Сравнение возможностей pdm plm программное обеспечение. Управления проектными данными. Организация совместной работы распределенных коллективов

Автоматизированная система управления предприятием (АСУП) - комплекс программных, технических, информационных, лингвистических, организационно-технологических средств и действий квалифицированного персонала, предназначенный для решения задач планирования и управления различными видами деятельности предприятия, частный случай автоматизированной системы управления (АСУ) .

АСУП производственного предприятия, как правило, включает в себя подсистемы управления:

складами

поставками

персоналом

финансами

конструкторской и технологической подготовкой производства

номенклатурой производства

оборудованием

оперативного планирования потребностей производства

внедрение такой системы повышает эффективность работы организации, снижает вероятность возникновения ошибок, сокращает общее время и улучшает качество решения поставленных задач, независимо от структуры и области деятельности компании.

Возможность комплексной, всесторонней автоматизации производственно-коммерческой деятельности предприятия – одно из главных преимуществ Системы Управления Предприятием. Система позволяет автоматизировать и контролировать работу отдела продаж и закупок, склада, отдела сборки, бухгалтерии, отдела гарантийного обслуживания клиентов и многое другое. Система позволяет интегрировать данные в единую систему документооборота и оперативно проектировать отчеты и выходные документы произвольной сложности.

Используя Систему Управления Предприятием, Вы будете работать в единой информационной среде, что позволит упростить работу пользователей и значительно сократить расходы на развитие и обслуживание. Максимальная автоматизация операций позволит повысить управляемость и осуществлять полный контроль над деятельностью предприятия. Планирование загрузки сотрудников сократит общее время и улучшит качество решения каждой задачи предприятия. Гибкое разграничение прав доступа повысит конфиденциальность информации. Адекватность форм и процедур обработки документов на бумажном и электронном носителе облегчит работу с системой, улучшив структуру и качество самой информации.

4.Системы электронного документооборота (pdm-системы). Назначение. Основные возможности.

Среди CALS-технологий интеграции данных об изделии, ключевой является технология управления данными об изделии (Product Data Management).

PDM (Product Data Managment) - технология управления данными об изделии.

PDM-технология предназначена для управления всеми данными об изделии и информационными процессами ЖЦ изделия, создающими и использующими эти данные. Основной идеей PDM-технологии является повышение эффективности управления информацией за счет повышения доступности данных об изделии, требующихся для информационных процессов ЖЦ.

Существует много задач, которые можно решить за счет применения PDM-технологии, среди которых можно выделить наиболее распространенные:

Создание ЕИП для всех участников ЖЦ изделия;

Автоматизация управления конфигурацией изделия;

Построение системы качества продукции согласно международным стандартам качества серии ISO 9000 (здесь PDM-технология играет роль вспомогательного средства);

Создание электронного архива чертежей и прочей технической документации (наиболее простой способ применения PDM-технологии).

PDM-система

Для реализации PDM-технологии существуют специализированные программные средства, называемые PDM-системами (т.е. системами управления данными об изделии; другое название – системы управления проектами).

PDM-система должна контролировать все связанные с изделием информационные процессы (в первую очередь, проектирование изделия) и всю информацию об изделии, включая: состав и структуру изделия, геометрические данные, чертежи, планы проектирования и производства, нормативные документы, программы для станков с ЧПУ, результаты анализа, корреспонденцию, данные о партиях изделия и отдельных экземплярах изделия и многое другое.

Пользователями PDM-системы выступают все сотрудники всех предприятий-участников ЖЦ изделия: конструкторы, технологи, работники технического архива, а также сотрудники, работающие в других предметных областях: сбыт, маркетинг, снабжение, финансы, сервис, эксплуатация и т.п. Главной задачей PDM-системы является предоставление соответствующему сотруднику нужной ему информации в нужное время в удобной форме (в соответствии с правами доступа).

Функции PDM-системы

Все функции полноценной PDM-системы можно четко разделить на несколько групп:

Управление хранением данных и документов. Все данные и документы в PDM-системе хранятся в специальной подсистеме – хранилище данных, которая обеспечивает их целостность, организует доступ к ним в соответствии с правами доступа и позволяет осуществлять поиск данных разными способами. При этом документы, хранящиеся в системе, являются электронными документами, т.е., например, обладают электронной подписью.

Управление процессами. PDM-система выступает в качестве рабочей среды пользователей и отслеживает все их действия, в т.ч. следит за версиями создаваемых ими данных. Кроме того, PDM-система управляет потоком работ (например, в процессе проектирования изделия) и занимается протоколированием действий пользователей и изменений данных.

Управление составом изделия. PDM-система содержит информацию о составе изделия, его исполнениях и конфигурациях. Важной особенностью является наличие нескольких представлений состава изделия для различных предметных областей (конструкторский состав, технологический состав, маркетинговый состав и т.д.), а также управление применяемостью компонентов изделия.

Классификация. PDM-система позволяет производить распределение изделий и документов в соответствии с различными классификаторами. Это может быть использовано при автоматизации поиска изделий с нужными характеристиками с целью их повторного использования или для автоматизации присваивания обозначений компонентов изделия.

Календарное планирование. PDM-система содержит функции формирования календарного плана работ, распределения ресурсов по отдельным задачам и контроля выполнения задач со стороны руководства.

Вспомогательные функции, обеспечивающие взаимодействие PDM-системы с другими программными средствами, с пользователями, а также взаимодействие пользователей друг с другом.

Выгоды от использования PDM-системы

Основной выгодой от использования на предприятии PDM-системы является сокращение времени разработки изделия, т.е. сокращение времени выхода изделия на рынок и повышение качества изделия.

15.09.2000 Владимир Краюшкин

«PDM - системы управления производственными данными», «PDM - системы управления проектными данными», «PDM - системы управления данными о производственных процессах». Эти и еще множество других «неформальных» определений систем PDM можно встретить в сегодняшней компьютерной литературе. Некоторая размытость определений с одной стороны, и разнообразие применяемых понятий с другой стороны, свидетельствуют о том, что PDM - это развивающийся, многообещающий и интересный сектор рынка промышленных информационных систем.

Среди сотрудников компаний, внедряющих новые информационные технологии в промышленности, гуляет поговорка: «Путь к сердцу руководителя лежит через хороший PDM», а среди директоров ИТ-служб на производстве бытует мнение, что «Хочешь похудеть - купи себе PDM». Разработчики концепций реинжиниринга и системные интеграторы всегда включают в проекты пункты о внедрении PDM, а реальные исполнители внедрения этих систем на производстве - это люди, потерянные для семьи. За десять лет сложилось целое направление в ПО , значение которого еще предстоит оценить.

Этапы большого пути

Первые системы PDM - (Product Data Management) появились в конце 80-х - начале 90-х годов. Их появление было вызвано возрастающими сложностями в области САПР на уровне рабочей группы. Собственно проблемы состояли в том, что для обеспечения эффективной работы над одним сложным изделием группы разработчиков требовалось дополнительное к САПР ПО, которое отслеживало бы состав всех файлов, генерируемых САПР, каталогов внутри группы на предмет их целостности, непротиворечивости и актуальности.

В начале 90-х даже «тяжелые» промышленные САПР уже не рисковали предлагать «встроенные» модули управления совместно используемой проектной информацией, сосредоточившись только на трехмерном твердотельном групповом проектировании сборок. Информационное обеспечение такого рода сборок было выделено в самостоятельную задачу, реализация которой и вызвала к жизни появление систем PDM первого поколения. Как правило, такие PDM имели прямой интерфейс с САПР сборок, встроенную СУБД и генератор отчетов для вывода спецификаций на изделие.

Разработкой PDM первого поколения наиболее плодотворно занимались производители «тяжелых» САПР, которые раньше всех поняли, что успех активного внедрения их основных продуктов требует наличия специального ПО, решающего вопросы взаимной увязки конструкторских данных, надежного хранения наработанного каждым из участников проекта, обеспечения нужного уровня доступа ко всей проектной информации, структурированной в соответствии с конструктивным членением изделия. При таком подходе исходными, «базовыми», данными для работы PDM становились, во-первых, структура изделия (получаемая напрямую из среды параллельного проектирования САПР), во-вторых, структура отношений между участниками проекта (получаемая в ходе выполнения административных задач по адаптации PDM на конкретном подразделении предприятия). В-третьих, дополнительная производственная информация, относящаяся к проекту в целом.

Областью применения систем PDM первого поколения были группы проектировщиков. Основное препятствие, которое устранялось теперь за счет систем PDM - это несогласованность автоматизированной работы группы проектировщиков. Упорядочение, рационализация и координация движения проектной информации внутри группы конструкторов-проектировщиков и достигалось за счет применения систем PDM первого поколения.

К середине 90-х стало ясно, что системы PDM первого поколения успешно решают только задачи информационного обеспечения группы проектировщиков. Для интеграции систем PDM в общий производственный процесс необходимо было уйти от концепции первого поколения, а сами PDM дополнить и расширить. Состав модулей дополнить новой функциональностью, учитывающей не только конструкторские, но и другие аспекты деятельности, в первую очередь - технологические. Необходимо было расширить рамки применимости систем PDM за границы проектных групп, включив в информационный контур управленческие подразделения, технологические и плановые отделы. Характерной задачей PDM второго поколения стало обеспечение управления всеми проектными данными в соответствии с правилами, устанавливаемыми для участников на каждом этапе работ над изделием - задача управления жизненным циклом изделия. В качестве «параллельной» решалась также задача «сотрудничества» с модулями материально-ресурсного планирования производства систем АСУ.

Областью применения систем PDM второго поколения стали группы и подразделения предприятия, непосредственно занятые в процессе производства, а PDM стали претендовать на звание «тяжелых», «промышленных» пакетов. Второе поколение систем PDM позволило расширить информационный обмен, включив в его сферу все подразделения предприятия, автоматизировать некоторые функции принятия решений при продвижении информации об изделии по этапам жизненного цикла, сократить потери на организацию доступа к общему банку данных предприятия для каждого из клиентов системы PDM. Как результат - применение такого рода систем PDM должно было сократить непроизводственные потери, особенно при выполнении работ над образцами новой техники. Характерными представителями второго поколения систем PDM, первыми появившимися на российском рынке, были Optegra от Computervision и IMAN от EDS Unigraphics .

В это же время ведущие системные интеграторы начали активно продвигать идею полного электронного определения изделия - идею тотального охвата всех информационных потоков, касающихся изделия, независимо от того, где, кем и для чего они были произведены. Вдруг выяснилось и стало очевидным фактом совершенно игнорируемое ранее положение - не конструкторы-проектировщики задают структуру изделия, а структура изделия диктуется, пусть и косвенно, составом тактико-технических характеристик разработки. А эта информация, в свою очередь, попадает в ТЗ после анализа «прибыльных» ниш рынка и учета конкретных потребностей заказчиков. Следовательно, уже не конструкторы-разработчики формируют первую версию структуры изделия.

Важный поворотный пункт в эволюции PDM состоит в том, что если раньше информация о структуре изделий формировалась внешними «тяжелыми» САПР (сборки CADDS5, UG, CATIA и т.п.) и экспортировалась в PDM, то теперь формирование структуры изделия («дерева сборки») становится непосредственной задачей самих систем PDM. «Тяжелые» САПР теперь уже становятся получателями, а не производителями, информации о структуре изделия. Результатом нового видения проблемы охвата информационного потока стало значительное ужесточение требований к системам PDM в части платформенной независимости, универсальности, многофункциональности, открытости и дружественности интерфейсов пользователя.

Провозглашенное стремление к тотальному охвату информационных потоков потребовало также со стороны систем PDM более тесной интеграции с ERP-системами: R/3, Baan IV, J.D. Edwards и т.д. Однако стандарта на структуры данных «де юре» для таких систем не существовало, поэтому в качестве рабочего варианта для средств интеграции PDM и ERP были взяты форматы описания состава изделия из R/3 и структура данных STEP для автомобилестроения или авиастроения.

Для первых систем PDM третьего поколения характерны следующие особенности: полная реализация идеологии клиент-сервер, реализация СУБД на базе самых производительных ядер, наличие интерфейса с ERP-системами, вызов клиентских модулей через унифицированный пользовательский графический интерфейс. Базовыми функциональными возможностями систем третьего поколения считаются: контроль структуры изделия, контроль жизненного цикла изделия, контроль версий и «релизов» информационных объектов, генератор спецификаций. Дополнительно решалась задача контроля потока работ каждого конкретного исполнителя. Как результат, применение систем PDM третьего поколения должно было существенно сократить непроизводственные потери не только при выполнении работ над образцами новой техники, но и при организации работ по серийному и мелкосерийному выпуску продукции. К этому поколению принадлежит продукт EPD.Connect , уже нашедший применение в ряде отраслей российской промышленности.

К концу 90-х на рынке систем PDM возникли новые задачи, которые нельзя было решить в системах третьего поколения. Речь идет об электронной коммерции и все более углубляющейся глобализации промышленного производства. Все это требовало появления ПО, учитывающего оптимальный по количеству и рациональный по производительности состав соисполнителей, допустимых для участия в крупном машиностроительном проекте вне зависимости от их реального географического расположения. Теперь центр тяжести в структуризации для систем PDM нового, четвертого поколения перемещался с категории «изделие» на категорию «процесс изготовления и сопровождения изделия». Именно при таком изменении «видения» проблемы достигается реальный прорыв в качестве управления и оперативности его применения. В новых условиях успех фирмы-изготовителя определяется уже не просто способностью быстро «выбросить» на рынок новую модификацию серийного изделия или новое изделие, а тем, как быстро производитель сумеет перестроить свой производственный процесс под многочисленные и разнообразные требования заказчиков, насколько рационально она сможет перестроиться с массового и серийного производства на производство «под заказ». Ясно, что понятие «изделие» при такой методике перестает быть чем-то раз и навсегда заданным, «информационной основой», «структурной базой» PDM, зато на первый план выступают структуры производственных отношений, их изменение и упорядочение в ходе выполнения сформированного портфеля заказов.

В системах PDM четвертого поколения существенно возросли функциональные возможности отслеживания запросов на внесение изменений в модельный ряд управления модификациями и протоколирования-рассылки хода изменений. Реально полноценная организация связей с заказчиками (напрямую или, что чаще всего - через сеть дилеров-поставщиков) возможна только через Internet при помощи Web-технологии. При этом чистая, «классическая», клиент-серверная модель уже перестает работать, необходимо ориентироваться на широкое использование принципов организации среды WEB, особенностей применения Java, HTML и XML для формирования страниц взаимодействия с пользователями системы и т.д. Совокупность всех этих требований приводит к появлению принципиально нового поколения Web-ориентированных систем PDM, которые уже успели «окрестить» как cPDm (collaborative Product Definition management) . От систем ожидается не централизованный характер управления данными (в проекте - один директор, «иерархия» отношений соответствует структуре «классического» унитарного предприятия), а «collaborative» - характер производственных связей, подразумевающий сотрудничество, а не прямое подчинение (в проекте - несколько предприятий, объединяющихся для выполнения одних целей, а в другое время - вольных входить в любые другие производственные союзы, связи и кооперативные объединения). Еще заметим, что «Data» («данные») в новой аббревиатуре заменено на слово «Definition» («определение»), что несомненно отображает широту информационного охвата при работе с изделием. Однако пока будем придерживаться «традиционного» наименования - PDM.

PDM сегодня

Рассмотрим типичный состав и функциональность современной системы PDM. Прежде всего, система должна быть основана на универсальных принципах сетевого взаимодействия (IP-адресация, независимость от физических характеристик среды передачи сигнала, глобальный охват), а ее пользовательский интерфейс должен быть тесно интегрирован со средствами для просмотра Web-страниц. В состав современной системы PDM должны входить модули генерации и сохранения («Vaulting») объектов, их версий и релизов. Само хранение выполняется в системах четвертого поколения независимо от географического расположения сервера базы данных - храниться на нем могут на равных правах как сами объекты, так и ссылки на них (URL, NFS-локализация, сетевой адрес файл-сервера и т.д.). При реальной сетевой реализации идеи «Vaulting» серверов может быть несколько, база данных при этом получается распределенной, а СУБД должна выполнять в полной мере сетевой сервис. Реально СУБД, позволяющие реализовать идею «сетевого распределенного хранилища данных» («Distributed Vault» в зарубежной литературе) представлены пока только семейством Oracle 8i.

Современная система PDM в наиболее полном объеме реализует функции управления составом изделия, структурой всех его составных частей, деталей, узлов и агрегатов. Кроме того, в управляемую структуру должны входить и управляться системой дополнительные структурированные информационные объекты, состав которых отражает все необходимые данные для организации работ по производству самого изделия - структура оснастки, инструментального парка, операций и переходов, технологических приемов.

Современная система PDM управляет и обеспечивает обмен данными о структуре изделия и вносимых в него изменениях, обеспечивает взаимодействие с любыми корпоративными приложениями в рамках определения и управления действий по внесению изменений в изделие, за счет чего упрощаются процессы совершенствования и модификации. Современная система PDM должна обеспечивать создание и поддержку множества взаимозависимых и взаимоувязанных спецификаций изделия (классические BOM, конструкторские, технологические, заказные спецификации, спецификации на покупные изделия, спецификации поставок и т.д.), благодаря чему пользователь получает согласованное представление об изделии на протяжении всего его жизненного цикла.

Современная система PDM должна иметь многоуровневый механизм управления реквизитами-атрибутами, настраиваемый на конкретный состав задач по управлению тем или иным узлом, агрегатом или даже изделием в целом. Современная система PDM в обязательном порядке должна иметь встроенный механизм управления жизненным циклом изделия. В этот механизм должны входить средства ролевого управления любым пользователем системы PDM, средства отображения текущего состояния любого бизнес-объекта в терминах жизненного цикла, средства протоколирования состояний каждого бизнес-объекта, учет всех его состояний и средства администрирования. Для решения задач оперативного управления в системах PDM четвертого поколения обязательно наличие полнофункционального модуля Workflow.

Управление структурой изделия. Средства управления структурой изделия в системах четвертого поколения позволяют создавать и обрабатывать различные виды спецификаций изделия (BOM). Кроме того, нужно иметь возможность вести управление по деталям и узлам, составляющим изделие, а также по относящимся к ним документам (файлам, наборам файлов, адресам в Internet) и специальным производственным характеристикам - атрибутам. Для управления на уровне групп предприятий используется динамическая, содержащая максимально полную информацию об изделии структура, которая отображает все возможные конфигурации изделия. Сервисные функции должны допускать просмотр структуры изделия с любой степенью детализации, раскрывать сборки и получать представление о входящих в ее состав подсборках и деталях:

  • Ведение спецификаций.

Спецификация - ассоциативная структура изделия, из которой в соответствии с определенными критериями конфигурации выводится представление сборки. Работая как фильтр, критерии конфигурации определяют, какую версию детали надо вывести. Например, часто специалист по планированию производства хотел бы видеть структуру изделия в зависимости от степени готовности всех ее составных частей к конкретным срокам, а специалист-технолог - в зависимости от применяемых материалов или технологических приемов обработки этих материалов.

  • Многоуровневые спецификации.

Для современных PDM систем фактическим стандартом является возможность вывода не менее двух типов спецификаций, а именно иерархической структуры (дерева сборки) и подетального общего списка (список наименований комплектующих). Спецификации первого типа чаще используются в конструкторско-технологических подразделениях, а второго - на сборочных участках и при работе по заказам.

  • Многовариантный генератор спецификаций.

Участникам производственного процесса часто необходимо иметь возможность построения спецификаций в зависимости от рода деятельности и профессиональной принадлежности. Например, инженерам-конструкторам важна спецификация, построенная по принципу «как спроектировано», а специалистам планово-производственного отдела по принципу «как запланировано».

  • Отслеживание действия внесенных изменений и модификаций.

В системах PDM четвертого поколения одна из типичных функций - это отслеживание того, какая деталь и как применяется в каждой из модификаций конкретного изделия. Эта возможность значительно упрощает процесс постепенного формирования полного электронного определения изделия. В процессе внесения и утверждения изменений в проект предприятие должно учитывать, когда и для каких партий эти изменения уже действуют, а для каких - нет, когда и в каких количествах необходимо производить новые детали. Как правило, должно быть реализовано три типа такой функциональности: отслеживание по календарным срокам, отслеживание по идентификационному номеру изделия и отслеживание по номеру партии. Кроме того, часто на предприятиях авиастроения и судостроения может быть задано отслеживание эффективности внесенных изменений для нескольких разных изделий, в которых используется данная деталь.

  • Отслеживание принадлежности к модельному ряду («baseline»).

Такая функциональность позволяет получать на произвольно выбранных этапах жизненного цикла актуальный срез по списку деталей и документов с определением тех из них, которые имеют ключевое значение для структуры изделия. Поскольку с течением времени появляется множество конфигураций структур изделия, данная функция помогает определить те конфигурации, которые представляют для предприятия наибольший интерес.

  • Отслеживание ссылок и многоуровневых ссылок на документы.

Такая функциональность обеспечивает ассоциирование любых документов, относящихся к детали, агрегату или изделию, позволяя разработчикам присоединять дополнительную информацию в любом удобном для понимания виде. Примерами ссылочной информации (присоединенных документов) могут служить: готовые спецификации, техническая документация, файлы САПР, мультимедийные файлы и даже ссылки на другие Web-сайты в Internet. Такая методика построения и отслеживания ссылок позволяет собирать все накопленные данные об изделии и обеспечивает создание максимально насыщенной информационной структуры изделия.

  • Отслеживание изменений.

Отслеживание изменений позволяет группировать и просматривать в удобном для понимания виде информацию о тех вносимых изменениях, которые приводят к появлению новой версии (модификации) изделия. Пользователь, таким образом, будет знать как о состоянии проведения изменений в смысле структуры изделия и в смысле этапов жизненного цикла, так и о незавершенных изменениях той или иной детали и сможет использовать эту информацию в процессе принятия решений.

  • Динамический просмотр иерархически организованной информации («Навигация по структуре изделия»).

Эффективность применения современных систем PDM во многом определяется тем, какие эти системы предоставляют пользователю возможности поиска информации о нужных деталях, просмотра структуры изделия и выполнения необходимых операций над выбранными элементами этой структуры. Лучше всего «принимаются» промышленностью и легче всего «осваиваются» пользователями такие системы PDM, в которых пользователь работает с хорошо знакомым ему графическим интерфейсом (например, Netscape Communicator), который организует иерархическое представление всей информации об изделии и тем самым упрощает переходы от деталей к сборкам и обратно. Когда пользователь выбирает нужную ему деталь на дереве сборки, система PDM автоматически выводит на экран клиентской машины список ссылочных документов и всю необходимую информацию - например, номер детали, данные о ревизии, дату последней модификации, и т.д.

  • Сравнение структур изделия.

Пользователь может выбрать любые две структуры изделия, любые две версии, любые два релиза, сравнить их и выявить отличия друг от друга, если таковые существуют на множестве отслеживаемых параметров модели изделия (структурный состав, атрибуты и их значения). Отчет о проведенном сравнении формируется в виде, удобном для браузера системы, например, в виде XML. При сравнении двух ревизий одной и той же структуры изделия требуется обнаружить следующие различия (типичная задача): уменьшилось или увеличилось количество определенных комплектующих, добавился ли ссылочный документ и САПР-модель для ссылочного документа. Интерактивный, динамический механизм сравнения структур незаменим для управления различными версиями изделия. Управление изменениями. В большинстве организаций поэтапная многоступенчатая процедура внесения и утверждения изменений достаточно хорошо отработана и успешно применяется в практике промышленного производства, что является важной предпосылкой к автоматизации этой процедуры на всех ее этапах для всех ее участников. Системы PDM четвертого поколения должны предоставлять универсальное решение, которое обеспечивает контроль за информацией о предполагаемых изменениях.

  • Контроль за всей информацией. Средства управления изменениями должны контролировать всю информацию о внесении изменения от момента постановки задачи до полного ее разрешения. Процесс внесения изменения разделяется на этапы: запрос на изменение, изучение причин, повлекших за собой необходимость изменения, предложения альтернативных вариантов, реализация изменения путем формулировки заявки на изменение и выполнение действий по внесению изменения. Решения каждого этапа должны протоколироваться для возможного «отката» и проверки принятых решений.
  • Гибкие процессы по внесению изменения. Разные модификации требуют разной степени детализации и задействуют разные этапы общего процесса внесения изменений. Средства управления изменениями в рамках таких требований должны позволять настраивать процесс внесения изменений таким образом, чтобы он включал необходимое для конкретной модификации число шагов и полностью описывал изменение и его последствия.
  • Автоматизация потоков заданий («Workflow»). Наиболее полная автоматизация процесса внесения изменений достигается благодаря интеграции средств управления изменениями с функциями управления потоком заданий. Каждый этап процесса внесения изменений может быть представлен как задание потока работ и автоматически передан пользователю или системе, которые отвечают за выполнение этого задания. По завершению выполнения задания система управления потоком заданий продолжит процесс внесения изменений до тех пор, пока не будут завершены все его этапы, и документация по изделию получит статус выпущенной. Для четвертого поколения систем PDM характерно следование рекомендациям и стандартам рабочей группы Workflow Management Coalition.

Визуализация трехмерных сборок и сопутствующей информации:

  • Реализация визуального представления любого уровня сложности, вплоть до фотореалистического, а также цифровое макетирование («Mock-Up») сборок любой степени сложности. Для того чтобы визуализация была возможна на любом рабочем месте вне зависимости от технических параметров локального компьютера пользователя, собственно визуализация должна выполняться на специализированном сетевом сервере, а на рабочее место пользователя через сеть будет передаваться только «картинка» результата.
  • Динамическая навигация по трехмерной структуре сборки, вне зависимости от конкретной САПР, с помощью которой были созданы входящие в сборку компоненты.
  • Автоматизация построения «взрывных» видов, сечений, разрезов сборки, автоматизация построения «кинограммы» сборочных процессов, моделирование в трехмерном виде монтажных операций, сборочных и ремонтных работ, учет пространственных и эргономических ограничений функционирования изделия.
  • Реализация методики «виртуального предприятия», при которой трехмерная сборка и производственная инфраструктура анализируются на совместимость для вывода о возможности/целесообразности выпуска именно такого изделия именно этим цехом, именно этого предприятия.
  • Мощное средство агрессивной маркетинговой политики - потребитель может «вписать» себя в трехмерную модель будущего изделия с требуемыми характеристиками, «почувствовать» необходимость покупки именно такого изделия у именно такого производителя.

Средства управления составом предприятий-поставщиков комплектующих. Для выпуска изделия с наименьшими затратами и оптимизации взаимодействия с поставщиками необходимо иметь ранжируемую базу данных по комплектующим. Она может быть выполнена на основе «отфильтрованной» информации из PDM-систем самих поставщиков комплектующих, причем принцип отбора информационных компонент и набор общих технических характеристик («реквизитов») задается в «материнской» PDM. Для анализа применимости, надежности и перспективности поставщиков система PDM четвертого поколения должна иметь некоторый сервис ранжирования поставщиков, позволяющий определить в каждом конкретном случае оптимальный состав соисполнителей, субподрядчиков и поставщиков.

Реализация этих и многих других вспомогательных функций в составе систем PDM четвертого поколения приводит к тому, что PDM становится приложением, в наиболее полной мере реализующим новаторские идеи ведения электронного бизнеса, но только теперь уже не только и не столько в сфере продаж потребительских изделий и услуг, сколько в области решений типа B2B.

На пути к пятому поколению

Делать прогнозы - занятие хотя и увлекательное, но неблагодарное: если прогноз сбывается, то становится скучно от того, что все и так было известно, а если не сбывается - обидно от несбывшихся ожиданий. Однако попробуем все-таки посмотреть лет на пять вперед: что там нас ждет, какие системы PDM выглядывают из-за горизонта?

Тенденция к глобализации и разделению труда в рамках транснациональных промышленных структур потребует перехода от «Distributed Vault» к «Globalized Vault» - своего рода «сетевым банкам промышленных знаний». Тенденция эта в первую очередь затронет не очень крупные фирмы, специализирующиеся на поставках комплектующих и стандартизованных изделий. Уже сейчас для ограниченной номенклатуры изделий, действуют доступные через Internet справочники-прейскуранты на крепеж, монтажные изделия, электротехнические и гидравлические стандартизованные компоненты. Уже сейчас число таких компонентов исчисляется сотнями тысяч и пополняется еженедельно. Получив через Internet доступ к такому справочнику, пользователь уточняет свой запрос, выполняет действия по получению более подробного доступа к информации о каждом из запрошенных изделий и, в конце концов, к составлению и оплате заказа поставки нужной номенклатуры в требуемый срок в указанное место на земном шаре.

Тенденция к стандартизации при описании структур изделий должна иметь результатом, видимо, появление единого промышленного стандарта на описание сборки. Возможно, хотя и небесспорно, что основой такого стандарта станут предложения STEP.

Тенденция к распределенным вычислениям в сети и успехи в области Java-программирования снимут вопрос о языковой среде реализации динамических функций систем PDM. Основной барьер для повсеместного использования Java в качестве языка приложений сетевых реализаций систем PDM сейчас - недостаточная скорость исполнения Java-приложений на стороне пользователя. С выпуском специализированной аппаратуры и программ реализации «быстрой Java» положение должно кардинально измениться.

Тенденция к взаимопроникновению современных технологий приведет к тому, что системы PDM станут базовым инструментальным средством для задач CALS (прежде всего в области эксплуатации сложной военной техники), для задач управления качеством (как определено в документах по ISO 9000), для задач управления ресурсами предприятия, для задач включения заказчика в контур управления изготовлением изделия.

Тенденция к упрощению и оптимизации структуры отношений с поставщиками приведет к тесной интеграции систем PDM базового предприятия и предприятий-участников. Отсюда с неизбежностью следует вывод о возможной в будущем унификации и стандартизации базового набора функций для всех новых систем PDM. Скорее всего, унификация и стандартизация будут выполнены в части описания структуры изделия, в части определения структуры «жизненного цикла», в части стандартизации определения Workflow.

Обязательным должен стать принцип «Collaborative product commerce» («CPC»), что можно перевести как «использование Internet-среды для разработки, выпуска и реализации продукции при условии сохранения конкурентоспособности».

Владимир Краюшкин - ведущий специалист компании PTC (Москва).

Литература

1. Н. Дубова. . «Открытые системы», 1996, №3
2. Н. Дубова, И. Островская. . «Открытые системы», 1997, №3
3. В. Абакумов. . «Открытые системы», 1996, № 5
4 В. Краюшкин. Система Optegra - управление производственными данными. «Открытые системы», 1997, №1
5. Н. Пирогова. ? «Открытые системы», 1998, №1
6. http://www.cimdata.com/cPDm_Main.htm
7. В. Клишин, В. Климов, М. Пирогова. . «Открытые системы», 1997, №2, стр.42

Кто есть кто на рынке PDM

За последние два года на рынке PDM произошли существенные изменения структурного характера: слияния нескольких компаний, уход с «поле боя», диверсификация, переквалификация.

Рис.1 Рынок систем PDM (млн. долл.)

При управлении производственными циклами и готовыми/находящимися в процессе изготовления изделиями предприятия все чаще обращаются к специализированным программным решениям. Они позволяют автоматизировать, упростить, сделать комплексным и прозрачным все функции, от контроля до прогнозирования. Рынок в ответ на запросы пользователей предлагает модули PDM/PLM — системы во многом схожи, что приводит к их ошибочному смешению. Однако они принципиально отличаются.

PDM - «классика» систем управления продуктами

PDM (Product Data Management) - модуль, обеспечивающий управление комплексной информацией об изделии. Под последним термином могут пониматься разные объекты, в том числе, технически трудоемкие (суда, ракеты, сложные компьютерные сети). Среди ключевых функций системы стоит упомянуть управление:

  • документацией об изделии - ее хранением, обработкой;
  • инженерными и техническими данными, визуально-графическими и любыми иными сведениями, определяющими суть и особенности конкретных изделий;
  • структурой продуктов, рабочими процессами;
  • механизмом авторизации, автоматизации отчетности и так далее.
PDM-система дает возможность наладить взаимодействие между пользователями, контролировать большие потоки инженерно-технической информации, получать разграниченный доступ к данным на любой стадии разработки/изготовления изделий. Во многом, поэтому ее считают основной при выборе управленческого модуля.

PLM-системы - больший масштаб и широкая функциональность

PLM-системы, управляющие жизненными циклами продуктов в целом, предоставляют более «широкий» функционал и, собственно, включают в себя PDM. Управление изделиями - ключевой, но не единственный блок Product Lifecycle Management, и в разнице возможностей и состоит их принципиальное различие. PLM предоставляет много дополнительных «опций» - например, создание схем утилизации отходов производства - и несколько иной взгляд на бизнес. Как и чуть иные, но неизменно популярные ERM с их модулями управления финансами/персоналом/другими участками, они более комплексны, чем PDM.

В систему управления жизненными циклами продуктов включают модули:

  • исследования рынка;
  • проектирования, планирования, создания продуктов и рабочих процессов;
  • закупки сырья, производства, проверки изделий;
  • упаковки, хранения, продаж;
  • технической и эксплуатационной поддержки;
  • обеспечения взаимодействия между различными системами, интеграции их в общее информационное поле;
  • утилизации и так далее.
Учет этапов цикла дает возможность предприятию комплексно уменьшать издержки производства, объединить все сложные процессы. Поэтому использование PLM-систем актуально для многооперационных предприятий в отрасли машиностроения, информационной сфере и так далее. Они помогут отслеживать каждый экземпляр или выпущенный продукт, учесть разнообразные требования. Если же нужно внедрить механизм управления изделиями в существующую среду или нет необходимости в масштабных комплексных решениях, можно ограничиться PDM-решением.

Компания ASAP Consulting поможет правильно выбрать продукт и предоставит все необходимые модули для эффективной и прозрачной работы.

Руководитель направления производственных решений, СофтБаланс

PLM (англ. Product lifecycle management) дословно - это управление жизненным циклом изделий. Иными словами, PLM - это подход [концепция], основанный на централизации всей информации об изделиях в едином информационном пространстве.

Этот подход получил свое уверенное развитие за последние 10-15 лет на Западе, а также в Японии и ряде других развитых стран. Начиная примерно с 2010 года PLM - концепция плавно приходит и в российские предприятия, однако знания и опыт зарубежных производителей применяется на отечественном рынке не так методично, как это могло быть. Что же такое PLM-концепция, для каких целей она внедряется и какова роль в ней PDM-системы? Все это мы попытаемся понять в данной статье.

Этапы жизненного цикла

Концепция PLM на любом зрелом производственном предприятии предусматривает управление процессами всего жизненного цикла продукта, включая следующие стадии:

  • Маркетинговые исследования
  • Проектирование продукта
  • Планирование и разработка процесса
  • Закупка
  • Производство или обслуживание
  • Проверка
  • Упаковка и хранение
  • Продажа и распределение
  • Монтаж и наладка
  • Техническая поддержка и обслуживание
  • Эксплуатация по назначению
  • Послепродажная деятельность
  • Утилизация и(или) переработка

В зависимости от специфики предприятия и самого продукта, каждый этап жизненного цикла должен быть представлен в той или иной степени детализации. Если проанализировать функционал современных ERP-систем, внедряемых на отечественных предприятиях - мы видим, что большая часть этапов так или иначе охвачена в ERP-системе: Маркетинг, Планирование, Закупки, производство, Продажа, Монтаж и даже Техобслуживание - все это блоки современной учетной системы.

Из наиболее важных на данном этапе развития промышленности, в ERP-системах не хватает одного важного блока - это Проектирование продукта . Ниже пойдет речь именно о проектировании, что в свою очередь предполагает разговор о CAD- и PDM-системах (Computer-Aided Design - Система автоматизированного проектирования, САПР. Product Data Management - система управления данными об изделии).

Проблемы производственных предприятий: предпосылки перехода на концепцию PLM

Что же заставляет думать топ-менеджеров многих современных отечественных производственных предприятий о переходе на концепцию PLM? Вот только часть проблем:

  • Низкая скорость выведения продукта на рынок;
  • Постоянный срыв сроков разработки и производства [при позаказном производстве];
  • Большие затраты на содержание конструкторских бюро
  • Низкая скорость разработки изделий, а также внесения изменений в конструкторско-технологическую документацию (КТД);
  • Проблемы кооперации конструкторских бюро (КБ) и производственных подразделений;
  • Малая эффективность управления на проектах разработки новой продукции;
  • Низкое качество разрабатываемой и производимой продукции;
  • Несоблюдение требований маркетинга и производства при проектировании;
  • Ориентированность сотрудников компании на показатели объема (система мотивации по типу "чем больше - тем лучше").

Значительная доля проблем берет свое начало с основной проблемой производственных предприятий - это низкая степень автоматизации всего, что связано с производством. Если бухгалтерский учет и управление финансами компании более-менее автоматизированы, то PDM-системы лишь только начинают получать должное распространение. Этот процесс, как ожидается, еще будет происходить на протяжении как минимум пяти следующих лет.

Что внедрять: PDM или PLM?

Для начала, нужно четко для себя понять: что же такое PLM и PDM и как они между собой соотносятся? PLM - это концепция, которую использует руководство предприятия для достижения каких-то целей.

С точки зрения глобальных бизнес-целей производственного предприятия (имеющего собственные конструкторские подразделения) можно выделить две основных цели менеджмента:

  • Уменьшение себестоимости разрабатываемой продукции;
  • Сокращение времени выхода на рынок новых изделий.

Важно то, какими методами достигаются эти цели. Основным инструментом достижения этих целей как раз-таки и является PDM-система. Рассмотрим ниже основные способы реализации PLM-концепции посредством внедрения тех или иных возможностей современной PDM-системы.

Снижение непроизводственных затрат конструкторов и технологов при подготовке КТД

Основные две сущности, которые появляются в PDM-системе [в отличие от «ручного» проектирования] - это Электронная структура изделия (ЭСИ) и Электронная технология изготовления (ЭТИ). Основная идея в том, чтобы конструкторы и технологи занимались разработкой именно ЭСИ и ЭТИ, а не, например, чертежей и маршрутных карт. В контексте PLM-концепции данные документы являются лишь конечной стадией проектирования (простой печатной формой, если хотите).

Для конструкторов будет важнее всего тратить минимум времени на работу с деревом спецификаций в самой PDM-системе и максимум - на разработку непосредственно изделия в своей САПР (3D-модель, электрическая схема и пр.). Кстати, страх того, что конструктору придется тратить много времени на работу с ЭСИ в PDM-системе - это основная причина внутреннего сопротивления персонала конструкторского бюро при внедрении, поэтому крайне важно обращать на это внимание с самого начала и убеждать персонал, что при должном обучении конструктор начинает очень уверенно ориентироваться в практически в любой современной PDM-системе уже через 2-3 недели после начала работы.

В отличие от конструкторов - для технологов [в современном видении PLM-концепции] PDM-система является не просто «дополнительной нагрузкой», а основным рабочим инструментом по разработке технологических карт и маршрутов (иначе говоря - по разработке ЭТИ). Соответственно, здесь мы видим очевидное преимущество автоматизации: вместо разработки технологической документации в MS Word или, того хуже, в твердой копии технологи теперь имеют возможность именно проектировать технологию в электронном виде. Ускорение процесса при этом - многократное (технологи тратят в 2-3, а то и больше раз времени на рутинную «механическую»).

Уменьшение стоимости разработки за счет повышение доли заимствованных деталей и узлов

Это еще один очевидный плюс автоматизации: использование ЭСИ и ЭТИ позволяет достаточно легко [технически] организовывать поиск деталей и сборочных единиц (ДСЕ), покупных изделий (ПКИ), средств технологического оснащения (СТО) и прочих элементов конструкторско-технологического проектирования по применяемости . Отсюда - возможность наследования узлов и деталей из более ранних разработок (причем - не конкретного специалиста, а всего предприятия). Теперь вместо банального копирования или, того хуже - «изобретения велосипеда», специалисты-разработчики могут наследовать часть узлов, схем, деталей и даже частей маршрута или технологии из предыдущих разработок. Для этого достаточно найти нужный узел по применяемости (в т.ч. - воспользовавшись параметрическим поиском) и включить его в свой текущий проект в состав электронной структуры изделия, либо в состав технологической карты/маршрута (в зависимости от вида проектирования).

Наведение порядка в архиве КТД

Другая важная часть работы конструкторских бюро и департаментов технической [технологической] документации - это организация архива . Современная PDM-система позволяет вести т.н. электронный архив, когда вся документация на изделие или на тех. процесс (например - те же спецификации или технологические карты) хранится в электронном виде, а твердые копии формируются только по мере необходимости (например - для передачи внешнему подрядчику или заказчику - предприятию Министерства обороны). Однако на практически любом Электронный и бумажный архив.

Ускорение процесса разработки изделий

За счет значительно большей оперативности обмена информацией между участниками проекта разработки изделия или комплекса: руководитель проекта в любой момент времени имеет актуальную информацию по готовности тех или иных блоков и может ставить параллельно несколько задач на разработку несвязанных или малосвязанных блоков. Иными словами, внедрение PDM-системы позволяет реализовать метод параллельного проектирования .

Повышение управляемости и прозрачности работы конструкторских и технологических подразделений (улучшение системы управления потоком работ на проекте)

Руководителям проектов и топ-менеджерам производственного предприятия PLM-концепция и как инструмент - внедренная PDM-система дает значительную «прибавку» в прозрачности процессов проектирования и разработки: теперь, за счет оперативности получения информации о нарастающей структуре изделия или комплекса в любой момент времени можно без формирования ручных отчетов сотрудников о проделанной работе оценить процент выполнения задач на проекте и принять соответствующие управленческие решения в рамках управления конструкторским бюро. Внедренная PDM-система дает представление о том, где в бизнес-процессе узкие места. Как правило - данный аспект внедрения PLM позволяет находить точки неоправданного простоя персонала КБ, что в свою очередь помогает повышать исполнительскую дисциплину.

Формализация процесса разработки КТД

Как известно, внедрение любой системы (в т.ч. - PDM) в рамках одного из этапов сопровождается разработкой регламентирующих документов - как регламентов работы всего предприятия, отдельных подразделений (причем - не только КБ и ОТД, но и отдела закупок, диспетчера на производстве и т.д.), так и пользовательских инструкций, регламентирующих работу специалиста на конкретном рабочем месте. Это позволяет не только поддерживать текущую работу в области проектирования, но и без особых усилий со стороны начальника КБ вводить в курс дела новых сотрудников. Это значительно снижает зависимость компании от "незаменимых" работников, имеющих «монопольные» знания на своем участке.

Организация совместной работы распределенных коллективов

Последний, способ реализации PLM - это организация совместной работы территориально распределенных команд. Речь идет о применении облачных (SaaS) технологий в сфере автоматизации работы конструкторов, технологов, нормировщиков и прочих профессий, так или иначе связанных с разработкой изделий и комплексов в современной промышленности.

Представим себе команду конструкторов, каждый из которых работает у себя дома, или, например, совместную работу двух КБ одного предприятия, удаленных друг от друга территориально. При внедрении PDM-системы, как системы коллективной разработки, автоматически отпадает необходимость очного присутствия всех участников разработки в одном офисе. Действительно: каждый разработчик работает, в своей CAD-системе которая может быть установлена у него локально на рабочей станции, далее результат своей работы он выгружает в PDM-систему, как законченную электронную структуру изделия. Данные выгружаются по каналам связи (например - по RDP и/или по VPN), в том числе - вся документация на изделие формируется и хранится в PDM в электронном виде. Таким образом, нет никакой необходимости «быть на рабочем месте». Что же касается управления проектной командой - общение с конструкторами руководитель проекта выполняет посредством постановки задач в системе управления проектами, либо через одно из средств организации телеконференций.

PLM - это концепция управления, а PDM - это инструмент реализации большей части положений этой концепции, но далеко не всех (например - такие этапы ЖЦ изделия, как закупки, планирование продаж и пр.). Соответственно, для получения максимального эффекта от внедрения PLM-концепции, нужно рассматривать все аспекты данной концепции, т.е. внедрять на всех этапах жизненного цикла изделия. Все сотрудники компании должны перестать оперировать понятием «Документ» (спецификация, чертеж и пр.) и перейти к понятию «Изделие », как ключевой объект деятельности. Конструктор должен не «выпустить документацию», а разработать изделие - учитывая все особенности производственного и тех. процесса, принимая во внимание все аспекты эксплуатации и прочих этапов жизненного цикла.

Заключение

Рассматривая многочисленные программные продукты, предназначенные для автоматизации деятельности конструкторских подразделений, мы задаем себе вопрос: «Почему при такой технической проработке вопроса реально завершенных внедрений остается так мало?».

Дело в том, что любое внедрение продукта - это совокупность организационно-технических мероприятий, и если техника и технические специалисты (программисты, инженеры, руководители проектов) уже вполне готовы к автоматизации российских предприятий - дело встает за организационной составляющей. Многие предприятия будут работать «в старом стиле» ровно до тех пор, пока топ-менеджмент не осознает необходимости проведения перемен. Иными словами - пока внедрение концепции PLM не станет одной из стратегических задач предприятия.

УПРАВЛЕНИЕ ДАННЫМИ

Алексей Жирков,

Александр Колчин,

Михаил Овсянников,

Сергей Сумароков

В настоящее время аббревиатура PDM (Product Data Management) становится все более популярной. Объяснить это можно двумя причинами: во-первых, общим развитием информационных технологий, а во-вторых, тем, что промышленные предприятия приходят к необходимости комплексного подхода при автоматизации своей деятельности (так называемые CALS-, или ИПИ-технологии, см. PC Week/ RE, № 18/2001, с. 34). Таким образом, настала пора более пристально взглянуть на PDM-системы и постараться понять, что же они собой представляют и что могут дать предприятию.

PDM-технология . Одной из ключевых CALS-технологий является PDM-технология управления данными об изделии, которая позволяет решить две проблемы, возникающие при разработке и поддержке жизненного цикла (ЖЦ) наукоемкой промышленной продукции: управление данными об изделии и управление информационными процессами ЖЦ изделия, создающими и использующими эти данные.

Данные об изделии представляют собой всю информацию, созданную в течение ЖЦ. Они включают в себя состав и структуру изделия, геометрические параметры, чертежи, планы проектирования и производства, спецификации, нормативные документы, программы для станков с ЧПУ, результаты анализа, эксплуатационные данные и многое другое. Поскольку при их создании все чаще используются компьютерные средства, то поиск ответа на вопросы: “Существуют ли необходимые данные?”, “Где они находятся?”, “Являются ли они актуальными?” - не всегда представляется тривиальным.

Создаются и изменяются такие данные в результате выполнения определенных информационных процессов ЖЦ изделия, например процедуры внесения изменений. Информационные процессы могут быть достаточно сложными, охватывающими десятки сотрудников предприятия и при этом взаимосвязанными между собой. Например, проектирование сборки включает проектирование каждой входящей в нее детали, а изменение одной из них может повлечь за собой изменение множества других (а если эта деталь используется в нескольких изделиях, то изменения затронут несколько проектов). Таким образом, в проектах по разработке изделий необходимо не только планировать все входящие в них процессы, но и управлять их выполнением, распределяя задачи между исполнителями, определяя данные, которые им при этом необходимы, и обеспечивая их совместный доступ к этим данным.

При решении задачи CALS-технологий (повышение эффективности управления информацией об изделии) роль PDM-технологии состоит в том, чтобы сделать информационные процессы максимально прозрачными и управляемыми. Эта задача решается путем повышения доступности данных для всех участников ЖЦ изделия, что требует их интеграции в логически единую информационную модель.

PDM-система . Для реализации PDM-технологии существуют специализированные программные средства, называемые PDM-системами, - системы управления данными об изделии и информационными процессами ЖЦ. PDM-система может выступать в двух основных ролях:

Как рабочая среда сотрудника предприятия;

Как средство интеграции данных на протяжении всего ЖЦ изделия.

Управление потоками работ в системе iMAN

Рабочая среда сотрудника. PDM-система должна стать рабочей средой для любого сотрудника предприятия, которому необходимы данные о выпускаемых изделиях. В эту категорию входят не только конструкторы, технологи и работники технического архива, но и работники из других областей - сбыта, маркетинга, снабжения, финансов, сервиса, эксплуатации и т. п. Таким образом, сотрудник предприятия в процессе своей работы должен постоянно находиться в PDM-системе, а система в свою очередь обеспечивать все его информационные потребности, начиная от просмотра спецификации узла и заканчивая изменением твердотельной модели детали или ее утверждением у начальника. При необходимости она обращается к помощи других систем обработки данных (например, САПР), самостоятельно определяя, какое именно внешнее приложение необходимо применить для обработки той или иной информации. Главной задачей PDM-системы как рабочей среды сотрудника является предоставление каждому пользователю нужной ему информации в нужное время и в удобной форме (в соответствии с правами доступа). Ниже приведен классический перечень функций PDM-системы:

- управление хранением данных и документов . Все данные и документы хранятся в специальной подсистеме - хранилище данных, которое обеспечивает их целостность, организует доступ к ним в соответствии с установленными правами и позволяет осуществлять их поиск;

- управление процессами , т. е. отслеживание всех операций пользователей с данными, в том числе версий создаваемых и изменяемых данных. Кроме того, PDM-система управляет потоком работ проекта;

Управление составом изделия. PDM-система содержит информацию о составе изделия. Важной особенностью является наличие нескольких представлений состава для различных предметных областей (конструкторское, технологическое, маркетинговое и т. п.), а также управление применяемостью компонентов изделия с помощью правил комплектации;

- классификация. PDM-система должна поддерживать различные классификаторы хранимой в ней информации (об изделиях и документах). Например, таким классификатором можно пользоваться при автоматизации поиска изделий с нужными характеристиками;

- календарное планирование . PDM-система содержит функции формирования календарного плана работ, распределения ресурсов между отдельными задачами и контроля их выполнения;

Структура изделия в системе PDM STEP Suite

- вспомогательные функции обеспечивают взаимодействие PDM-системы с другими программными средствами, с пользователями, а также взаимодействие пользователей друг с другом. Наиболее мощные системы позволяют производить “цифровую сборку” сложных изделий из нескольких трехмерных моделей, созданных различными организациями в разных САПР.

Средство интеграции данных на протяжении ЖЦ . Важной задачей PDM-системы является также интеграция данных об изделии на протяжении всего ЖЦ. Фактически на предприятии существует два центра интеграции данных: АСУП и PDM-система. Но если АСУП интегрирует данные в основном о ресурсах предприятия, то PDM-система - о продукте. Кроме того, на предприятии существуют прикладные компьютерные системы, которые создают и обрабатывают данные об изделии. Таким образом, можно выделить два направления интеграции данных - вертикальное (PDM и прикладные системы) и горизонтальное (PDM-система и АСУП).

Выгоды от использования PDM-системы . Основной выгодой от PDM-системы является сокращение времени разработки и улучшение качества изделия. В результате повышается эффективность процесса проектирования:

Сотрудник избавляется от непроизводительных затрат времени на поиск, копирование и архивирование данных, что при работе с бумажной документацией составляет 25-30% времени;

Снижается количество изменений изделия благодаря более тесному взаимодействию сотрудников и применению параллельного проектирования;

Сокращаются сроки внесения изменений в конструкцию изделия или в технологию его производства за счет перехода на электронный документооборот и управление потоком работ;

Увеличиваются доли заимствованных компонентов в изделии (до 80%) за счет упрощения процедуры поиска детали с необходимыми характеристиками.

При использовании систем автоматизированного проектирования и подготовки производства качество изделия зависит не столько от качества проектирования, сколько от состояния данных (т. е. их полноты, корректности, актуальности). PDM-система позволяет значительно улучшить это состояние и соответственно повысить качество самого изделия.

В настоящее время на российском рынке имеется ряд программных продуктов, реализующих PDM-технологию. Их производителей можно разделить на две группы: фирмы - разработчики САПР, которые предлагают еще и PDM-решения, и независимые поставщики. К первой можно отнести две “тяжелые” системы: iMAN (UGS, США) и Windchill (PTC, США), а также систему T-FLEX DOCs (“Топ Системы”, РФ). Ко второй группе относятся PartY PLUS (“Лоция Софт”, РФ), PDM STEP Suite (НИЦ CALS “Прикладная логистика”, РФ) и Search (“Интермех”, Белоруссия).

Центры интеграции на предприятии

У любой PDM-системы есть свои достоинства и недостатки, поэтому важно принять правильное решение по выбору продукта. Нужно также учитывать, что их внедрение представляет собой непростую задачу и требует адаптации к нуждам предприятия. Вопросы выбора и внедрения PDM-систем на отечественных промышленных предприятиях нуждаются в более детальном рассмотрении. 4