Какой русский ученый рассчитал скорость ракеты. Формула Циолковского: использование и пример. Другая форма формулы

2.1. Идеальная скорость и массовые характеристики ракеты

Идеальная скорость - скорость, которую приобрел бы летательный аппарат, двигаясь прямолинейно, если бы весь запас энергии, находящийся на его борту, был бы израсходован на ускорение.

где: , - действительная скорость и её потери;

dV rp , d У Аяр , dV ynp - потери скорости гравитационные, аэродинамиче­ские и на управление, соответственно.

Первая космическая скорость V K , = 7900 м / c

V К 1 + dV пк 1 = V К2 = 10200 м / с

Идеальная скорость характеризует запас топлива на борту ра­кеты, необходимый для проведения определенного маневра.

Массовая характеристика ракеты

Массовые модели одно и двухступенчатых ракет приведены на рис. 8.

Рис.8

Условные обозначения: о. к, п, п.ф., коне, т, - массы стартовая, конечная, полезная, полезная фик­тивная, конструкции и топлива, соответственно.

Масса ракеты, находящаяся над ступенью, также называется полезной фиктивной нагрузкой.

Одноступенчатая ракета называется субракетой.

Количество субракет определяется требуемой дальностью доставки полезного груза. Так при использовании ЖРДУ для обеспечения дальности полёта до 1000 км используется 1 ступень, при дальности 1000 - 3000 км - 2 ступени, а при дальности более 3000 км - 3 ступени.

2.2. Относительные массовые характеристики субракет

1. Относительная масса полезного груза

2. Относительная масса конструкции

3.Относительная массатоплива

4.Число Циолковского - Z и модифицированное число Циолковско­ го -z:

2.3. Формула Циолковского

Предназначена для определения идеальной скорости ракеты. При выводе формулы Циолковского примем следующие допущения:

ракета летит прямолинейно;

гравитационные силы не рассматриваются;

давление окружающей среды отсутствует.

Рассмотрим расчётную схему исследуемого процесса, рис.9.

Согласно первого закона Ньютона:

Согласно формуле тяги:

Знак «-» в вышеприведенной формуле указывает на снижение массы двигательной установки М за счет уменьшения массы топлива.



Если конструкция космического аппарата состоит из N субракет и при этом значения числа Циолковского и эквивалентной скорости для них одинако­вы, то изменение идеальной скорости можно рассчитать по формуле:

3. Рабочий процесс в химических ракетных двигателях

3.1. Аэрогазодинамический нагрев в полёте

При движении газа с гиперзвуковыми скоростями М>5 на процесс теп­лообмена существенное влияние оказывают явления диссоциации, рекомбина­ции и ионизации.

Диссоциация - процесс разложения молекулярных соединений и ато­мов на их составляющие. Процесс сопровождается значительным поглощением тепла.

Рекомбинация - процесс обратный диссоциации; происходит с выде­лением тепла.

Существенная интенсификация данного процесса наблюдается при на­личии катализатора, в качестве которого можно рассматривать поверхность летательного аппарата (ЛА).

Ионизация - процесс отрыва свободных электронов от атомов.

При М<20 ионизируется менее 1% воздуха. Поэтому при указанных режимах полета влияние ионизации на теплообмен можно не учитывать.

В случае исследование теплообмена между поверхностью ЛА и газо­вым потоком при М<20 могут быть использованы зависимости, полученные в курсе «Термодинамика газовых потоков», с учетом влияния рассмотренных процессов на теплофизические свойства окружающей среды.

При движении ЛА с космическими или околокосмическими скоростя­ми в сильно разреженных слоях атмосферы протяжённость свободного пробе­га молекулы соизмерима, а в некоторых случаях превышает протяжённость летательного аппарата.

Такая зона полета называется областью свободномолекулярного пото­ка. При этом у поверхности ЛА отсутствует пограничный слой и математиче­ские зависимости полученные в курсе «Термодинамика газовых потоков», ста­новятся не применимы.

При полёте в области свободно молекулярного потока определяющим является критерий Кнудсена:

где: М и Re- критерии Маха и Рейнольдса, соответственно; к - показатель адиабаты.

В области свободномолекулярного потока величина критерия Кнудсе­на Кn>10.

При 0,1>Кn>0,01 у поверхности ЛА образуется тонкий пограничный слой скользящий вдоль неё, в котором наблюдается резкое изменение парамет­ров потока.

Процесс соударения между потоком и поверхностью ЛА характеризу­ется коэффициентом аккомодации А. Его величина зависит от параметров по­тока и состояния поверхности; характеризует относительную энергию, переда­ваемую от молекулы к поверхности ЛА при их соударении.

При проведении технических расчетов величина А принимается равной 0,9.

Процесс теплообмена в области свободно молекулярного потока с дос­таточной степенью точности характеризуется уравнением:

Характеризует отношение скорости полёта ЛА к возможной скорости молекулы;

Критерий Прандтля.

Циолковский попытался сделать математический расчёт движения такой ракеты в свободном пространстве. Понятно, что в ходе полёта масса ракеты из-за расхода топлива будет постепенно уменьшаться. Циолковский учёл это и вывел формулу, позволяющую определить скорость ракеты при постепенном изменении её массы. Эта формула называется теперь формулой Циолковского. Благодаря ей впервые стало возможным путём вычислений заранее определять лётные характеристики ракет. Позже Циолковский попробовал разрешить более сложную задачу - рассчитать движение ракеты при её вертикальном старте с поверхности Земли, то есть тогда, когда на неё воздействует гравитация и сила лобового сопротивления воздуха. Выведенные им формулы не учитывают многих обстоятельств, с которыми столкнулась позднее ракетодинамика (например, Циолковский не имел ещё представления о силах сопротивления при сверхзвуковых скоростях, движение ракеты он рассматривал как прямолинейное, а влияние систем управления на лётный характеристики вообще не учитывалось). Поэтому в наше время расчёты Циолковского можно рассматривать лишь как первое (грубое) приближение, но суть происходящего отражена в них верно.

Управлять полётом ракеты Циолковский предполагал или при помощи графитовых рулей, помещаемых в струе газа вблизи раструба (сопла) реактивного двигателя, или поворачивая сам раструб. Чтобы уменьшить отрицательное воздействие перегрузок на космонавтов при старте ракеты, Циолковский предлагал погружать их в жидкость равной плотности. Позже Циолковский пришёл к очень плодотворной идее многоступенчатых ракет. Он же заложил основы расчёта полёта этих ракет. (В 1926 г. Циолковский разработал теорию полёта двухступенчатой ракеты с последовательным отделением ступеней, а в 1929 г. - общую теорию полёта многоступенчатой ракеты.)

Но при всём увлечении Циолковского ракетодинамикой, ракета всегда оставалась для него только средством для преодоления земного притяжения и выхода в космос. Он много размышлял над теми проблемами, которые встретит человек, оказавшись в межпланетном пространстве и на других планетах, поэтому его с полным основанием можно считать также основоположником космонавтики. Многие предвидения Циолковского в этой области оказались чрезвычайно точными. Он, к примеру, красочно и очень верно описал ощущения, которые будет испытывать человек при старте ракеты и при выходе её в космическое пространство, в также то. Что он там увидит. Фантазия его далеко опережала своё время. Циолковский был твёрдо убеждён, что выход человечества в космос совершенно неизбежен и что именно освоение космоса поможет решить многие современные проблемы землян. В своих книгах он описывал целые кольца космических поселений на громадных орбитальных станциях будущего, расположенных вокруг солнца. Большую роль должны были играть на них космические оранжереи, так как в космосе можно собирать более значительные урожаи, чем на Земле. Он считал. Что обилие дешёвой солнечной энергии позволит человеку переместить в космос многие промышленные предприятия. «Завоевание солнечной системы, - писал Циолковский, - даст не только энергию и жизнь, которые в два миллиарда раз будут обильнее земной энергии и жизни, но и простор ещё более обильный».

Идеи Циолковского намного обогнали своё время. Современники не понимали его работ, правительство не спешило оказать ему материальную поддержку. В старости учёный с горечью писал: «Тяжело работать в одиночку многие годы при неблагоприятных условиях и не видеть ниоткуда ни просвета, ни поддержки». И в самом деле, исследования его протекали в очень тяжёлых условиях: мизерное жалование, большая семья, тесная и неудобная квартира, постоянная нужда, насмешки обывателей - всё это сопутствовало Циолковскому на протяжении всей его жизни. Многие свои книги Циолковскому пришлось публиковать за свой счёт и бесплатно рассылать по библиотекам.

Рассмотрим движение ракеты в невесомости, т.е.. Пусть в начальный момент времени t = 0 скорость ракеты
. Масса ракеты вместе с топливом равна M , масса самой ракеты
. Ракета при горении топлива может выбрасывать газы со скоростью u . Какую максимальную скорость v может развить ракета при полном расходовании топлива?

Из уравнения Мещерского в этом случае получаем

md v = - udm , или

Проинтегрируем левую и правую части этого уравнения

- уравнение Циолковского ,

где
- число Циолковского .

Чтобы ракета при существовавших на то время видах топлива развивала первую космической скорости 8 км /с , необходимо было иметь очень большое число
, т.е. масса топлива во много раз должна была превышать массу оболочки ракеты. Чтобы избежать этого Циолковский предложил использовать многоступенчатые ракеты. После выгорания топлива в одной ступени ракеты эта ступень отбрасывается, и начинает работать следующая ступень ракеты. Циолковский таким образом предсказал полеты человека в космическое пространство.

Момент импульса материальной точки относительно начала координат

Для простоты рассмотрим случай плоского движения, т.е. траектория движения материальной точки лежит в одной плоскости, которую мы расположим перпендикулярно плоскости листа. Выберем на плоскости начало координат О и положение материальной точки будем описывать радиус-вектором . Скорость точки , ее импульс
, ускорение , и сила будут расположены в плоски движения материальной точки, как показано на рисунке.

Введем две новые физические величины: момент силы и момент импульса относительно начала координат O .

-

- момент силы относительно начала координат.

Модуль вектора
равен

, где
- угол между векторами и . Если опустить перпендикуляр из точки O на направление действия силы, то его длина будет плечом силы ,
и модуль момента сил будет равен произведению силы на плечо, т.е.
, что совпадает со школьным определением момента силы.

Аналогично моменту силы вводится момент импульса

-

- момент импульса материальной точки относительно начала координат .

,

где
- угол между векторами и ,
-плечо импульса , т.е. длина перпендикуляра, опущенного из точки O на направление вектора материальной точки. Оба вектора
и , согласно определения направлены перпендикулярно плоскости движения материальной точки.

В общем случае неплоского движения, направление векторов
и не совпадают, но существует закон, который связывает момент импульса с моментом силы
. Чтобы установить этот закон, возьмем производную от вектора :

.

В результате получаем:

-

- закон изменения момента импульса материальной точки относительно начала координат .

Закон сохранения момента импульса системы материальных точек

Рассмотрим систему, состоящую из n материальных точек: Выберем начало координат О , тогда положение точек будет задаваться радиус-векторами

.

Пусть материальные точки обладают импульсами

,

и пусть между материальными точками системы действуют силы внутреннего взаимодействия , а также на материальные точки действуют внешние силы . Определим моменты этих сил относительно начала координат:

- момент внутренней силы ,

- момент внешней силы .

Определим также моменты импульсов материальных точек

.

Просуммировав левые и правые части этих уравнений, получим

Силы взаимодействия между материальными точками действуют в противоположные стороны вдоль одной и той же прямой. Их моменты относительно начала координат О равны по величине и противоположны по направлению. Поэтому моменты внутренних сил попарно уравновешивают друг друга, и сумма моментов всех внутренних сил равна нулю. В результате получим

.

Если система материальных точек является замкнутой, то
, и тогда имеет место закон сохранения момента импульса

-

- закон сохранения момента импульса системы материальных точек.

Если система материальных точек является замкнутой, то суммарный момент импульса системы остаётся постоянным, т.е. сохраняется во времени .

Ты - не раб!
Закрытый образовательный курс для детей элиты: "Истинное обустройство мира".
http://noslave.org

Материал из Википедии - свободной энциклопедии

Однако первыми уравнение движения тела с переменной массой решили английские исследователи У. Мур, а также П. Г. Тэйт и У. Дж. Стил из Кембриджского университета соответственно в 1810-1811 гг. и в 1856 году.

Формула Циолковского может быть получена путём интегрирования дифференциального уравнения Мещерского для материальной точки переменной массы :

texvc не найден; См. math/README - справку по настройке.): m \cdot \frac {d\vec{V}}{dt}+ \vec{u} \cdot \frac {dm}{dt}=0 , в котором Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): m - масса точки; Невозможно разобрать выражение (Выполняемый файл texvc - скорость точки; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): u - относительная скорость, с которой движется отделяющаяся от точки часть её массы. Для ракетного двигателя эта величина и составляет его удельный импульс Невозможно разобрать выражение (Выполняемый файл texvc Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta v_{g}\ = \int\limits_{0}^{t} g(t)\cdot \cos(\gamma (t))\,dt ,

где Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): g(t) и Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \gamma (t) - местное ускорение гравитации и угол между вектором силы тяги двигателя и местным вектором гравитации, соответственно, являющиеся функциями времени по программе полёта. Как видно из таблицы 1, наибольшая часть этих потерь приходится на участок полёта первой ступени. Это объясняется тем, что на этом участке траектория отклоняется от вертикали в меньшей степени, чем на участках последующих ступеней, и значение Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \cos(\gamma (t)) близко к максимальному значению - 1.

Аэродинамические потери вызваны сопротивлением воздушной среды при движении ракеты в ней и рассчитываются по формуле:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta v_{a}\ = \int\limits_{0}^{t} \frac {A(t)}{m(t)} \,dt ,

где Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): A(t) - сила лобового аэродинамического сопротивления, а Невозможно разобрать выражение (Выполняемый файл texvc - текущая масса ракеты. Основные потери от сопротивления воздуха также приходятся на участок работы 1-й ступени ракеты, так как этот участок проходит в нижних, наиболее плотных слоях атмосферы.

Корабль должен быть выведен на орбиту со строго определёнными параметрами, для этого система управления на активном участке полёта разворачивает ракету по определённой программе, при этом направление тяги двигателя отклоняется от текущего направления движения ракеты, а это влечёт за собой потери скорости на управление, которые рассчитываются по формуле:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \Delta v_{u}\ = \int\limits_{0}^{t} \frac {F(t)}{m(t)} \cdot(1 - \cos(\alpha (t))) \,dt ,

где Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): F(t) - текущая сила тяги двигателя, Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): m(t) - текущая масса ракеты, а Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \alpha (t) - угол между векторами тяги и скорости ракеты. Наибольшая часть потерь на управление ракеты приходится на участок полёта 2-й ступени, поскольку именно на этом участке происходит переход от вертикального полёта в горизонтальный, и вектор тяги двигателя в наибольшей степени отклоняется по направлению от вектора скорости ракеты.

Использование формулы Циолковского при проектировании ракет

Выведенная в конце XIХ века, формула Циолковского и сегодня составляет важную часть математического аппарата, используемого при проектировании ракет, в частности, при определении их основных массовых характеристик.

Путём несложных преобразований формулы получаем следующее уравнение:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \frac {M_{1}} {M_{2}} = e^{V/I} (1)

Это уравнение дает отношение начальной массы ракеты к её конечной массе при заданных значениях конечной скорости ракеты и удельного импульса . Введём следующие обозначения:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{0} - масса полезного груза; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{k} - масса конструкции ракеты; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{t} - масса топлива.

Масса конструкции ракеты в большом диапазоне значений зависит от массы топлива почти линейно: чем больше запас топлива, тем больше размеры и масса ёмкостей для его хранения, больше масса несущих элементов конструкции, мощнее (следовательно, массивнее) двигательная установка. Выразим эту зависимость в виде:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{k}=\frac {M_{t}} {k} , (2) где Невозможно разобрать выражение (Выполняемый файл texvc - коэффициент, показывающий, какое количество топлива приходится на единицу массы конструкции. При рациональном конструировании этот коэффициент в первую очередь зависит от характеристик (плотности и прочности) конструкционных материалов, используемых в производстве ракеты. Чем прочнее и легче используемые материалы, тем выше значение коэффициента Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k . Этот коэффициент зависит также от усреднённой плотности топлива (для менее плотного топлива требуются ёмкости бо́льшего размера и массы, что ведёт к снижению значения Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k ).

Уравнение (1) может быть записано в виде:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \frac {M_{0}+ M_{t}+M_{t}/k} {M_{0}+M_{t}/k}=e^{V/I} ,

что путём элементарных преобразований приводится к виду:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{t}=\frac {M_{0} \cdot k \cdot (e^{V/I}-1)}{k+1- e^{V/I}} (3)

Эта форма уравнения Циолковского позволяет рассчитать массу топлива, необходимого для достижения одноступенчатой ракетой заданной характеристической скорости, при заданных массе полезного груза, значении удельного импульса и значении коэффициента Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k .

Разумеется, эта формула имеет смысл, только когда значение, получающееся при подстановке исходных данных, положительно. Поскольку экспонента для положительного аргумента всегда больше 1, числитель формулы всегда положителен, следовательно, положительным должен быть и знаменатель этой формулы: Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k+1- e^{V/I}>0 , иначе говоря, Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k>e^{V/I}-1 (4)

Это неравенство является критерием достижимости одноступенчатой ракетой заданной скорости Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): V при заданных значениях удельного импульса Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): I и коэффициента Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k . Если неравенство не выполняется, заданная скорость не может быть достигнута ни при каких затратах топлива: с увеличением количества топлива будет возрастать и масса конструкции ракеты и отношение начальной массы ракеты к конечной никогда не достигнет значения, требуемого формулой Циолковского для достижения заданной скорости.

Пример расчёта массы ракеты

Требуется вывести искусственный спутник Земли массой Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{0}=10 т на круговую орбиту высотой 250 км. Располагаемый двигатель имеет удельный импульс Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): I=2900 м/c . Коэффициент Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k=9 - это значит, что масса конструкции составляет 10 % от массы заправленной ракеты (ступени). Определим массу ракеты-носителя .

Первая космическая скорость для выбранной орбиты составляет 7759,4 м/с, к которой добавляются предполагаемые потери от гравитации 600 м/c (это, как можно видеть, меньше, чем потери, приведённые в таблице 1, но и орбита, которую предстоит достичь - вдвое ниже), характеристическая скорость, таким образом, составит Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): V=8359,4 м/c (остальными потерями в первом приближении можно пренебречь). При таких параметрах величина Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): e^{V/I}=17,86 . Неравенство (4), очевидно, не выполняется, следовательно, одноступенчатой ракетой при данных условиях достижение поставленной цели невозможно .

Расчёт для двуступенчатой ракеты. Разделим пополам характеристическую скорость, что составит характеристическую скорость для каждой из ступеней двуступенчатой ракеты. Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): V=4179,7 м/c . На этот раз Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): e^{V/I}=4,23 , что удовлетворяет критерию достижимости (4), и, подставляя в формулы (3) и (2) значения, для 2-й ступени получаем: Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{t2}=\frac {10 \cdot 9 \cdot (4,23-1)}{9+1- 4,23}=50,3 т ; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{k2}=\frac {50,3} {9}=5,6 т ; полная масса 2-й ступени составляет Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): 55,9 т . Для 1-й ступени к массе полезной нагрузки добавляется полная масса 2-й ступени, и после соответствующей подстановки получаем: Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{t1}=\frac {(10+55,9) \cdot 9 \cdot (4,23-1)}{9+1- 4,23}=331,3 т ; Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): M_{k1}=\frac {331,3} {9}=36,8 т ; полная масса первой ступени составляет Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): 368,1 т ; общая масса двухступенчатой ракеты с полезным грузом составит Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): 10+55,9+368,1=434 т . Аналогичным образом выполняются расчёты для бо́льшего количества ступеней. В результате получаем: -Стартовая масса трёхступенчатой ракеты составит Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): 323,1 т . -Четырёхступенчатой - Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): 294,2 т . -Пятиступенчатой - Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): 281 т .

На этом примере видно, как оправдывается многоступенчатость в ракетостроении - при той же конечной скорости ракета с бо́льшим числом ступеней имеет меньшую массу.

Следует отметить, что эти результаты получены в предположении, что коэффициент конструктивного совершенства ракеты Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k остаётся постоянным, независимо от количества ступеней. Более тщательное рассмотрение показывает, что это - сильное упрощение. Ступени соединяются между собой специальными секциями - переходниками - несущими конструкциями, каждая из которых должна выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значение перегрузки , которую испытывает ракета на всех участках полёта, на которых переходник входит в состав ракеты. С увеличением числа ступеней их суммарная масса уменьшается, в то время как количество и суммарная масса переходников возрастают, что ведёт к снижению коэффициента Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): k , а, вместе с ним, и положительного эффекта многоступенчатости . В современной практике ракетостроения более четырёх ступеней, как правило, не делается.

Такого рода расчёты выполняются не только на первом этапе проектирования - при выборе варианта компоновки ракеты, но и на последующих стадиях проектирования, по мере детализации конструкции, формула Циолковского постоянно используется при поверочных расчётах, когда характеристические скорости пересчитываются, с учётом сложившихся из конкретных деталей соотношений начальной и конечной массы ракеты (ступени), конкретных характеристик двигательной установки, уточнения потерь скорости после расчёта программы полёта на активном участке , и т. д., чтобы контролировать достижение ракетой заданной скорости.

Обобщённая формула Циолковского

Для ракеты, летящей со скоростью, близкой к скорости света, справедлива обобщённая формула Циолковского:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \frac{M_{2}}{M_{1}}=\left (\frac{1-\frac{V}{c}}{1+\frac{V}{c}} \right)^{\frac{c}{2I}} ,

где Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): c - скорость света . Для фотонной ракеты Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): I=c и формула имеет вид:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \frac{M_{1}}{M_{2}}=\sqrt {\frac{1+\frac{V}{c}}{1-\frac{V}{c}}} ,

Скорость фотонной ракеты вычисляется по формуле:

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \frac{V}{c} = \frac{1- \left(\frac{M_{2}}{M_{1}} \right)^{2}}{1+ \left(\frac{M_{2}}{M_{1}} \right)^{2}} ,

См. также

Напишите отзыв о статье "Формула Циолковского"

Примечания

Литература

  • Левантовский В. И. Механика космического полета в элементарном изложении. - М .: Наука, 1980. - 512 с.

Отрывок, характеризующий Формула Циолковского

– Они использовали «непрогляд», верно ведь? – удивлённо спросила я. – А разве это умели делать все Катары?..
– Нет, Изидора. Ты забыла, что с ними были Совершенные, – ответил Север и спокойно продолжил дальше.
Дойдя до вершины, люди остановились. В свете луны руины Монтсегюра выглядели зловеще и непривычно. Будто каждый камень, пропитанный кровью и болью погибших Катар, призывал к мести вновь пришедших... И хотя вокруг стояла мёртвая тишина, людям казалось, что они всё ещё слышат предсмертные крики своих родных и друзей, сгоравших в пламени ужасающего «очистительного» папского костра. Монтсегюр возвышался над ними грозный и... никому ненужный, будто раненый зверь, брошенный умирать в одиночку...
Стены замка всё ещё помнили Светодара и Магдалину, детский смех Белояра и златовласой Весты... Замок помнил чудесные годы Катар, заполненные радостью и любовью. Помнил добрых и светлых людей, приходивших сюда под его защиту. Теперь этого больше не было. Стены стояли голыми и чужими, будто улетела вместе с душами сожжённых Катар и большая, добрая душа Монтсегюра...

Катары смотрели на знакомые звёзды – отсюда они казались такими большими и близкими!.. И знали – очень скоро эти звёзды станут их новым Домом. А звёзды глядели сверху на своих потерянных детей и ласково улыбались, готовясь принять их одинокие души.
Наутро все Катары собрались в огромной, низкой пещере, которая находилась прямо над их любимой – «кафедральной»... Там когда-то давно учила ЗНАНИЮ Золотая Мария... Там собирались новые Совершенные... Там рождался, рос и крепчал Светлый и Добрый Мир Катар.
И теперь, когда они вернулись сюда лишь как «осколки» этого чудесного мира, им хотелось быть ближе к прошлому, которое вернуть было уже невозможно... Каждому из присутствовавших Совершенные тихо дарили Очищение (consolementum), ласково возлагая свои волшебные руки на их уставшие, поникшие головы. Пока все «уходящие» не были, наконец-то, готовы.
В полном молчании люди поочерёдно ложились прямо на каменный пол, скрещивая на груди худые руки, и совершенно спокойно закрывали глаза, будто всего лишь собирались ко сну... Матери прижимали к себе детей, не желая с ними расставаться. Ещё через мгновение вся огромная зала превратилась в тихую усыпальницу уснувших навеки пяти сотен хороших людей... Катар. Верных и Светлых последователей Радомира и Магдалины.
Их души дружно улетели туда, где ждали их гордые, смелые «братья». Где мир был ласковым и добрым. Где не надо было больше бояться, что по чьей-то злой, кровожадной воле тебе перережут горло или попросту швырнут в «очистительный» папский костёр.
Сердце сжала острая боль... Слёзы горячими ручьями текли по щекам, но я их даже не замечала. Светлые, красивые и чистые люди ушли из жизни... по собственному желанию. Ушли, чтобы не сдаваться убийцам. Чтобы уйти так, как они сами этого хотели. Чтобы не влачить убогую, скитальческую жизнь в своей же гордой и родной земле – Окситании.
– Зачем они это сделали, Север? Почему не боролись?..
– Боролись – с чем, Изидора? Их бой был полностью проигран. Они просто выбрали, КАК они хотели уйти.
– Но ведь они ушли самоубийством!.. А разве это не карается кармой? Разве это не заставило их и там, в том другом мире, так же страдать?
– Нет, Изидора... Они ведь просто «ушли», выводя из физического тела свои души. А это ведь самый натуральный процесс. Они не применяли насилия. Они просто «ушли».
С глубокой грустью я смотрела на эту страшную усыпальницу, в холодной, совершенной тишине которой время от времени звенели падающие капли. Это природа начинала потихоньку создавать свой вечный саван – дань умершим... Так, через годы, капля за каплей, каждое тело постепенно превратится в каменную гробницу, не позволяя никому глумиться над усопшими...
– Нашла ли когда-либо эту усыпальницу церковь? – тихо спросила я.
– Да, Изидора. Слуги Дьявола, с помощью собак, нашли эту пещеру. Но даже они не посмели трогать то, что так гостеприимно приняла в свои объятия природа. Они не посмели зажигать там свой «очистительный», «священный» огонь, так как, видимо, чувствовали, что эту работу уже давно сделал за них кто-то другой... С той поры зовётся это место – Пещера Мёртвых. Туда и намного позже, в разные годы приходили умирать Катары и Рыцари Храма, там прятались гонимые церковью их последователи. Даже сейчас ты ещё можешь увидеть старые надписи, оставленные там руками приютившихся когда-то людей... Самые разные имена дружно переплетаются там с загадочными знаками Совершенных... Там славный Домом Фуа, гонимые гордые Тренкавели... Там грусть и безнадёжность, соприкасаются с отчаянной надеждой...

И ещё... Природа веками создаёт там свою каменную «память» печальным событиям и людям, глубоко затронувшим её большое любящее сердце... У самого входа в Пещеру Мёртвых стоит статуя мудрого филина, столетиями охраняющего покой усопших...

– Скажи, Север, Катары ведь верили в Христа, не так ли? – грустно спросила я.
Север искренне удивился.
– Нет, Изидора, это неправда. Катары не «верили» в Христа, они обращались к нему, говорили с ним. Он был их Учителем. Но не Богом. Слепо верить можно только лишь в Бога. Хотя я так до сих пор и не понял, как может быть нужна человеку слепая вера? Это церковь в очередной раз переврала смысл чужого учения... Катары верили в ЗНАНИЕ. В честность и помощь другим, менее удачливым людям. Они верили в Добро и Любовь. Но никогда не верили в одного человека. Они любили и уважали Радомира. И обожали учившую их Золотую Марию. Но никогда не делали из них Бога или Богиню. Они были для них символами Ума и Чести, Знания и Любви. Но они всё же были ЛЮДЬМИ, правда, полностью дарившими себя другим.
Смотри, Изидора, как глупо церковники перевирали даже собственные свои теории... Они утверждали, что Катары не верили в Христа-человека. Что Катары, якобы, верили в его космическую Божественную сущность, которая не была материальной. И в то же время, говорит церковь, Катары признавали Марию Магдалину супругою Христа, и принимали её детей. Тогда, каким же образом у нематериального существа могли рождаться дети?.. Не принимая во внимание, конечно же, чушь про «непорочное» зачатие Марии?.. Нет, Изидора, ничего правдивого не осталось об учении Катар, к сожалению... Всё, что люди знают, полностью извращено «святейшей» церковью, чтобы показать это учение глупым и ничего не стоящим. А ведь Катары учили тому, чему учили наши предки. Чему учим мы. Но для церковников именно это и являлось самым опасным. Они не могли допустить, чтобы люди узнали правду. Церковь обязана была уничтожить даже малейшие воспоминания о Катарах, иначе, как могла бы она объяснить то, что с ними творила?.. После зверского и поголовного уничтожения целого народа, КАК бы она объяснила своим верующим, зачем и кому нужно было такое страшное преступление? Вот поэтому и не осталось ничего от учения Катар... А спустя столетия, думаю, будет и того хуже.
– А как насчёт Иоанна? Я где-то прочла, что якобы Катары «верили» в Иоанна? И даже, как святыню, хранили его рукописи... Является ли что-то из этого правдой?
– Только лишь то, что они, и правда, глубоко чтили Иоанна, несмотря на то, что никогда не встречали его. – Север улыбнулся. – Ну и ещё то, что, после смерти Радомира и Магдалины, у Катар действительно остались настоящие «Откровения» Христа и дневники Иоанна, которые во что бы то ни стало пыталась найти и уничтожить Римская церковь. Слуги Папы вовсю старались доискаться, где же проклятые Катары прятали своё опаснейшее сокровище?!. Ибо, появись всё это открыто – и история католической церкви потерпела бы полное поражение. Но, как бы ни старались церковные ищейки, счастье так и не улыбнулось им... Ничего так и не удалось найти, кроме как нескольких рукописей очевидцев.
Вот почему единственной возможностью для церкви как-то спасти свою репутацию в случае с Катарами и было лишь извратить их веру и учение так сильно, чтобы уже никто на свете не мог отличить правду от лжи… Как они легко это сделали с жизнью Радомира и Магдалины.
Ещё церковь утверждала, что Катары поклонялись Иоанну даже более, чем самому Иисусу Радомиру. Только вот под Иоанном они подразумевали «своего» Иоанна, с его фальшивыми христианскими евангелиями и такими же фальшивыми рукописями... Настоящего же Иоанна Катары, и правда, чтили, но он, как ты знаешь, не имел ничего общего с церковным Иоанном-«крестителем».
– Ты знаешь, Север, у меня складывается впечатление, что церковь переврала и уничтожила ВСЮ мировую историю. Зачем это было нужно?
– Чтобы не разрешить человеку мыслить, Изидора. Чтобы сделать из людей послушных и ничтожных рабов, которых по своему усмотрению «прощали» или наказывали «святейшие». Ибо, если человек узнал бы правду о своём прошлом, он был бы человеком ГОРДЫМ за себя и своих Предков и никогда не надел бы рабский ошейник. Без ПРАВДЫ же из свободных и сильных люди становились «рабами божьими», и уже не пытались вспомнить, кто они есть на самом деле. Таково настоящее, Изидора... И, честно говоря, оно не оставляет слишком светлых надежд на изменение.
Север был очень тихим и печальным. Видимо, наблюдая людскую слабость и жестокость столько столетий, и видя, как гибнут сильнейшие, его сердце было отравлено горечью и неверием в скорую победу Знания и Света... А мне так хотелось крикнуть ему, что я всё же верю, что люди скоро проснутся!.. Несмотря на злобу и боль, несмотря на предательства и слабость, я верю, что Земля, наконец, не выдержит того, что творят с её детьми. И очнётся... Но я понимала, что не смогу убедить его, так как сама должна буду скоро погибнуть, борясь за это же самое пробуждение.
Но я не жалела... Моя жизнь была всего лишь песчинкой в бескрайнем море страданий. И я должна была лишь бороться до конца, каким бы страшным он ни был. Так как даже капли воды, падая постоянно, в силах продолбить когда-нибудь самый крепкий камень. Так и ЗЛО: если бы люди дробили его даже по крупинке, оно когда-нибудь рухнуло бы, пусть даже не при этой их жизни. Но они вернулись бы снова на свою Землю и увидели бы – это ведь ОНИ помогли ей выстоять!.. Это ОНИ помогли ей стать Светлой и Верной. Знаю, Север сказал бы, что человек ещё не умеет жить для будущего... И знаю – пока это было правдой. Но именно это по моему пониманию и останавливало многих от собственных решений. Так как люди слишком привыкли думать и действовать, «как все», не выделяясь и не встревая, только бы жить спокойно.
– Прости, что заставил тебя пережить столько боли, мой друг. – Прервал мои мысли голос Севера. – Но думаю, это поможет тебе легче встретить свою судьбу. Поможет выстоять...
Мне не хотелось об этом думать... Ещё хотя бы чуточку!.. Ведь на мою печальную судьбу у меня оставалось ещё достаточно предостаточно времени. Поэтому, чтобы поменять наболевшую тему, я опять начала задавать вопросы.
– Скажи мне, Север, почему у Магдалины и Радомира, да и у многих Волхвов я видела знак королевской «лилии»? Означает ли это, что все они были Франками? Можешь ли объяснить мне?
– Начнём с того, Изидора, что это неправильное понимание уже самого знака, – улыбнувшись, ответил Север. – Это была не лилия, когда его принесли во Франкию Меравингли.

Трёхлистник – боевой знак Славяно-Ариев

– ?!.
– Разве ты не знала, что это они принесли знак «Трёхлистника» в тогдашнюю Европу?.. – искренне удивился Север.
– Нет, я никогда об этом не слышала. И ты снова меня удивил!
– Трёхлистник когда-то, давным-давно, был боевым знаком Славяно-Ариев, Изидора. Это была магическая трава, которая чудесно помогала в бою – она давала воинам невероятную силу, она лечила раны и облегчала путь уходящим в другую жизнь. Эта чудесная трава росла далеко на Севере, и добывать её могли только волхвы и ведуны. Она всегда давалась воинам, уходившим защищать свою Родину. Идя на бой, каждый воин произносил привычное заклинание: «За Честь! За Совесть! За Веру!» Делая также при этом магическое движение – касался двумя пальцами левого и правого плеча и последним – середины лба. Вот что поистине означал Трёхлистник.
И таким принесли его с собою Меравингли. Ну, а потом, после гибели династии Меравинглей, новые короли присвоили его, как и всё остальное, объявив символом королевского дома Франции. А ритуал движения (или кресчения) «позаимствовала» себе та же христианская церковь, добавив к нему четвёртую, нижнюю часть... часть дьявола. К сожалению, история повторяется, Изидора...
Да, история и правда повторялась... И становилось от этого горько и грустно. Было ли хоть что-нибудь настоящим из всего того, что мы знали?.. Вдруг я почувствовала, будто на меня требовательно смотрят сотни незнакомых мне людей. Я поняла – это были те, кто ЗНАЛИ... Те, которые погибали, защищая правду... Они будто завещали мне донести ИСТИНУ до незнающих. Но я не могла. Я уходила... Так же, как ушли когда-то они сами.
Вдруг дверь с шумом распахнулась – в комнату ураганом ворвалась улыбающаяся, радостная Анна. Моё сердце высоко подскочило, а затем ухнуло в пропасть... Я не могла поверить, что вижу свою милую девочку!.. А она как ни в чём не бывало широко улыбалась, будто всё у неё было великолепно, и будто не висела над нашими жизнями страшная беда. – Мамочка, милая, а я чуть ли тебя нашла! О, Север!.. Ты пришёл нам помочь?.. Скажи, ты ведь поможешь нам, правда? – Заглядывая ему в глаза, уверенно спросила Анна.

Уравнение движения тела с переменной массой

Под переменной массой будем понимать массу тел, которая при медленном движении тел меняется за счет потери или приобретения вещества.

Выведем уравнение движения материальной точки с переменной массой на примере движения ракеты. Принцип действия ракеты очень прост. Ракета с большой скоростью выбрасывает вещество (газы), воздействуя на него с большой силой. Выбрасываемое вещество с той же, но противоположно направленной силой в свою очередь действует на ракету и сообщает ей ускорение в противоположном направлении. На ракету действуют внешние силы: сила земной тяжести, гравитационное притяжение Солнца и планет, а также сила сопротивления среды, в которой движется ракета.

Рисунок 1.

Пусть $m(t)$- масса ракеты в произвольный момент времени $t$, а $v(t)$- ее скорость в тот же момент. Количество движения ракеты в этот момент времени будет $mv$. Спустя время $dt$ масса и скорость ракеты получат приращение $dm$ и $dv$ (величина $dm$ отрицательна). Количество движения ракеты станет равным $(m+dm)(v+dv)$. Сюда надо добавить количество движения газов, образовавшихся за время $dt$. Оно равно $dm_{газ} v_{газ} $, где $dm_{газ} $- масса газов, образовавшихся за время $dt$, а $v_{газ} $- их скорость. Вычитая из суммарного количества движения в момент $t+dt$ количество движения системы в момент времени $t$, найдем приращение этой величины за время $dt$. Это приращение равно $Fdt$, где $F$- геометрическая сумма всех внешних сил, действующих на ракету. Таким образом:

$(m+dm)(v+dv)+dm_{газ} v_{газ} -mv=Fdt$. (1)

Время $dt$ и приращения $dm$ и $dv$ устремим к нулю, т.к. нас интересуют предельные отношения или производные $dm/dt$ и $dv/dt$. Поэтому, раскрывая скобки, можно отбросить произведение $dm\cdot dv$, как бесконечно малую высшего порядка. Далее, ввиду сохранения массы, $dm+dm_{газ} =0$. Пользуясь этим, можно исключить массу газов $dm_{газ} $. А разность $v_{отн} =v_{газ} -v$ есть скорость истечения газов относительно ракеты -- скорость газовой струи. С учетом этих замечаний уравнение (1) преобразуется к виду:

$mdv=v_{отн} dm+Fdt$. (2)

Разделив на $dt$, получаем:

$m\frac{dv}{dt} =v_{отн} \frac{dm}{dt} +F$. (3)

Уравнение Мещерского

По форме уравнение (3) совпадает с уравнением, выражающим второй закон Ньютона. Однако масса тела $m$здесь не постоянна, а меняется во времени из-за потери вещества. К внешней силе $F$ добавляется дополнительный член $v_{отн} \frac{dm}{dt} $, который может быть истолкован как реактивная сила, т.е. сила, с которой действуют на ракету вытекающие из нее газы. Уравнение (3) впервые было получено русским механиком И. В. Мещерским. Оно, так же как и эквивалентное ему уравнение (2), называется уравнением Мещерского или уравнением движения точки с переменной массой.

Формула Циолковского

Применим уравнение (2) к движению ракеты, на которую не действуют никакие внешние силы. Полагая $F=0$, получим:

Допустим, что ракета движется прямолинейно в направлении, противоположном скорости газовой струи $v_{отн} $. Если направление полета принять за положительное, то проекция вектора $v_{отн} $ на это направление будет отрицательной и равной $-v_{отн} $. Поэтому в скалярной форме предыдущее уравнение можно записать так $mdv=v_{отн} dm$. Тогда:

$\frac{dv}{dm} =-\frac{v_{отн} }{m} $ (4)

Скорость газовой струи $v_{отн} $ может меняться во время полета. Однако простейшим и наиболее важным является случай, когда она постоянна. Предположение о постоянстве сильно облегчает решение уравнения (4). В этом случае:

Значение постоянной интегрирования С определяется начальными условиями. Допустим, что в начальный момент времени скорость ракеты равна нулю, а ее масса равна $m_{0} $. Тогда из предыдущего уравнения получаем:

$C=v_{отн} \ln \frac{m_{0} }{m} $ тогда: $v=v_{отн} \ln \frac{m_{0} }{m} $ или $\frac{m_{0} }{m} =e^{\frac{v}{v_{отн} } } $

Последнее соотношение называется формулой Циолковского .

    Величина достигаемой ракетой максимальной скорости не зависит от времени сгорания топлива.

    Оптимальным путем изменения достигаемой максимальной скорости является увеличение относительной скорости истечения газов.

    Для получения первой космической скорости при меньшем соотношении между массой ракеты и требуемой массы топлива целесообразно использование многоступенчатых ракет.

Примеры

Пример 1

Космический корабль двигался с постоянной по величине скоростью $v$. Для изменения направления его полета включается двигатель, выбрасывающий струю газа со скоростью $v_{отн} $ относительно корабля в направлении, перпендикулярном к его траектории. Определить угол $\alpha $, на который повернется вектор скорости корабля, если начальная масса его $m_{0} $, а конечная $m$.

Дано: $v$, $v_{отн} $, $m_{0} $, $m$.

Найти: $\alpha $-?

Решение:

Ускорение корабля по абсолютной величине равно:

$a=\omega ^{2} r=\omega v$, причем $v=const$. Поэтому уравнение движения:

$m\frac{dv}{dt} =v_{отн} \frac{dm}{dt} $ переходит в: $mv\omega dt=-v_{отн} dm$.

Так как $d\alpha =\omega dt$ есть угол поворота за время $dt$, интегрируя наше уравнение, получим:

\[\alpha =\frac{v_{отн} }{v} \ln \frac{m_{0} }{m} .\]

Ответ: угол поворота вектора скорости равен: $\alpha =\frac{v_{отн} }{v} \ln \frac{m_{0} }{m} $

Пример 2

Ракета перед стартом имеет массу $m_{0} =250$кг. На какой высоте окажется ракета через $t=20$с после начала работы двигателей? Расход топлива равен $\mu =4$кг/с и скорость истечения газов относительно ракеты $v_{отн} $$=1500$м/с постоянны. Поле тяготения Земли считать однородным.

Дано: $m_{0} =250$кг, $t=20$с, $\mu =4$кг/с, $v_{отн}=1500$м/с.

Найти: $H$-?

Решение:

Рисунок 2.

Запишем уравнение Мещерского в однородном поле тяготения Земли в виде:

где $m=m_{0} -\mu t$, а $v_{0} $- скорость ракеты в момент времени $t$. Разделяя переменные получаем:

\[\Delta v_{0} =(\frac{\mu v_{отн} }{m_{0} -\mu t} -g)\Delta t\]

Решение данного уравнения, удовлетворяющего начальному условию $v_{0} =0$ при $t=0$, имеет вид:

Учитывая что $H_{0} =0$ при $t=0$ получим:

Подставляя начальные значения, получаем:

$H=v_{отн} t-\frac{gt^{2} }{2} +\frac{v_{отн} m_{0} }{\mu } (1-\frac{\mu t}{m_{0} })\ln (1-\frac{\mu t}{m_{0} })=3177,5$м

Ответ: через $20$с ракета окажется на высоте $H=3177,5$м.