Что могут 3d принтеры. Брать или не брать: достоинства и недостатки оборудования. I. Те которые что-то выдавливают или выливают или распыляют

Технологии трехмерной печати уже никого не удивляют. Многие пользуются 3Д принтерами в личных целях, и практически не одно предприятие не обходится без промышленного принтера для трехмерной печати. И хоть это уже и не новость, а сама технология была разработана уже достаточно давно, мало кто знает, как работает 3D принтер. Если вас интересует этот вопрос, то данная статья будет вам весьма полезна.

Для начала, чтобы понять принцип работы принтера для трехмерной печати следует понять, что это вообще такое и принцип печати.

1. Что такое 3D принтер

3D принтер – это устройство для создания физических объектов путем последовательного накладывания слоев. Другими словами 3Д принтер способен распечатать любой физический предмет, который смоделирован на ПК.

На сегодняшний день существуют различные модели 3D принтеров, которые способны работать с разными расходными материалами. Это означает, что при помощи трехмерной печати можно изготавливать любые детали для механизмов, которые смогут выдерживать высокие нагрузки, и не уступают деталям, сделанным традиционным способом.

Независимо от модели все современные 3D принтеры имеют одинаковый принцип работы.

2. Принцип работы 3D принтера

Теперь вы знаете определение 3Д принтера, и можно переходить к вопросу, как он работает. Вы уже знаете, что принтер для трехмерной печати способен выводить трехмерную информацию, то есть создавать физические объекты по информации, поступающей с персонального компьютера. Принцип действия 3D принтера заключается в последовательном наложении тончайших слоев расходного материала (пластика, или металлической пудры и так далее).

Слой за слоем создается физический объект. При этом стоит отметить, что такая технология изготовления моделей отличается высокой скоростью. Кроме этого принтер абсолютно лишен так называемого «человеческого фактора». То есть машина не совершает ошибок, благодаря чему изделия получаются абсолютно точными и идентичными оригиналу.

Из-за того, что существуют разные типы устройств для трехмерной печати невозможно однозначно ответить на вопрос, как работает 3Д принтер. К примеру, устройство, печатающее пластиком, имеет один принцип, а принтер, работающий с металлической пудрой совершенно другой. Конечно, все они работают по принципу послойного создания модели, однако в случае с пластиком принтер должен плавить расходный материал до жидкого состояния, а в случае с металлической пудрой печатающая головка распыляет связующее вещество.

2.1. Как работает 3D принтер по пластику

Принцип работы такого принтера заключается в том, что печатающая головка (так называемый экструдер) сильно нагревается и плавит пластик, который подается в виде литой трубки. Далее расплавленный материал подается с нижней части печатающей головки и помещается в нужных местах.

Для правильно работы принтера необходим специальный файл, который содержит всю информацию о создаваемой модели. В зависимости от модели принтер может быть подключен к ПК или работать автономно.

2.1.1. Работа 3D принтера по металлу

Как и любой другой 3Д принтер, устройства, печатающие металлом, также управляются при помощи компьютера. Кроме этого используется такой же принцип послойного создания модели. Однако в отличие от принтера, печатающего пластиком, 3D принтер по металлу не плавит расходный материал.

Принцип работы заключается в следующем. Печатающая головка наносит специальное связующее вещество (клей) в местах, указанных компьютером. После этого вал наносит тончайший слой металлической пудры на всю рабочую площадь. В местах, где нанесен «клей» металлическая пудра склеивается и затвердевает. Далее печатающая головка снова наносит «клей», после чего вал насыпает еще один тончайший слой металлического порошка и так далее.

3. Как работает 3D принтер: Видео

По окончанию работы принтера получается необходимый физический объект. Лишняя пудра просто сдувается с модели. Однако изделие все еще не готово. На данной стадии деталь очень пористая и хрупкая. Для придания ей жесткости и прочности изделие помещается в специальный контейнер, который засыпается бронзовой пудрой, и все это помещается в специальную печь, для сплавления молекул металла между собой и насыщения изделия бронзой.

Конечно, весь этот процесс занимает достаточно много времени, однако все равно изготовление детали происходит существенно быстрее, чем традиционным способом. Кроме этого такое производство существенно дешевле. Такой же принцип работы имеют и принтеры, печатающие стеклом.

4. Устройство 3D принтера

По своему устройству 3D принтер схож с обычным принтером для печати 2Д изображений. Отличие заключается только в том, что 3Д принтер печатает в трех плоскостях. То есть помимо ширины и высоты появляется еще и глубина. Не зависимо от модели, все 3D принтеры имеют практически одинаковое строение. Они состоят из одинаковых элементов. Итак, устройство 3Д принтера включает в себя:

  • Экструдер, который разогревает и выдавливает полужидкий пластик;
  • Рабочая поверхность – платформа, на которой выполняется печать;
  • Линейный мотор, который приводит в движение подвижные органы;
  • Фиксаторы – датчики, ограничивающие движения подвижных органов, к примеру, когда они подходят к краю рабочей поверхности;
  • Рама;
  • Картезианский робот – машина, которая способна двигаться в трех направлениях по осям координат X, Y и Z.

Все это управляется при помощи компьютера, который задает величины движений каждого из компонентов. Теперь вы знаете, как устроен 3D принтер, что позволяет лучше узнать современную технику и понять принцип ее работы. Конечно, этот пример описывает простейшую конструкцию 3D принтера. Сегодня существуют более сложные устройства, которые имеют дополнительные возможности и более сложные схемы. Однако устройства новых моделей компании изготовители, по определенным причинам, держат в строгом секрете.

Технологии 3D-печати или аддитивного производства обрели популярность совсем недавно, хотя первые методы появились на свет еще в середине 80-х годов прошлого века. Назначение 3D-принтеров для многих людей до сих пор остается загадкой, хотя ничего сложного на самом деле нет: это самые настоящие автоматизированные фабрики, способные самостоятельно производить изделия практически любой формы.

3D-принтеры применяются для самых разных задач. Изначально технологии 3D-печати получили название «быстрое прототипирование» и использовались, как можно догадаться, для изготовления прототипов и макетов. Нынешние, усовершенствованные технологии и материалы позволяют печатать уже не просто макеты, а вполне функциональные изделия, пригодные для повседневной эксплуатации: титановые имплантаты и лопатки газовых турбин, пластиковые игрушки, сувениры и корпуса бытовых приборов и гаджетов, керамическую посуду и даже бетонные строительные конструкции. Главным преимуществом 3D-печати над традиционными производственными технологиями считается принцип «прямого производства»: готовые изделия печатаются напрямую с цифровых моделей, в то время как для того же литья под давлением необходимо сначала изготовить дорогостоящую оснастку.

Принцип работы

Методов 3D-печати великое множество, но всех их объединяет общий принцип обработки цифровых моделей: для того чтобы 3D-принтер мог разобраться со сложной трехмерной структурой, цифровая модель разделяется на поперечные срезы, толщина каждого из которых соответствует толщине одного слоя. Представьте себе стопку бумаги, где каждый лист выполняет роль печатного слоя: если каждый лист вырезать по индивидуальному шаблону и вновь сложить в стопку, то получится трехмерный объект заданной формы. Собственно, именно так, вырезая и склеивая листы бумаги, работают 3D-принтеры по технологии LOM , выпускаемые компанией Mcor.

Разница же заключается в методах изготовления слоев и используемых материалах. Так, в стереолитографии (SLA) применяются жидкие фотополимерные смолы, отверждаемые лазером, а в селективном лазерном спекании (SLS) те же лазеры используются для спекания частиц различных порошков – металлических, полимерных или керамических. Самое же широкое распространение получила технология «моделирования методом послойного наплавления», известная под аббревиатурами «FD» и « FFF». Популярность этого метода объясняется простотой и дешевизной как самих печатающих устройств, так и расходных материалов. В качестве сырья используются всевозможные пластики и композиты на полимерной основе, а FDM-принтеры представляют собой максимально упрощенные станки с числовым программным управлением.

В качестве материала используется тонкая пластиковая нить или «филамент», а роль печатающей головки играет «экструдер», состоящий из простого зубчатого механизма, проталкивающего пластиковый пруток в разогретую трубку («хотэнд») и выдавливающего расплавленный пластик через сопло. Расплавленной нитью можно вычерчивать один слой за другим, пока не образуется трехмерная физическая модель. Необходимо лишь устройство, которое будет приводить головку в движение по заданному алгоритму.

Это устройство и называется 3D-принтером. Простейшие настольные 3D-принтеры состоят из шасси, служащего основой для направляющих, по которым передвигается печатающая головка и/или платформа, на которой выполняется построение. В обычном офисном принтере, печатающем на листе бумаги, необходима возможность позиционирования в двух измерениях: как правило, головка движется из стороны в сторону, а сам лист бумаги постепенно протягивается, строка за строкой. Если же мы строим трехмерную модель, то необходимо добавить и третье измерение в механизм позиционирования – так, чтобы можно было ориентироваться не только по ширине и длине, но и по высоте.

Головка и платформа устанавливаются на направляющие и приводятся в движение электромоторами. Порядок работы электромоторов, определяющий движение головки и подачу материала, закладывается в специальный программный код (т.н. G-код). Код вырабатывается автоматически с помощью специальных программ, называемых «слайсерами»: такие приложения берут нарисованные в графических редакторах трехмерные виртуальные модели, а затем разделяют их на слои и конвертируют каждый слой в серию команд, необходимых для построения физического аналога. Головка постепенно вычерчивает каждый слой, выдавливая расплавленный пластик на платформу или нанесенные ранее слои. После окончания слоя головка поднимается (или, наоборот, платформа опускается) на высоту одного слоя, и процесс начинается заново, только с использованием очередного шаблона.

Как правило, толщина нити и самих слоев составляет доли миллиметра: типичный диаметр сопла варьируется от 0,3 до 0,8 мм, тогда как толщина слоя составляет от 50 до 300 микрон. Для сравнения, толщина человеческого волоса колеблется в пределах 80-100 микрон. Очевидно, что печать тонкой нитью занимает достаточно долгое время. Действительно, типичный производственный цикл с легкостью может измеряться часами, а то и превышать сутки: здесь все зависит от выбранного диаметра сопла, толщины индивидуальных слоев и габаритов самого изделия. Чем выше толщина нити и слоев, тем меньше времени уйдет на печать, но и качество поверхностей будет ниже.

Расходные материалы

Одним из самых привлекательных факторов FDM-печати остается огромное разнообразие относительно недорогих расходных материалов. Два наиболее популярных пластика АБС(акрилонитрилбутадиенстирол) и ПЛА (полилактид). С первым вариантом знакомы абсолютно все из нас – это наиболее широко используемый промышленный пластик, из которого изготовлена ваша любимая кофемолка, шариковая ручка, защитный кожух смартфона и множество других бытовых вещей. Второй же представляет собой экологичную альтернативу, будучи органическим, биоразлагаемым полимером, изготавливаемым из кукурузы или сахарного тростника. Пусть ПЛА и не так долговечен, его можно смело выбрасывать в мусор, так как под воздействием среды через несколько месяцев полилактид превратится в безвредный компост.

Но при желании можно печатать и другими материалами: такими популярными термопластами, как поликарбонаты и нейлон. Филамент можно даже изготавливать в домашних условиях, используя в качестве сырья пустые контейнеры из ПЭТФ: из этого материала изготавливаются бутылки для газированной воды и пива.

Существуют и эластичные варианты, имитирующие резину – такие, как NinjaFlex . А если «пластиковый» образ вам не по душе, то можно попробовать композиты на основе ПЛА с добавлением различных наполнителей: песчаника, металлической пыли и даже древесины. Конечно же, физические и механические характеристики таких композитов несравнимы с настоящим камнем или сталью, но если вместо внешнего сходства вам необходима именно прочность и износоустойчивость, то всегда можно попробовать специальные композиты, армированные углеволокном.

Остается лишь выбрать 3D-принтер по душе, что может быть нелегким делом ввиду растущего разнообразия: серьезные дизайнеры могут выбрать относительно большие устройства с двумя-тремя печатающими головками, в то время как для начинающих пользователей доступно множество простых в эксплуатации моделей с относительно скоромными характеристиками, но высоким уровнем автоматизации и вполне доступными ценами. Некоторые наиболее бюджетные устройства можно приобрести всего за 200-300$, а цены на филаменты начинаются от 10$ за килограмм.

Для тех, кто хочет знать больше

  • Почему 3D-принтеры придут в каждый дом или как я впервые пользовался 3D-принтером - первый опыт работы с 3D-принтером: подводные камни и первые навыки
  • 12 полезных вещей, которые можно напечатать на 3D принтере - с чего стоит начать, если у вас появился 3D-принтер
  • Как 3D-принтеры меняют нашу жизнь - что мы станем печатать на 3D-принтерах в ближайшем будущем
  • 7 гаджетов, которые должен попробовать каждый - что еще стоит попробовать лично помимо 3D-принтеров
  • 10 роботов на солнечных батареях, которые можно собрать вместе с детьми - простые и доступные конструкторы, позволяющие приобщить детей к современным технологиям

Уже давно каждый может самостоятельно напечатать у себя дома любые тексты, фотографии и даже картины. Новшеством являются 3D-принтеры, которые, как обещают их производители, способны создавать из тонких слоев пластика практически любой предмет размером от грецкого до кокосового ореха.

Если у вас достаточно креативности и изобретательского духа, 3D-принтер откроет бесконечные возможности для вашей домашней мастерской. Однако с этой молодой технологией пока связано достаточно много проблем. Чтобы облегчить вам выбор, мы собрали несколько самых интересных устройств нового типа в техническом центре CHIP и проверили, как они выполняют «обещания» своих создателей.

Приобрести некоторые из представленных принтеров можно у дистрибьютеров или заказать с доставкой почтой. Однако следует учитывать, что тогда их цена будет выше из-за таможенных пошлин. Проще всего вводятся в эксплуатацию устройства, которые продаются уже смонтированными, - MakerBot, Sintermask, Pearl и iRapid. Принтер Ultimaker поставляется смонтированным не полностью или в виде набора деталей, для сборки которых опытному инженеру тест-центра CHIP потребовались целых 16 часов работы. Velleman K8200 продается только как сложный комплект отдельных компонентов, требующий 24 часов сборки.

У большинства устройств выявились проблемы, влияющие на качество печати. Так, у Ultimaker длинноваты направляющие, и их крепления при печати ослабевают. Мотор принтера Velleman стоит неровно (фото справа), а ребристую подставку нужно накрывать стеклянной пластиной. У продающегося смонтированным MakerBot болтается блок контроллера - впрочем, на результате печати это, к счастью, не сказывается. Внешний вид устройств различен: от голых алюминиевых стоек принтера Velleman до мощного фанерного корпуса Ultimaker или аккуратного пластмассового ящика Pearl.


Различия в повседневной работе

Технология 3D-печати существует не так долго. Этим объясняется то, что работа с устройствами относительно сложна. Перед каждым заданием пользователю следует проверить и отрегулировать печатную платформу, на которой возникают готовые предметы. После первых - неизбежно неудачных - попыток необходимо оптимизировать настройки печати. Некоторые мелочи бывают очень полезны. Так, MakerBot имеет всего три регулировочных винта, автоматически приводит печатающую головку в правильную позицию и отображает на дисплее необходимые указания - все это значительно облегчает калибровку.


Регулировать модели Pearl и Fabbster тоже достаточно просто. С остальными устройствами, имеющими по четыре винта и требующими ручной отладки точек калибровки, иногда приходится возиться по полчаса, пока все будет правильно настроено. Изрядно раздражает Ultimaker, у которого часто приходится дополнительно тщательно регулировать его подпружиненное основание.


Заправка материалом для печати почти у всех протестированных принтеров очень проста. В них применяются бобины с пластиковой нитью, толщина которой составляет приблизительно 2 мм. Волокно продевают в направляющую трубку, вставляют в подающий механизм и, наконец, заправляют в печатающую головку. Исключение составляет лишь Fabbster со своими короткими полимерными прутками, которые нужно заряжать по одному, а это несколько более трудоемко. К тому же во время печати подача материала часто бывает ненадежна и прерывается. Зато такие филигранные изделия, как наша шахматная фигура (см. таблицу внизу), только выигрывают от того, что зазубрины на прутках позволяют точнее дозировать материал.


В плане управления все рассмотренные 3D-принтеры оснащены по-спартански: ни у одного из участников теста нет больше пяти кнопок и одного LCD-дисплея с небольшим разрешением. Однако большинство настроек можно установить исключительно с помощью программы управления принтером на ПК. Трехмерная модель, которую пользователь загружает из Интернета или создает самостоятельно, используя CAD-приложение, сначала импортируется в утилиту, которая поставляется вместе с устройством. Из 3D-модели ПО генерирует задание для управления принтером. Для этого пользователю необходимо задать различные параметры печати. Настройка качества печати определяет количество горизонтальных слоев (slices), на которые программа должна разложить модель.


Кроме того, в приложении задается создание поддержек для свисающих элементов и плотность заполнения пустот. Простыми, но достаточно функциональными оказались утилиты для MakerBot и Ultimaker. Программа Open Source под названием RepetierHost, которую используют создатели устройств Velleman и iRapid, обладает множеством настроек, но требует известных навыков работы с ней. Софт принтера Pearl недостаточно внятен, к тому же он крайне медленно работает при пересчете слоев - прежде всего, когда нужно подготовить и напечатать сразу несколько объектов.


Качество, скорость печати и шум

Чтобы перенести на принтер задание для печати, удобнее всего сохранить его на карте памяти SD. Дело в том, что из-за шума и запаха, неизбежных во время работы, 3D-принтер следует держать в отдельном, хорошо проветриваемом помещении, как правило, далеко от компьютера. Карты читают все устройства, кроме Velleman и iRapid - у них можно воспользоваться портами USB. После начала печати каждый принтер сначала прогревает свое экструзионное сопло на печатающей головке, это может занять от двух (Ultimaker) до добрых десяти (Velleman) минут.


Затем начинается непосредственно процесс работы - с более (Pearl) или менее (Velleman) громкими звуками. При оптимальном раскладе мелкий предмет готов через десять-двадцать минут, а вот для крупного может потребоваться несколько часов, если только печать не прервется (на начальном этапе нашего тестирования это происходило в половине всех случаев). Возможные причины ошибок разнообразны. Чаще всего предмет деформируется и открепляется. Как правило, это случается у принтеров, платформа которых не имеет подогрева. Если объект сложен и в нем недостаточно поддерживающих структур, он может осесть внутрь себя. В обоих случаях экструдер продолжает печатать «в пустоте», что приводит к запутыванию незакрепленной нити. Воздушный пузырь или засорившееся сопло могут остановить подачу материала. Избежать ошибок печати помогает только тщательная подготовка. Перед работой с крупными предметами следует отрегулировать печатную платформу, проверить правильность подачи материала и прочистить экструзионное сопло.

Если в совершенстве освоить все эти операции и научиться, как опытный ремесленник, делать оптимальные настройки для каждого печатаемого объекта, то можно снизить количество ошибок до 20%. В качестве материала в большинстве принтеров применяется пластик ПЛА. Это вещество, изготовленное на основе молочной кислоты, плавится при температуре от 150 до 160 °C. Так как оно имеет свойство тянуться нитями, пустоты в печатаемых предметах зачастую получаются не такими чистыми, как при применении альтернативного материала АБС.


Последний обладает более высокой температурой плавления - от 220 до 250 °C - и из-за большей разницы с температурой в помещении печатаемые предметы чаще деформируются. Поэтому принтер, работающий с пластиком АБС, должен иметь печатающую платформу с подогревом. Она будет поддерживать температуру создаваемого объекта до тех пор, когда он будет готов и сможет равномерно охладиться.

Результаты теста

Наиболее надежно и качественно работает MakerBot Replicator 2. Кроме того, его детали отличаются очень тщательной обработкой. Кстати, при подготовке данного номера поступила новость о выпуске двух новых моделей этого принтера. Цена миниатюрного Replicator Mini (99x99x124 мм) в США составляет $1375. Профессиональная модель, способная работать без ПК, под названием Z18 позволяет печатать изделия до 45 см высотой.

Опытным пользователям вполне подойдет устройство Ultimaker. Это быстрый и хороший принтер, требующий, однако, регулярной дополнительной настройки. Недавно появилась его обновленная модель, Ultimaker 2. При тех же габаритах она может напечатать объект большего размера. Pearl - это настоящая удача для начинающих: он не требует сложной подготовки, и дает в итоге грубоватую, но вполне приемлемую печать.

Появление на рынке 3D-принтеров ознаменовало новую эпоху. Если раньше продукция, разработанная на базе высоких технологий, в бытовом хозяйстве позволяла решать привычные задачи, то в случае с трехмерной печатью предлагается новый способ применения устройств. Разумеется, новым он является только для рядового пользователя, так как в промышленности и на производственных предприятиях схожие технологии используются давно. Но в любом случае печать на 3D-принтере значительно расширяет возможности потребителя, к освоению которых, как показывает практика, готовы далеко не все. Во многом это связано со сложностью технологической реализации аппаратов, а также с нюансами их эксплуатации.

Но самые интересные вопросы касаются пользы от таких принтеров. Какие изделия позволяет создавать данное устройство? Для каких целей его продукцию можно использовать? И как работает 3D-принтер? Это важные вопросы, так как трехмерная печать все же является недешевым удовольствием. Поэтому приобретать соответствующее оборудование ради любопытства, мягко говоря, нецелесообразно. По крайней мере, стоит детальнее вникнуть в рабочие процессы печати и выяснить, какую пользу от них можно ожидать.

Что такое 3D-принтер?

Это устройство для трехмерной печати, посредством которого можно генерировать объемные предметы, дублирующие заранее подготовленную виртуальную модель объекта. По сравнению с традиционными принтерами, которые выводят электронный текст на бумагу, 3D-устройства обеспечивают вывод трехмерной информации, то есть создают объекты с реальными физическими параметрами. Собственно, для понимания того, как работает 3D-принтер, следует рассмотреть этапы изготовления твердых предметов с его помощью.

Принцип работы в общих чертах

Начинается работа с создания виртуального шаблона на компьютере с помощью специальной программы. Далее происходит обработка программным способом модели с целью ее разделения на слои. После этого в работу вступает техническая часть принтера, послойно формируя массу из композитного порошка для дальнейшего изготовления предмета. По мере заполнения специальной камеры материалом ось принтера распределяет массу по рабочей поверхности. После формирования каждого слоя головка устройства накладывает клеевую основу. Повторяется этот процесс до момента, пока не будет выполнен объект, разработанный в программе для печати. Важно учитывать, что изготовление на 3D-принтере может выполняться по разным технологиям. Соответственно, меняется и и свойства используемого материала, а также подходы к программной реализации задачи.

Технология быстрого прототипирования

Несмотря на различия в нюансах процесса изготовления, практически все устройства для трехмерной печати работают на принципе быстрого прототипирования. В соответствии с данной концепцией, производство осуществляется путем быстрого формирования опытных моделей для предварительной демонстрации возможностей будущего продукта. Задумывалась технология еще в 1980-х годах с целью создания образцов и заготовок. Сегодня этот метод известен как понимание которого и даст ответ на вопрос о том, как работает 3D-принтер и что отличает его функцию от традиционных подходов к изготовлению предметов. Так, если в процессе фрезерования, точения и происходит удаление материала, а ковка, прессовка и штамповка изменяют форму заготовки, то аддитивное производство предполагает увеличение массы материала посредством наращивания слоями. Иными словами, 3D принтер изменяет фазовое состояние веществ в определенных границах пространства. На сегодняшний день трехмерная печать развивается в нескольких направлениях, среди которых можно выделить стереолитографические технологии (STL), методы нанесения термопластов (FDM) и лазерное спекание (SLS).

Метод послойного наплавления термопласта

Это, пожалуй, наиболее популярная техника трехмерного изготовления. Распространенности FDM-аппаратов способствует сразу несколько факторов. В первую очередь в работе устройств используются относительно недорогие пластики. Также имеет значение простая техника эксплуатации, что особенно важно в работе с таким оборудованием. Как правило, технологии 3D-принтеров этого типа предусматривают работу с термопластиками, одним из которых является полилактид. Среди преимуществ этого материала отмечается экологичность, так как получают данный пластик из сахарного тростника и кукурузы.

Главным же элементом в самом принтере стоит назвать экструдер, который выполняет задачу печатной головки. Впрочем, в этой части не все так однозначно, поскольку элемент представляет собой комплекс отдельных компонентов. Если рассматривать термин «экструдер» в привычном понимании, то к нему будет относиться только часть головки в виде подающего механизма. Так или иначе, печатающая основа подает пластик для 3D-принтера путем нанесения расплавленной нити. Движение механической части обеспечивается электромотором. В итоге механизм направляет нить в нагреваемую трубу сопла, которая и формирует конечный объект.

Стереолитографические установки

Технология лазерной стереолитографии сегодня широко применяется в протезировании зубов. Это второй по популярности тип принтеров для 3D-печати. Отличительной чертой стереолитографических устройств является получение непревзойденно высокого качества объектов. Достигаются такие результаты благодаря разрешению аппаратов, которое может исчисляться единичными микронами. Поэтому вполне логично, что работа 3D-принтера на основе лазерной стереолитографии высоко ценится не только стоматологами, но и ювелирами. Программная часть устройства во многом напоминает FDM-аналоги, но есть и целый ряд особенностей технологии. Несмотря на тот факт, что принцип печати называют лазерной стереолитографией, все чаще функция такого оборудования базируется на светодиодных ультрафиолетовых проекторах.

Проекторные модели надежнее лазерных и по цене обходятся дешевле. Для них не нужны деликатные зеркала, обеспечивающие отклонение лучей, что упрощает конструкцию. В то же время печать на 3D-принтере с проекторами отличается высокой производительностью. Данное преимущество достигается благодаря тому, что происходит не последовательное, а полное засвечивание контура слоя.

Лазерное спекание

Еще одна разновидность применения лазерного метода. В этом случае применяется легкоплавный пластик. Мощный лазер прорисовывает по пластиковой основе сечение объекта, что приводит к плавлению и спеканию материала. Так происходит с каждым слоем до получения завершенной модели, которую подготовила программа для 3D-принтера в качестве заготовки. Остатки пластикового порошка стряхиваются с полученного предмета в конце рабочего процесса. Существенным недостатком таких аппаратов является создание объектов с пористой поверхностью. С другой стороны, это никак не влияет на прочность изделий. Более того, именно вышедшие из таких принтеров модели являются самыми долговечными. Сама же установка имеет сложную конструкцию и, как следствие, высокую стоимость. При этом и процесс изготовления отнимает много времени по сравнению с 3D-принтерами других типов. Как отмечают пользователи, скорость формирования модели составляет несколько сантиметров в час.

Расходные материалы

Основным материалом для создания моделей путем трехмерной печати является термопластик. Кроме уже упомянутых разновидностей, стоит отметить пластик для 3D-принтера в форматах ABS и PLA. Также используется нейлон, поликарбонат, полиэтилен и другие виды, также используемые в промышленности. При этом некоторые установки допускают и смешивание материалов, а также использование вспомогательных веществ, улучшающих качественные характеристики будущего изделия. Например, для этой цели используют который, в сущности, является той же разновидностью пластика PVA. Растворив его в воде, пользователь может создавать сложные геометрические фигуры.

Наиболее же экзотическим материалом для использования в подобных задачах является металл. Чтобы получить такое изделие, также применяют 3D-модели для печати на 3D-принтере, а отличия технологии сводятся к функции С ее помощью наносится связующая клейкая масса в места, куда указывает компьютерная программа. Далее на всю рабочую область головка наносит тонкий пласт металлической пудры. То есть металл не плавится, как в случае с пластиками, а накладывается и склеивается послойно в виде мельчайших частичек.

Управление работой принтера

Для начала стоит отметить операции, которые контролируются пользователем через компьютер. Это регулировка температуры сопла и рабочей площадки, темпы подачи материала и работы электромотора, который обеспечивает позиционирование печатающей головки. Все эти действия находятся под управлением электронных контроллеров. Как правило, современные модели таких устройств базируются на системе Arduino с открытой архитектурой. Что касается программного языка, то в принтерах используется так называемый G-код, построенный на командах управления оборудованием для печати. На этой стадии можно перейти к рассмотрению программ-слайсеров, которые обеспечивают перевод 3D-модели для печати на 3D-принтере в понятный контроллерам код. Сразу надо сказать, что такое программное обеспечение не имеет прямого отношения к разработке графических моделей.

Программное обеспечение

В перечень основных задач слайсеров входит установка параметров, в соответствии с которыми будет осуществляться печать. Выбор конкретной программы определяется типом принтера. Например, устройства RepRap подразумевают использование слайсеров, выполненных с открытым кодом. Среди таких можно выделить Replicator G и Skeinforge. Однако немало и производителей, которые рекомендуют использовать только фирменное ПО от конкретных компаний. Это, в частности, относится к аппаратам Cube от фирмы 3D Systems. Что же касается моделирования изделий, то этим занимается специальная программа для 3D-принтера, предназначенная для трехмерного проектирования. Обычно для этих целей используют CAD-редакторы, которые, впрочем, требуют определенного опыта работы с дизайном 3D.

Какие изделия можно получить?

Спектр возможностей трехмерных принтеров активно расширяется, что позволяет создавать продукцию для самых разных сегментов рынка. Если говорить о строительстве и архитектуре, то здесь очень ценятся возможности изготовление макетов, для которых, собственно, и разрабатывалась концепция аддитивного производства. В машиностроительной промышленности также широко используется 3D-принтер. Изделия в данном случае могут быть представлены и потребительской продукцией, и отдельными элементами для концептов. Как уже говорилось, высокая точность изготовления деталей была высоко оценена работниками медицины. Помимо протезирования, 3D-принтер используется в изготовлении макетов и образцов органов.