под неметаллическими покрытиями, и послойную коррозию, идущую преимущественно в направлении пластической деформации. Специфична избирательная коррозия, при которой в сплаве могут избирательно растворяться даже отдельные компоненты твёрдых растворов (например, обесцинкование латуней).

По механизму реакций взаимодействия металла со средой (химическая и электрохимическая коррозия).

Коррозия является химической , если после разрыва металлической связи атомы металла непосредственно соединяются химической связью с теми атомами или группами атомов, которые входят в состав окислителей, отнимающих валентные электроны металла. Химическая коррозия возможна в любой коррозионной среде, однако чаще всего она наблюдается в тех случаях, когда коррозионная среда не является электролитом (газовая коррозия, коррозия в неэлектропроводных органических жидкостях). Скорость её чаще всего определяется диффузией частиц металла и окислителя через поверхностную плёнку продуктов коррозии (высокотемпературное окисление большинства металлов газами), иногда – растворением или испарением этой плёнки (высокотемпературное окисление W или Mo), её растрескиванием (окисление Nb при высоких температурах) и изредка – конвективной доставкой окислителя из внешней среды (при очень малых его концентрациях).

Коррозия является электрохимической , если при выходе из металлической решётки образующийся катион вступает в связь не с окислителем, а с другими компонентами коррозионной среды; окислителю же передаются электроны, освобождающиеся при образовании катиона. Такой процесс возможен в тех случаях, когда в окружающей среде существуют два типа реагентов, из которых одни (сольватирующие или комплексообразующие) способны соединяться устойчивыми связями с катионом металла без участия его валентных электронов, а другие (окислители) могут присоединять валентные электроны металла, не удерживая около себя катионы. Подобными свойствами обладают растворы или расплавы электролитов, где сольватированные катионы сохраняют значительную подвижность. Таким образом, при электрохимической коррозии удаление атома из металлической решётки (что составляет суть любого коррозионного процесса) осуществляется в результате двух независимых, но сопряжённых, связанных между собой электрическим балансом, электрохимических процессов: анодного – переход сольватируемых катионов металла в раствор, и катодного – связывание окислителем освобождающихся электронов. Отсюда следует, что процесс электрохимической коррозии можно замедлить не только путём непосредственного торможения анодного процесса, но также воздействуя на скорость катодного. Наиболее распространены два катодных процесса: разряд водородных ионов (2е + 2H + = H 2) и восстановление растворённого кислорода (4е + O 2 + 4H + = 2H 2 O или 4е + O 2 + 2H 2 O = 4ОН -), которые часто называют соответственно водородной и кислородной деполяризацией.

Анодный и катодный процессы с той или иной вероятностью и в той или иной последовательности протекают в любых точках металлической поверхности, где катионы и электроны могут взаимодействовать с компонентами коррозионной среды. Если поверхность однородна, то катодные и анодные процессы равновероятны по всей её площади; в таком идеальном случае коррозию называют гомогенно-электрохимической (отмечая, таким образом, отсутствие какой-либо неоднородности в распределении вероятности электрохимических процессов в любой точке поверхности, что, конечно, не исключает термодинамической гетерогенности взаимодействующих фаз). В действительности на металлических поверхностях существуют участки с различными условиями доставки реагирующих компонентов, с разным энергетическим состоянием атомов или с различными примесями. На таких участках возможно более энергичное протекание либо анодного, либо катодного процессов, и коррозия становится гетерогенно-электрохимической.

По типу коррозионной среды

Некоторые коррозионные среды и вызываемые ими разрушения столь характерны, что по названию этих сред классифицируются и протекающие в них коррозионные процессы.

Как правило, металлические изделия и конструкции подвергаются действию многих видов коррозии – в этих случаях говорят о действии так называемой смешанной коррозии.

Газовая коррозия – коррозия в газовой среде при высоких температурах.

Атмосферная коррозия – коррозия металла в условиях атмосферы при влажности, достаточной для образования на поверхности металла пленки электролита (особенно в присутствии агрессивных газов или аэрозолей кислот, солей и т.д.). Особенностью атмосферной коррозии является сильная зависимость ее скорости и механизма от толщины слоя влаги на поверхности металла или степени увлажнения образовавшихся продуктов коррозии.

Жидкостная коррозия – коррозия в жидких средах. По условиям воздействия жидкой среды на металл этот тип коррозии также характеризуется как коррозия при полном погружении, при неполном погружении, при переменном погружении, имеющие свои характерные особенности.

Подземная коррозия – коррозия металла в грунтах и почвах. Характерной особенностью подземной коррозии является большое различие в скорости доставки кислорода (основной деполяризатор) к поверхности подземных конструкций в разных почвах (в десятки тысяч раз).

По характеру дополнительных воздействий

Коррозия под напряжением развивается в зоне действия растягивающих или изгибающих механических нагрузок, а также остаточных деформаций или термических напряжений и, как правило, ведёт к транскристаллитному коррозионному растрескиванию , которому подвержены, например, стальные тросы и пружины в атмосферных условиях, углеродистые и нержавеющие стали в паросиловых установках, высокопрочные титановые сплавы в морской воде и т. д. При знакопеременных нагрузках может проявляться коррозионная усталость, выражающаяся в более или менее резком понижении предела усталости металла в присутствии коррозионной среды. Коррозионная эрозия (или коррозия при трении) представляет собой ускоренный износ металла при одновременном воздействии взаимно усиливающих друг друга коррозионных и абразивных факторов (трение скольжения, поток абразивных частиц и т. п.). Родственная ей кавитационная коррозия возникает при кавитационных режимах обтекания металла агрессивной средой, когда непрерывное возникновение и «захлопывание» мелких вакуумных пузырьков создаёт поток разрушающих микрогидравлических ударов, воздействующих на поверхность металла. Близкой разновидностью можно считать и фреттинг -коррозию, наблюдаемую в местах контакта плотно сжатых или катящихся одна по другой деталей, если в результате вибраций между их поверхностями возникают микроскопические смещения сдвига.

Утечка электрического тока через границу металла с агрессивной средой вызывает в зависимости от характера и направления утечки дополнительные анодные и катодные реакции, могущие прямо или косвенно вести к ускоренному местному или общему разрушению металла (коррозия блуждающим током ). Сходные разрушения, локализуемые вблизи контакта, может вызвать соприкосновение в электролите двух разнородных металлов, образующих замкнутый гальванический элемент, – контактная коррозия. В узких зазорах между деталями, а также под отставшим покрытием или наростом, куда проникает электролит, но затруднён доступ кислорода, необходимого для пассивации металла, может развиваться щелевая коррозия, при которой растворение металла в основном происходит в щели, а катодные реакции частично или полностью протекают рядом с ней на открытой поверхности.

Принято выделять также биологическую коррозию, идущую под влиянием продуктов жизнедеятельности бактерий и др. организмов, и радиационную коррозию – при воздействии радиоактивного излучения.

Показатель скорости коррозии

Для установления скорости коррозии металла в данной среде обычно ведут наблюдения за изменением во времени какой-либо характеристики, объективно отражающей изменение свойства металла. Чаще всего в коррозионной практике используют следующие показатели.

Показатель изменения массы

Показатель изменения массы – изменение массы образца в результате коррозии, отнесенное к единице поверхности металла S и к единице времени (например, г/м ч).

В зависимости от условий коррозии различают:

1. отрицательный показатель изменения массы
К-m=
где m – убыль массы металла за время коррозии после удаления продуктов коррозии.

2. положительный показатель изменения массы К+m=
где m – увеличение массы металла за время вследствие роста пленки продуктов коррозии.

Если состав продуктов коррозии известен, то можно сделать пересчет от К к К и наоборот К-m= К+m (nok A Me / n Me Aok)
где А и М – атомная и молекулярная масса Ме и окислителя соответственно; n и n валентность металла и окислителя в окислительной среде.

Объемный показатель коррозии

К – объем поглощенного или выделившегося в процессе газа V отнесенный к единице поверхности металла и единице времени (например, см/см ч).
К= об. V / s
объем газа обычно приводят к нормальным условиям.
Применительно к электрохимической коррозии когда процесс катодной деполяризации осуществляется за счет разряда ионов водорода, например, по схеме 2Н + 2е = Н, или ионизация молекул кислорода О + 4е +2НО = 4ОН; вводятся соответственно кислородный (К) и водородный (К) показатель соответственно.
Водородный показатель коррозии – это объем выделившегося Н в процессе коррозии, отнесенный к Su.
Кислородный показатель коррозии – это объем поглощенного в процессе О, отнесенный к Su.

Показатель сопротивления

Изменение электрического сопротивления образца металла за определенное время испытаний также может быть использован в качестве показания коррозии (К).
КR = (R/Ro) 100% за время t
где Ro и R – электрическое сопротивление образца соответственно до и после коррозии.
У этого способа есть некоторый недостаток толщина металла во все время испытаний должна быть одинаковой и по этой причине чаще всего определяют удельное сопротивление, т.е. изменение электрического сопротивления на единицу площади образца (см, мм) при длине равной единице. Этот метод имеет ограничения применения (для листового металла не более 3мм). Наиболее точные данные получают для проволочных образцов. Этот метод не пригоден для сварных соединений.

Механический показатель коррозии

Изменение какого-либо свойства металла за время коррозии. Сравнительно часто пользуются изменением предела прочности. Прочностной показатель при этом выражается:
Кo = (в/во) 100% за время t
где в – изменение предела прочности при растяжении после коррозии образца в течение времени; во – предел прочности до коррозии.

Глубинный показатель коррозии

К – глубина разрушения металла П в единицу времени (например, мм/год).
Глубина коррозионного разрушения П может быть средней или максимальной. Глубинный показатель коррозии можно использовать для характеристики как равномерной, так и неравномерной коррозии (в том числе и местной) металлов. Он удобен для сравнения скорости коррозии металла с различными плотностями. Переход от массового, токового и объемного к глубинному возможен при равномерной коррозии.

Немцы, французы, японцы – чьи машины ржавеют больше? На какой срок сегодня производители дают гарантию от коррозии? Что дешевле – ремонт или гарантия? Чем опасна коррозия? Вопросов очень много.

Рано или поздно ржавеет все!

Коррозия или разрушение металла естественным химическим и электрохимическим путем угрожает практически каждому транспортному средству. Она не страшна только пластику и высококачественной нержавеющей стали, неповрежденной термообработкой (например, сваркой).

Алюминий не дает надежной защиты, так как со временем окисляется, а недостаточная изоляция от стали приводит к образованию гальванической пары. Сервисы Audi, хорошо об этом знают. Крышка багажника А8 второго поколения активно корродировала в районе накладки над регистрационным знаком.

Коррозия – естественный процесс, хотя некоторые автомобили ржавеют гораздо сильнее других. Например, Skoda. Felicia второй половины 90-х годов «разрушается»медленно, а старая Октавия - быстро. Решающим фактором являются, как качество исходного материала и дополнительная защита от коррозии, так и дизайнерские линии. Слишком сложные профили в зонах риска, неправильное расположение дренажных каналов или даже чересчур большой сварочный ток приводят к развитию коррозии.

Ржавый ад Мерседес.

До сих пор многие автомобилисты оценивают качество машины в зависимости от страны ее происхождения. Преждевременная коррозия Lada и Dacia сегодня никого не удивляет, как и долголетняя стойкость кузова Volvo. Коррозия автомобилей итальянских и французских брендов в восьмидесятых годах считались стандартом. Сегодня же владельцы «французов» и «итальянцев» смотрят свысока на машины именитых брендов. В частности продукция PSA (Peugeot/Citroen) с начала нового тысячелетия имела лучшую защиту от коррозии, чем автомобили концерна VW. В то время как 15-летний Fiat Punto обзаведется всего лишь парой «бородавок», старый Mercedes E-Class становился похож на «металлом».

Mercedes E-Class W210.

В свое время многие клиенты Мерседес были потеряны на всегда. Одинаково быстро ржавели и А-класс, и S-класс и Vito. Не так давно до 2006 года проблема касалась A-Class (W169) второго поколения. Самой не стойкой к коррозии была модель E-Class W210 (1995-2003). Чуть реже проблема затрагивала C-Class W203 - до 2003 года. Но по факту зацвести мог любой Mercedes до 2005 года выпуска, даже новый W211. Наилучшим образом семя зарекомендовал ML, который собирался в Америке.


Mercedes E-Class W210.

Немцы тоже ржавеют.

Многие без лишних слов считают немецкие автомобили качественными. Однако они тоже ржавеют довольно часто. Например, Ford Mondeo III (2000-2007), Ford Focus I и чуть меньше Focus II. Opel Astra G тоже в аутсайдерах: найти дырявые колесные арки, а иногда и крышку багажника несложно. Обо всех предыдущих моделях этих брендов даже не стоит и говорить.


Ford Focus II.

Старые машины Volkswagen тоже страдали от коррозии. Ситуация значительно улучшилась в 1997 году с приходом Passat B5 и Golf VI. Но как это ни парадоксально, сегодня в Passat B6 2005-2010 года порой обнаруживаются небольшие очаги под тонкими боковыми молдингами дверей. Не эпидемия, но все же.

Стабильное качество с середины 80-х годов демонстрируют лишь Audi и Porsche, за исключением Boxster. В то время в автомобилях бренда BMW довольно часто встречалась коррозия задней части порогов, задних крыльев и крышки багажника. Даже у сравнительно молодых BMW 3 E46 (1998-2005), 5 E39 (1995-2003). Более поздние модели пока таких недугов не показывают.

Азиатские бренды.

Коррозия считается распространенным явлением среди автомобилей японских брендов, примерно до 2002 года. Самыми устойчивыми себя зарекомендовали модели Toyota и Lexus. Лишь эпизодически обнаруживается коррозия порогов в Toyota Urban Cruiser.

С Honda все стало в порядке после 2003 года (Accord, Legend и CR-V второго поколения). В случае с Civic выраженная коррозия существовала только у модели Civic 6G (до 2001 года). В Сивик седьмого поколения лишь иногда обнаруживались точечные очаги.

Огромное разочарование принес Nissan Almera N16 (2000-2006). Удивляли и молодые модели Mazda. Помимо пожилого родстера MX-5, который эксплуатируется преимущественно в сухую погоду, коррозия атаковала Mazda 3 и Mazda 6 первого поколения (2002-2007). Во всех этих трех моделях через несколько лет зацветали края задних крыльев.


Mazda MX-5.

У автомобилей корейских марок ситуация немного лучше, чем обычно принято считать. «Ржавые куски» остались в середине 90-х годов. Более поздние модели имеют лишь незначительные проблемы. Например, первое поколение Hyundai i30 и Kia Ceed: коррозия кромок задних дверей и двери багажника, рамки стекол.

Внедорожники ржавеют чаще.

Внедорожники находятся в группе риска. Причины очевидны – ссадины после контакта с различными предметами и преодоление грязи и воды. Самый известный пример – Suzuki Jimny. Внешние кузовные панели в период шестилетней гарантии выдержат все что угодно. Но шасси, рама и вакуумные трубки подключения переднего моста могут измениться до неузнаваемости. Лишь немногим лучше ситуация с Mitsubishi Pajero III (2000-2006 года). Из корейских внедорожников чаще страдает Kia Sorento первого поколения (2002-2009). В его случае виноваты скопление грязи и воды под пластиковыми накладками и плохая защита по краям дверей.


Suzuki Jimny.

Гарантия – защита или хитрость?

Гарантия производителя от сквозной коррозии не отражает реальное качество антикоррозионной защиты. К тому же следовало бы уточнить, на что же все-таки дается гарантия производителя. Реальная гарантия подразумевает защиту «от сквозной коррозии изнутри», т.е. отсутствие коррозии под оригинальной краской, неповрежденной в результате аварии или воздействия агрессивной среды.

Кроме того гарантия распространяется обычно на пороги, крылья, двери, капот и т.п., т.е. на локальные детали, которые не потребуют больших финансовых затрат и много времени на демонтаж и восстановление. Лишь некоторые производители готовы сделать исключение. Например, Jeep прямо заявляет, что гарантирует компенсацию стоимости ремонта и замены любых элементов, покрытых ржавчиной, лишь в том случае, если коррозия не стала следствием внешних повреждений.

Mercedes готов предоставить длительную гарантию защиты от коррозии лишь в том случае, если автомобиль на протяжении всего времени будет обслуживаться в официальном сервисе.


Mercedes Vito.

Что дешевле: длительная гарантия или ремонт за свой счет?

Большинство брендов, как и Мерседес, готовы за свой счет заменить ржавое крыло на автомобиле старше 10 лет лишь в том случае, если вы каждый год будете терпеливо оплачивать счета за техобслуживание в официальном сервисе.

Но есть несколько оговорок. Во-первых, не все дилеры будут готовы признать коррозию старого автомобиля производственным дефектом. Во-вторых, отремонтировать небольшой дефект гораздо дешевле, чем каждый год ездить в сервис к «официалам» на ТО.


Mitsubishi Pajero 2000-2006.

Профилактика.

Многие автомобилисты не раз замечали интересный парадокс. Автомобили, хранящиеся в гараже, имеют лучшее состояние лакокрасочного покрытия, чем те, что стоят на улице. Но именно гаражные автомобили нередко зацветают быстрей. Этому способствуют плохо проветриваемые гаражи. Зимой соленая слякоть остается внутри всевозможных кузовных щелей и ниш. Теплый двигатель нагревает воздух, создавая благодатные условия для разрушительного воздействия соли. Стоянка на улице под солнцем и ветром – самая дешевая и простая профилактика коррозии.

Сегодня существует большое количество средств для защиты кузова, как снаружи, так и внутри. Многие сервисы готовы выполнить трудоемкую и длительную процедуру антикоррозионной защиты, но не всегда с хорошим качеством.


Dacia Logan.

Гарантия от сквозной коррозии.

В настоящее время производители гарантируют следующие сроки от сквозной коррозии.

  • Alfa Romeo - 8 лет
  • Audi - 12 лет
  • BMW - 12 лет
  • Citroën - 12 лет (Грузопассажирские модели – 6 лет)
  • Chevrolet - 6 лет
  • Chrysler - 8 лет
  • Dacia - 6 лет
  • Fiat - 8 лет
  • Ford - 12 лет (Ка - 8 лет)
  • Honda - 12 лет
  • Hyundai - 12 лет
  • Jaguar - 6 лет
  • Jeep - 7 лет
  • Kia - 12 лет
  • Lancia - 8 лет
  • Land Rover - 6 лет
  • Lada - 3 года (Нива) или 6 лет (остальные)
  • Mazda - 12 лет (BT-50 - 6 лет)
  • Mercedes-Benz - 30 лет
  • Mini - 12 лет
  • Mitsubishi - 12 лет
  • Nissan - 12 лет
  • Opel - 12 лет
  • Peugeot - 12 лет (Грузопассажирские модели – 6 лет)
  • Renault - 12 лет (Master - 6 лет)
  • Seat - 12 лет
  • Subaru - 12 лет
  • Suzuki - 12 лет (Jimny - 6 лет)
  • Skoda - 12 лет
  • Toyota - 12 лет
  • Volkswagen - 12 лет
  • Volvo - 12 лет (1-е поколение XC90 8 лет)

Какие авто больше подвержены коррозии?

Все автомобили подвержены «рыжей чуме», кто-то в меньшей степени, а кто-то в большей, а некоторые, как оказалось, особенно. И Беларуси в этом плане не сильно повезло с климатом - у нас даже самые нержавеющие автомобили подвергаются коррозии и владельцы автомобилей либо "лечат" авто, либо предпринимают превентивные меры. AUTO.TUT.BY решил выяснить, правда ли, что «фольксвагены не ржавеют», а «внедорожники „тойота“ неубиваемые».

Японская автомобильная компания Toyota Motor Corp. недавно заявила, что выплатит компенсацию в размере 3,4 млрд долларов США владельцам автомобилей ряда моделей, которые подвержены коррозии, угрожающей прочности конструкции. Как передает Reuters, это касается в первую очередь Toyota Tacoma 2005−2010 годов выпуска, модели Tundra 2005−2008 года, а также внедорожников Sequoia, произведенных с 2007 по 2008 год.

А как обстоят дела с этими да и другими марками авто у нас, учитывая то, что в Беларуси не самый благоприятный климат? Чтобы выяснить это, AUTO.TUT.BY встретился с Сергеем Мухлаевым, директором специализированного центра антикоррозийной обработки, и составил свой рейтинг тех автомобилей, владельцы которых чаще всего в силу разных причин обращаются в центр. Обращаются они по двум причинам: превентивная мера либо обработка от коррозии.

Наш рейтинг не претендует на абсолютно объективный и сформирован на основании количества обращений на СТО для антикоррозийной обработки. Возможно, эти данные свидетельствуют о том, что владельцы авто в силу особенностей белорусского климата больше других заботятся о своих машинах и «предупреждают» возможные проблемы.


Сергей Мухлаев: Больше всего обращений у нас по внедорожникам Toyota. Но это не мешает мне быть поклонником марки и ездить на Land Cruiser 100

Наша компания имеет тесные связи с аналогичными авторизованными центрами в странах Балтии, так что для начала предлагаю посмотреть, как дело обстоит там. У них в силу большей развитости рынка статистика обращений куда больше. Центры в Прибалтике работают с 2010 года, а в общей базе порядка 15 000 клиентов.

Так вот, что касается стран Прибалтики, то ситуация там следующая: в Латвии и Эстонии на первом месте по обращениям - марка Mazda, а в Литве - Toyota, - рассказывает Сергей.


Легковые модели Toyota даже в возрасте старше пяти лет не пугают «рыжей чумой»

Что касается японских марок, то в разных странах происходит небольшое смещение в сторону того или иного бренда, но состав участников не меняется. Такие перестановки связаны, скорее всего, с некоторыми особенностями рынка в плане популярности той или иной марки. Но вот пятое место VW характерно для всех четырех стран, - говорит Сергей.

«Французы» не вошли в список ни в одной стране. Это касается как машин российской сборки, так и французской.

Что же касается Беларуси, то, по словам Сергея, у нас тоже накопился достаточный опыт, чтобы составить рейтинг автомобилей, владельцы которых чаще всего обращаются за услугами по антикоррозийному покрытию в силу заботы о своем автомобиле.

Топ-5 самых ржавеющих марок в Беларуси

1-е место - Toyota


Десятилетняя Toyota Land Cruiser 100 снизу выглядит удручающе

В рейтинг входят почти все внедорожники этой марки, так что претензии американских потребителей и белорусских в этом плане полностью совпадают. Модели Land Cruiser 100, 150, 200 имеют одну общую проблему - ржавеющая рама. Первыми сдаются сварные швы, причем уже в первый год эксплуатации, а дальше ржавчина распространяется по всей раме.


Сварные швы на раме годовалого Lexus LX450 уже имеют следы ржавчины

Эти болячки можно в равной степени отнести и к «идентичным» внедорожникам Lexus. Все сварные швы покрываются ржой уже в первый год. Потом ржавчина «грызет» все подвесное оборудование под днищем кузова. Например, в «100-ке» сгнивает блок управления активной подвеской.

А вот, например, кроссовер Lexus RX проблем с коррозией не имеет, равно как и все легковые модели Toyota и Lexus.

2-е место - VW


Среди моделей VW специалисты особо отмечают модель Touran - в некоторых местах краска облущивается большими кусками

Наибольшее количество обращений приходится на модель Touran, затем следует Passat. У Touran самое слабое место - пороги, низ дверей, задние лонжероны. Причем VW не ржавеет снаружи. У него с элементов кузова облущивается краска, обнажая оцинкованные места.

3-е место - Nissan

У этого японского бренда самым проблемным является внедорожник Patrol. Как и у Toyota, ржавчина чаще всего поражает раму.


Нельзя сказать, что Nissan сильно ржавеют, но их владельцы часто делают «антикор»

Кроме того, много обращений от владельцев новых бюджетных автомобилей, недорогих кроссоверов. Но это связано больше с желанием владельцев превентивно защитить машины от последствий эксплуатации в наших условиях.

4-е место - Mazda

Нельзя выделить какие-то сильные и слабые модели. Одинаково подвержены коррозии даже относительно свежие машины.


Задние арки, двери, пороги изъедены ржавчиной. Довести до такого состояния Mazda 6 - не проблема

Откровенное слабые места - пороги, двери, крылья, крышка багажника. Особо страдают ниши за задними колесными арками. Там постоянно скапливается конденсат, а дренажных отверстий нет. Поэтому, как бы ни был хорош металл, он не выдерживает длительного контакта с водой. Не для нашей Беларуси с суровым климатом машина, а жаль.

Коррозия металла является широко распространенной причиной, приводящей в негодность различные детали из металла. Коррозией металла (или ржавлением) называют разрушение металла под воздействием физических и химических факторов. К факторам, вызывающим коррозию, относят природные осадки, воду, температуру, воздух, различные щелочи и кислоты и т.д.

1

Коррозия металла становится серьезной проблемой при строительстве, в быту и на производствах. Чаще всего конструкторы предусматривают защиту металлических поверхностей от ржавчины, но иногда ржавление происходит на незащищенных поверхностях и на специально обработанных деталях.

Металлические сплавы лежат в основе жизнедеятельности человека, они окружают его практически везде: в быту, на работе, в процессе отдыха. Не всегда люди замечают металлические вещи и детали, но они постоянно им сопутствуют. Различные сплавы и чистые металлы являются самыми производимыми веществами на нашей планете. Современная промышленность выпускает различные сплавы в 20 раз больше (по массе), чем все остальные материалы. Несмотря на то что металлы считаются одними из наиболее прочных веществ на Земле, они могут разрушаться и терять свои характеристики в результате процессов ржавления. Под воздействием воды, воздуха и других факторов происходит процесс окисления металлов, который и называют коррозией. Несмотря на то что корродировать может не только металл, но и каменные породы, ниже будут рассмотрены процессы, связанные именно с металлами. Здесь стоит обратить внимание на то, что некоторые сплавы или металлы больше подвержены коррозии, чем другие. Это обусловлено скоростью протекания процесса окисления.

Процесс окисления металлов

Самое распространенное вещество в сплавах - это железо. Коррозия железа описывается следующим химическим уравнением: 3O 2 +2H 2 O+4Fe=2Fe 2 O 3 . H 2 O. Полученный в результате оксид железа и является той рыжей ржавчиной, портящей предметы. Но рассмотрим виды коррозии:

  1. Водородная коррозия. На металлических поверхностях практически не встречается (хотя теоретически возможна). В связи с этим описываться не будет.
  2. Кислородная коррозия. Аналогична водородной.
  3. Химическая. Реакция происходит из-за воздействия металла с каким-либо фактором (например, воздухом 3O 2 +4Fe=2Fe 2 O 3) и протекает без образования электрохимических процессов. Так, после воздействия кислорода с поверхностью появляется оксидная пленка. На некоторых металлах такая пленка достаточно прочна и не только защищает элемент от разрушительных процессов, но и повышает его прочность (например, алюминий или цинк). На некоторых металлах такая пленка очень быстро отслаивается (разрушается), например, у натрия или калия. А большинство металлов разрушаются достаточно медленно (железо, чугун и т.д.). Так, например, происходит коррозия чугуна. Более часто ржавление происходит при контакте сплава с серой, кислородом, хлором. Из-за химической коррозии ржавеют сопла, арматура и т.д.
  4. Электрохимическая коррозия железа. Данный вид ржавления происходит в средах, которые проводят электричество (проводники). Время разрушения различных материалов при электрохимических реакциях разное. Электрохимические реакции наблюдаются в случаях контакта металлов, которые находятся на расстоянии в ряду напряженности. Например, изделие изготовленное из стали, имеет медные напайки/крепления. При попадании воды на соединения медные части будут катодами, а сталь - анодом (каждая точка имеет свой электрический потенциал). Скорость протекания таких процессов зависит от количества и состава электролита. Для протекания реакций нужно наличие 2 разных металлов и электропроводящей среды. При этом разрушение сплавов прямо пропорционально зависит от силы тока. Чем больше ток, тем быстрее реакция, чем быстрее реакция, тем быстрее разрушение. В некоторых случаях катодами служат примеси сплава.

Электрохимическая коррозия железа

Также стоит отметить подвиды, которые бывают при ржавлении (описывать не будем, только перечислим): подземная, атмосферная, газовая, при разных видах погружения, сплошная, контактная, вызываемая трением и т.д. Все подвиды можно отнести к химическому или электрохимическому ржавлению.

2

При строительстве часто встречается коррозия арматуры и сварных конструкций. Коррозия часто происходит из-за несоблюдения правил хранения материала или невыполнения работ по обработке прутьев. Коррозия арматуры довольно опасна, поскольку арматуру закладывают для усиления конструкций, и в результате разрушения прутьев возможен обвал. Коррозия сварных швов не менее опасно, чем коррозия арматуры. Это также значительно ослабит шов и может привести к разрыву. Есть достаточно много примеров, когда ржавчина на силовых конструкциях приводит к обрушению помещений.

Другие часто встречающиеся в быту случаи ржавления - порча бытовых орудий труда (ножей, столовых приборов, инструмента), порча металлоконструкций, порча средств передвижения (как наземных, так и воздушных и водных) и т.д.

Пожалуй, самые часто встречающиеся ржавые вещи - это ключи, ножи и инструменты. Все эти предметы подвергаются ржавлению из-за того, что трением снимается защитное покрытие, которое оголяет основу.

Основа подвергается процессам разрушения из-за контактов с агрессивными средами (особенно ножи и инструменты).

Разрушения из-за контактов с агрессивными средами

Кстати, разрушения вещей, которые часто используются в быту, можно наблюдать практически повсеместно и регулярно, в то же время некоторые металлические предметы или конструкции могут простоять ржавыми десятилетия и будут исправно выполнять свои функции. Например, ножовка, которой часто пилили бревна и оставили на месяц в сарае, быстро проржавеет и может сломаться в процессе работы, а столб с дорожным знаком может простоять десять, а то и более лет ржавым и не разрушится.

Поэтому все металлические вещи следует защищать от коррозии. Методов защиты несколько, но все это химия. Выбор такой защиты зависит от типа поверхности и действующего на нее разрушительного фактора.

Для этого поверхность тщательно очищают от грязи и пыли, для того чтобы исключить возможность непопадания защитного покрытия на поверхность. Затем ее обезжиривают (для некоторых типов сплава или металла и для некоторых защитных покрытий это является необходимым), после чего наносят защитный слой. Наиболее часто защиту обеспечивают лакокрасочные материалы. В зависимости от металла и факторов используются разные лаки, краски и грунты.

Другой вариант - нанесение тонкого защитного слоя из другого материала. Обычно этот способ практикуется на производстве (например, оцинковка). В итоге потребителю практически ничего не требуется делать после приобретения вещи.

Нанесение тонкого защитного слоя

Другой вариант - создание специальных сплавов, которые не окисляются (например, нержавейка), однако они не гарантируют 100% защиты, более того, некоторые вещи из таких материалов окисляются.

Важными параметрами защитных слоев являются толщина, срок службы и скорость разрушения под активным неблагоприятным воздействием. При нанесении защитного покрытия крайне важно точно вписаться в допустимую толщину слоя. Обычно производители лакокрасочных материалов указывают его на упаковке. Так, если слой будет больше максимально допустимого, то это вызовет перерасход лака (краски), и слой может разрушаться под сильным механическим воздействием, более тонкий слой может стираться и сократить срок защиты основы.

Правильно выбранный защитный материал и правильно нанесенный на поверхность гарантирует на 80% то, что деталь не будет подвержена коррозии.

3

Многие люди в быту не задумываются над тем, как защитить свои вещи ото ржи. И получают проблему в виде испорченного предмета. Как правильно решить эту проблему?

Удаление ржавчины с детали

Для того чтобы произвести восстановление вещи или детали от ржавчины, первым делом следует снять весь рыжий налет до чистой поверхности. Он снимается с помощью наждачной бумаги, напильников, сильными реагентами (кислотами или щелочами), но особую славу в этом заслужили напитки типа «Кока-Колы». Для этого вещь погружают полностью в емкость с чудо-жидкостью и оставляют на некоторое время (от нескольких часов до нескольких суток - время зависит от вещи и поврежденной площади).

Рыжие пятна на стальных изделиях

Согласно данным ООН, каждая страна в год теряет от 0,5 до 7-8% валового национального продукта из-за коррозии. Парадокс заключается в том, что менее развитые страны теряют меньше, чем развитые. А 30% всех выпускаемых стальных изделий на планете идет на замену проржавевшим. Поэтому настоятельно рекомендуется отнестись к этой проблеме серьезно.

Думаете, что ржавчина - это проблема владельцев 15-летних "Жигулей"? Увы, рыжими пятнами покрываются и гарантийные авто, даже если кузов оцинкован. Разбираемся, как правильно ухаживать за металлом и можно ли защитить его от коррозии раз и навсегда.

Что такое кузов? Конструкция из тонкого листового металла, причем разных сплавов и со множеством сварных соединений. И еще не нужно забывать о том, что кузов используется как «минус» для бортовой сети, то есть постоянно проводит ток. Да он просто обязан ржаветь! Попробуем разобраться, что же происходит с кузовом машины и как с этим бороться.

Что такое ржавчина?

Коррозия железа или стали - процесс окисления металла кислородом в присутствии воды. На выходе получается гидратированный оксид железа - рыхлый порошок, который мы все называем ржавчиной.

Разрушения автомобильного кузова относят к классическим примерам электрохимической коррозии. Но вода и воздух - это лишь часть проблемы. Помимо обычных химических процессов важную роль в нем играют гальванические пары, возникающие между электрохимически неоднородными парами поверхностей.

Уже вижу, как на лицах читателей-гуманитариев возникает скучающее выражение. Не пугайтесь термина «гальваническая пара» - мы не на лекции по химии и сложных формул приводить не будем. Эта самая пара в частном случае - всего лишь соединение двух металлов.

Металлы, они почти как люди. Не любят, когда к ним прижимается кто-то чужой. Представьте себя в автобусе. К вам прижался помятый мужчина, вчера отмечавший с друзьями какой-нибудь День монтажника-высотника. Вот это в химии называется недопустимой гальванической парой. Алюминий и медь, никель и серебро, магний и сталь… Это «заклятые враги», которые в тесном электрическом соединении очень быстро «сожрут» друг друга.

Вообще-то, ни один металл долго не выдерживает близкого контакта с чужаком. Сами подумайте: даже если к вам прижалась фигуристая блондинка (или стройная шатенка, по вкусу), то первое время будет приятно… Но не будешь же так стоять всю жизнь. Особенно под дождем. Причем тут дождь? Сейчас все станет понятно.

В автомобиле очень много мест, где образуются гальванические пары. Не недопустимые, а «обычные». Точки сварки, кузовные панели из разного металла, различные крепежные элементы и агрегаты, даже разные точки одной пластины с разной механической обработкой поверхности. Между ними всеми постоянно есть разность потенциалов, а значит, в присутствии электролита будет и коррозия.

Стоп, а что такое электролит? Пытливый автомобилист вспомнит, что это некая едкая жидкость, которую заливают в аккумуляторы. И будет прав лишь отчасти. Электролит - это вообще любая субстанция, проводящая ток. В аккумулятор заливают слабый раствор кислоты, но не обязательно поливать машину кислотой, чтобы ускорить коррозию. С функциями электролита прекрасно справляется обычная вода. В чистом (дистиллированном) виде она электролитом не является, но в природе чистой воды не встречается…

Таким образом, в каждой образовавшейся гальванической паре под воздействием воды начинается разрушение металла на стороне анода - положительно заряженной стороны. Как победить этот процесс? Запретить металлам корродировать друг от друга мы не можем, но зато можем исключить из этой системы электролит. Без него «допустимые» гальванические пары могут существовать долго. Дольше, чем служит автомобиль.


Как с ржавчиной борются производители?

Самый простой способ защиты - покрыть поверхность металла пленкой, через которую электролит не проникнет. А если еще и металл будет хорошим, с низким содержанием примесей, способствующим коррозии (например серы), то результат получится вполне достойным.

Но не воспринимайте слова буквально. Пленка - это необязательно полиэтилен. Самый распространенный вид защитной пленки - краска и грунт. Также ее можно создать из фосфатов металла, обработав поверхность фосфатирующим раствором. Входящие в его состав фосфоросодержащие кислоты окислят верхний слой металла, создав очень прочную и тонкую пленку.

Прикрыв фосфатную пленку слоями грунта и краски можно защитить кузов машины на долгие годы, именно по такому «рецепту» готовили кузова на протяжении десятков лет, и, как видите, довольно успешно - многие машины производства пятидесятых-шестидесятых годов смогли сохраниться до наших времен.

Но далеко не все, ведь со временем краска склонна к растрескиванию. Сначала не выдерживают внешние слои, потом трещины добираются до металла и фосфатной пленки. А при авариях и последующем ремонте покрытия часто наносят, не соблюдая абсолютной чистоты поверхности, оставляя на ней маленькие точки коррозии, которые всегда содержат в себе немного влаги. И под пленкой краски начинает появляться новый очаг разрушения.


Можно улучшать качество покрытия, применять все более эластичные краски, слой которых может быть чуть надежнее. Можно покрыть пластиковой пленкой. Но есть лучшая технология. Покрытие стали тонким слоем металла, имеющего более стойкую оксидную пленку, использовалось давно. Так называемая белая жесть - листовая сталь, покрытая тонким слоем олова, знакома всем, кто хоть раз в жизни видел консервную банку.

Олово для покрытия кузовов машин уже давно не применяют, хотя байки про луженые кузова ходят. Это отголосок технологии выправления брака при штамповке горячими припоями, когда часть поверхности вручную покрывали толстым слоем олова, и иногда самые сложные и важные части кузова машины и правда оказывались неплохо защищены.

Современные покрытия для предотвращения коррозии наносятся в заводских условиях до штамповки кузовных панелей, и в качестве «спасателей» используется цинк или алюминий. Оба этих металла, помимо наличия прочной оксидной пленки, обладают еще одним ценным качеством - меньшей электроотрицательностью. В уже упомянутой гальванической паре, которая образуется после разрушения внешней пленки краски, они, а не сталь будут играть роль анода, и, пока на панели остается немного алюминия или цинка, разрушаться будут именно они. Этим их свойством можно воспользоваться иначе, просто добавив немного порошка таких металлов в грунт, которым покрывают металл, что даст кузовной панели дополнительный шанс на долгую жизнь.


В некоторых отраслях промышленности, когда стоит задача защитить металл, применяют и другие технологии. Серьезные металлоконструкции могут быть оборудованы и специальными пластинами-протекторами из алюминия и цинка, которые можно менять со временем, и даже системами электрохимической защиты. С помощью источника напряжения такая система переносит анод на какие-то части конструкции, не являющиеся несущими. На автомобилях подобные вещи не встречаются.

Многослойный бутерброд, состоящий из слоя фосфатов на поверхности стали или цинка, слоя цинка или алюминия, антикоррозийного грунта с цинком и нескольких слоев краски и лака, даже в очень агрессивной внешней среде вроде обычного городского воздуха с влагой, грязью и солью позволяет сохранить кузовные панели на десяток-другой лет.

В местах, где слой краски легко повреждается (например на днище) используют толстые слои герметиков и мастики, которые дополнительно защищают поверхность краски. Мы привыкли называть это «антикором». Дополнительно во внутренние полости закачивают составы на основе парафина и масел, их задача вытеснять влагу с поверхностей, тем самым еще улучшая защиту.

Ни один из способов по одиночке не дает стопроцентной защиты, но все вместе они позволяют производителям давать восьми-десятилетнюю гарантию на отсутствие сквозной коррозии кузова. Однако нужно помнить, что коррозия подобна смерти. Ее приход можно замедлить или отложить, но нельзя исключить совсем. В общем, что мы говорим ржавчине? Правильно: «Не сегодня». Или, перефразируя современного классика, «не в этом году».

  • Держите кузов машины чистым. Грязь вбирает влагу, которая таким образом сохраняется на поверхности и долго выполняет свою разрушительную функцию, потихоньку проникая через микротрещины к железу.
  • Своевременно восстанавливайте повреждения ЛКП, даже если кузов оцинкованный. Ведь то, что «голый» металл не ржавеет, является следствием постоянного «расхода» металлов-защитников, а их на поверхности отнюдь не килограммы.
  • Пользуйтесь услугами квалифицированных кузовных сервисов, ведь правильное восстановление поверхности требует очень аккуратной и чистой работы, с полным пониманием происходящих процессов. А предложения просто закрасить всё слоем краски потолще обязательно приведут вас в кузовной цех еще раз, причем с куда более серьезными повреждениями металла.
  • <a href=»http://polldaddy.com/poll/8389175/»>Приходилось ли бороться с ржавчиной на кузове?</a>