Оптимизация сетевой модели комплекса производственных работ. Методы построения сетевых моделей и календарных планов

После того как сетевой график построен и рассчитаны его основные показатели, приступают к его оптимизации, т.е. к последовательной корректировке сети для достижения наиболее эффективных результатов и заданных параметров по времени и ресурсам. Для этого проводится анализ сетевых графиков.

В итоге оптимизация сетевых графиков заключается в улучшении процессов планирования, организации и управления комплексом работ с целью сокращения расходования экономических ресурсов и повышения финансовых результатов при заданных плановых ограничениях.

В практике оптимизация сетевых графиков подразделяется на частную и комплексную.

Основными видами частной оптимизации являются два экономических подхода:

1) минимизация времени выполнения комплекса планируемых работ при заданной стоимости проекта;

2) минимизация стоимости всего комплекса работ при заданном времени выполнения проекта.

Комплексная оптимизация сетевых моделей состоит в нахождении наилучших соотношений показателей затрат экономических ресурсов и сроков выполнения планируемых работ применительно к определенным производственным условиям и ограничениям. В рыночных отношениях в качестве критерия оптимальности сетевых систем планирования могут быть выбраны такие важные экономические показатели, как максимальная прибыль (финансовый результат) от производства товаров и услуг, минимальный расход ресурсов на реализацию планов, максимальная производительность труда исполнителей, минимальные затраты рабочего времени на достижение конечной цели и т.д.

Рассмотрим основные подходы и методы к оптимизации сетевых графиков.

Оптимизация сетевого графика по времени заключается в сокращении его критического пути в соответствии с директивными сроками окончания комплекса работ. Это может быть достигнуто за счет следующих мероприятий:

· сокращения времени выполнения критических работ за счет переброски ресурсов с некритических работ, располагающих значительным резервом времени. Этот шаг основан на анализе временных показателей графика и не требует больших затрат материальных и финансовых ресурсов. Анализ сети проводится с целью выравнивания продолжительности наиболее напряженных путей. Рассчитываются коэффициенты напряженности любого полного пути (отношение его длительности к критическому пути), которые позволяют классифицировать работы по зонам: критическую (К н >0,8), подкритическую (0,6£ К н £0,8), резервную (К н <0,6); чем ближе коэффициент к единице, тем сложнее выполнить работу;

· изменения топологии сети в результате внедрения новой технологии производства работ, позволяющей находить новые последовательности и взаимосвязи работ;


· расчленения длительных работ на отдельные части и замены последовательных работ параллельными.

После сокращения критического пути за счет проведения тех или иных мероприятий заново пересчитываются параметры сетевого графика, чтобы выявить достаточность принятых мер и проверить, не появились ли новые критические пути.

Оптимизация сетевых моделей за счет минимизации расходования материальных ресурсов сводится к определению оптимальных норм расхода ресурсов на единицу выполненной работы или распределению имеющихся ресурсов на весь комплекс работ. Одним из возможных способов сокращения критического пути может служить перераспределение различных ресурсов с ненапряженных путей на выполнение критических работ. При этом следует также иметь в виду тот факт, что сверхплановое насыщение критических работ ресурсами не беспредельно, так как существуют определенные ограничения в ресурсах на каждом предприятии.

Важнейшей комплексной проблемой оптимизации сетевых графиков является минимизация стоимости, которая характеризует наименьшие суммарные издержки на осуществление всего комплекса запланированных работ. При этом методе исходят из того экономического предположения, что величина издержек на выполнение той или иной работы находится при прочих равных условиях в обратной зависимости от затрат рабочего времени на ее выполнение. Если все запланированные работы будут выполняться с рассчитанной в сетевом графике точностью, то общая стоимость разработанного плана-проекта будет минимальной. С ускорением работ затраты возрастают, а с их замедлением - снижаются. Причем при минимальной продолжительности работ их стоимость становится максимальной и, наоборот, при максимальной длительности затраты будут минимальными.

5.6. Комплексное планирование производства и материально-технического снабжения на основе сетевого планирования

Комплексное планирование производства и его материально-технического снабжения на основе сетевых моделей обеспечивает координацию всех планируемых процессов, позволяет рассматривать их в динамике и вычислять календарные нормативы.

Территориальная разобщенность поставщиков и потребителей, периодичность производства необходимых материалов, возможность нарушения нормальных сроков изготовления материалов и транспортного процесса, а также другие факторы вызывают необходимость опережения процесса материально-технического снабжения по отношению к производственным процессам.

При комплексном сетевом планировании производства и его снабжения поставка материалов, конструкций, оборудования и других ресурсов, так называемые «внешние работы», отражается в сетевом графике сплошными стрелками, на которых обозначено время материального опережения и которые выходят из двойных кружков (рис. 5.6).

Во многих случаях численность работников, участвующих в выполнении комплекса работ, фиксирована и не может превышать списочную численность.

График распределения занятости работников во времени часто требует в отдельные периоды численность, превышающую списочную. Чтобы получить более равномерную загрузку работников и уложиться в списочную численность подразделения, можно сдвинуть в сторону увеличения сроки начала и окончания некоторых работ, но в пределах полного резерва работы.

Цель оптимизации сетевой модели по ресурсам – выровнять загрузку исполнителей и сократись численность занятых.

Оптимизация по ресурсам проводится путем изменения срока начала и окончания работ ненапряженных путей в пределах полного резерва Rп ij

Оптимизация проводится в следующей последовательности:

1. Составляется карта проекта.

2. По диаграмме ежедневной потребности и по календарному графику последовательно рассматриваются участки графика, которые ограничиваются продолжительностью работ критического пути.

Рис 2.8. Карта проекта оптимизированной по времени сетевой модели

Анализируется возможность сдвига вправо работ участка, при этом применяется следующая очередность оставления работ на участке:

1) работы критического пути;

2) работы, не законченные в предыдущем периоде;

3) работы в последовательности уменьшения полного резерва, при этом учитывается фронт и коэффициенты напряженности работ.

Для рассматриваемого примера введем ограничения исполнителей: в день на всех работах должно быть занято не более 10 человек.

По карте проекта видно, что в 1-й, 2-й день недостает исполнителей, а в
4-й, 5-й имеется резерв, следовательно, такой график требует оптимизации по ресурсам.

График, изображенный на карте проекта, разбивается на участки, ограниченные работами критического пути.

Рассмотрим первый участок – от начала работ до окончания первой работы критического пути (0,2), т. е. 1, 2, 3-й день. На этом участке необходимо достичь числа исполнителей равного 10. На участке находятся три работы: (0,1), (0,2), (0,3). Анализируем возможность передвинуть вправо работы участка.

Работа (0,1) имеет полный резерв, равный 6 дням, коэффициент напряженности, равный 0,33, и позднее начало работы в 6-ой день, т. е. работу (0,1) можно сдвинуть вправо на 6 дней.

Работу (0,2) передвигать нельзя, т. к. она лежит на критическом пути.

Работа (0,3) имеет полный резерв равный 3 дням, коэффициент напряженности, равный 0,4, и позднее начало работы в 3 дня, т. е. работу (0,3) можно сдвинуть вправо на 3 дня.

Из анализа видно, что вправо можно передвинуть любую работу: (0,3) или (0,1).

Передвинем работу (0,3) вправо до конца рассматриваемого участка.

Строим измененную карту проекта сетевой модели (рис. 2.9.).

Изменившаяся карта проекта удовлетворяет предъявляемым требованиям: на всех работах занято не более 10 человек. Поэтому оптимизацию по ресурсам можно считать завершенной.

Рис. 2.9. Карта проекта оптимизированной по времени и ресурсам сетевой модели.


3. Исходные данные по вариантам (табл. 3.1)

Таблица 3.1

Т д < T кр на 10 дней; В огр = 10 человек. Работа, выделенная знаком (i,j) разбивается на две параллельно выполняемые работы.

Вариант Параметры Исходные данные
i,j t min t max B i,j 0,1 0,2 4,5 1,3 1,7 2,3 3,5 3,4 1,6 4,5 6,5 5,6 5,8 1,5 2,75 (6,7) 6,9 4,5 7,10 8,9 4,5 9,10 1,5 2,75
i,j t min t max B i,j 0,1 1,5 2,75 0,4 0,8 1,2 1,3 2,3 2,10 3,10 4,5 (5,6) 6,7 7,10 8,9 9,10 10,11
i,j t min t max B i,j 0,1 0,2 7,5 1,2 1,5 2,3 6,5 2,4 3,4 4,7 9,5 4,9 7,5 5,6 11,5 5,7 6,8 (7,8) 8,10 3,5 9,10 6,5
i,j t min t max B i,j 0,1 1,2 1,6 9,5 2,3 3,5 2,7 3,5 3,4 3,5 5,5 3,9 7,5 4,9 0,5 1,75 5,10 6,7 6,8 (7,8) 8,9 9,10
i,j t min t max B i,j 0,1 (0,2) 1,3 3,5 1,6 2,3 2,4 3,5 4,9 5,9 6,7 6,8 9,5 7,8 3,5 7,10 8,9 6,5 9,10 3,5
Продолжение табл. 3.1
Вариант Параметры Исходные данные
i,j t min t max B i , j 0,1 0,3 1,2 1,4 1,5 (2,3) 3,6 4,6 5,6 5,7 3,5 5,8 6,9 7,10 8,10 9,10
i,j t min t max B i,j 0,1 0,2 1,2 1,3 3,5 2,7 3,5 3,4 3,5 (4,6) 5,6 6,7 6,9 7,8 7,9 8,10 9,10
i,j t min t max B i,j 0,1 3,5 (0,2) 0,5 1,3 2,4 3,4 3,5 3,8 4,7 5,7 5,6 6,7 6,9 7,8 8,10 3,5 9,10
i,j t min t max B i,j 1,2 3,5 1,5 2,3 2,6 2,7 2,8 3,4 (4,5) 5,11 6,9 6,11 7,8 8,9 9,10 4,5 10,11 6,5
i,j t min t max B i,j (0,1) 0,2 1,3 3,5 1,2 2,7 3,5 2,8 3,5 3,4 3,5 4,6 5,6 6,7 6,10 7,8 8,9 9,10
i,j t min t max B i,j 1,2 1,3 1,4 (2,6) 2,7 3,5 3,5 3,8 3,9 4,5 5,8 6,9 7,10 8,11 9,11 10,11
Продолжение табл. 3.1
Вариант Параметры Исходные данные
i,j t min t max B i,j 0,1 3,5 1,2 (1,3) 1,4 3,5 1,5 2,3 0,5 1,75 2,6 3,5 3,6 4,7 4,8 0,5 1,75 5,9 3,5 6,10 7,10 3,5 8,10 9,10
i,j t min t max B i,j 0,1 3,5 (0,2) 0,5 1,4 2,3 3,4 3,7 3,5 4,5 4,7 5,6 6,7 3,5 7,8 7,9 8,10 3,5 9,10
i,j t min t max B i,j 0,1 1,2 1,3 1,4 1,5 3,5 2,3 3,5 2,7 3,5 3,9 (4,6) 5,6 5,8 6,9 7,9 3,5 8,9 9,10
i,j t min t max B i,j 0,1 4,5 0,2 3,5 4,75 1,3 4,5 2,3 2,5 3,75 2,4 3,4 0,5 1,75 3,9 4,5 (4,6) 5,8 6,7 7,8 3,5 7,9 8,10 9,10
i,j t min t max B i,j 0,1 0,2 1,3 3,5 2,7 3,5 3,4 3,5 4,5 4,6 (5,6) 6,7 6,9 7,8 7,9 8,10 9,10
i,j t min t max B i,j 0,1 1,2 (1,3) 2,4 2,6 3,5 3,4 3,5 3,5 4,5 5,7 5,8 6,9 4,5 6,10 7,8 8,9 9,10
Продолжение табл. 3.1
Вариант Параметры Исходные данные
i,j t min t max B i , j3 1,2 (1,3) 2,5 3,4 7,5 3,6 11,5 3,7 3,10 4,5 5,11 6,9 6,11 7,5 7,8 6,5 8,9 9,10 10,11
i,j t min t max B i,j 0,1 0,2 3,5 (0,3) 1,4 2,4 3,4 3,5 4,7 5,6 3,5 5,7 6,7 3,5 6,9 7,8 8,10 9,10
i,j t min t max B i,j 1,2 1,3 3,5 (1,4) 2,6 3,5 3,7 4,5 5, 7 5,9 6,7 6,9 7,9 8,11 9,10 10,11
i,j t min t max B i,j 1,2 1,3 1,6 1,7 2,3 3,5 2,5 3,4 (4,8) 5,9 6,11 7,11 8,9 0,5 1,75 8,10 9,11 0,5 1,75 10,11
i,j t min t max B i,j (0,1) 0,2 0,3 1,2 1,4 2,5 2,10 3,6 3,7 4,8 5,8 6,9 7,9 3,5 8,10 9,10
i,j t min t max B i,j 0,1 0,5 1,2 2,3 2,4 2,5 3,8 4,7 3,5 5,6 (6,8) 6,10 7,8 7,10 8,9 9,10
Продолжение табл. 3.1
Вариант Параметры Исходные данные
i,j t min t max B i , j (0,1) 0,2 0,3 1,3 2,3 2,5 3,4 4,6 4,8 5,7 6,10 7,8 7,9 8,10 9,10
i,j t min t max B i,j (0,1) 1,2 1,3 1,4 2,5 2,7 3,5 4,6 4,8 5,6 6,7 6,8 7,10 8,9 9,10

1. Башин М. Л. Планирование работ отраслевых НИИ и КБ М / М. Л. Башин. – М. : Экономика, 2009. – 248 с.

2. Бир С. Мозг фирмы: Пер. с англ. / С. Бир. – М. : Радио и связь, 1993. – 416 с.

3. Браверман Э. М. Математические модели планирования и управления в экономических системах / Э. М. Браверман. – М. : Наука, 2009. – 366 с.

4. Брусиловский Б. Я. Математические модели в прогнозировании и организации науки / Б. Я. Брусиловский. – Киев: Наук, думка, 2009. – 232 с.

5. Голубков Е. П. Использование системного анализа в принятии плановых решений / Е. П. Голубков. – М.: Экономика, 2009. – 160 с.

6. Зыков А. А. Основы теории графов / А. А. Зыков – М. : Наука, 2009. – 384 с.

7. Краснощеков П. С., Петров А. А. Принципы построения моделей / П. С Краснощеков, А. А. Петров. – М. : Издательство МГУ, 2009. - 264 с.

8. Кристофидес Н. Теория графов: алгоритмический подход: Пер. с англ. / Н. Кристофидес. – М. : Мир, 2009. – 432 с.

9. Кузнецов О. Н., Адельсон-Вельский Г. М. Дискретная математика для инженера. 2-е изд. / О. Н Кузнецов, Г. М. Адельсон-Вельский. – М. : Энергоатомиздат, 2009. – 480 с.

10. Кук Д., Бейз Г. Компьютерная математика: Пер. с англ. / Д. Кук, Г. Бейз. – М.: Наука, 2009. – 384 с.

11. Лебедев А. Н. Моделирование в научно-технических исследованиях / А. Н. Лебедев. – М. : Радио и связь, 2008. – 224 с.

12. Лекции по теории графов / В. А. Емеличев и др. – М. :Наука, 2009. – 384с.

13. Максименко В. И., Эртель Д. Прогнозирование в науке и технике / В. И. Максименко, Д. Эртель. – М. : Финансы и статистика, 2009. – 238 с.

14. Неуймин Я. Г. Модели в науке и технике. История, теория, практика / Я. Г. Неуймин. – Л. : Наука, 2009. – 189 с.

15. Нечипоренко В. И. Структурный анализ систем (эффективность и надежность) / В. И. Нечипоренко. – М. : Сов. радио, 2009. – 216 с.

16. Оре О. Теория графов: Пер. с англ./ О. Оре. – 2-е изд. – М. : Наука, 2009. – 336 с.

17. Первозванский А. А. Математические модели в управлении производством / А. А. Первозванский. – М. : Наука, 1975. – 46 с.

18. Теоретические основы информационной техники: учеб. пособие для вузов / Р. Е. Темников и др. – М. : Энергия, 2009. – 512 с.

1. Теоретические основы систем сетевого планирования и управления. . . .
1.1. Назначение и область применения систем сетевого планирования и управления. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2. Понятие и элементы сетевой модели. . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3. Разновидности сетевых моделей. . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4. Основные параметры сетевой модели. . . . . . . . . . . . . . . . . . . . . . . . . .
1.5. Анализ и оптимизация сетевых моделей. . . . . . . . . . . . . . . . . . . . . . . .
2. Методические указания к выполнению курсового проекта. . . . . . . . . . . .
2.1. Цель, задачи и содержание курсового проекта. . . . . . . . . . . . . . . . . . .
2.2. Построение сетевой модели. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3. Определение продолжительности работ. . . . . . . . . . . . . . . . . . . . . . . .
2.4. Расчет параметров сетевой модели графическим методом. . . . . . . . .
2.5. Расчет параметров сетевой модели табличным методом. . . . . . . . . .
2.6. Построение карты проекта сетевой модели. . . . . . . . . . . . . . . . . . . . .
2.7. Оптимизация сетевой модели по времени. . . . . . . . . . . . . . . . . . . . . . .
2.8. Оптимизация сетевой модели по ресурсам. . . . . . . . . . . . . . . . . . . . .
3. Исходные данные по вариантам. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Этап решения сетевой модели предусматривает расчет следующих временных характеристик событий и работ сетевого графика. Для каждого события рассчитывается ранний возможный срок его свершения t° - срок, необходимый для выполнения всех работ, предшествующих данному событию. Наиболее поздний из допустимых сроков t" - это такой срок свершения события, превышение которого вызовет аналогичную задержку наступления завершающего события.

т. е. это такой промежуток времени, на который может быть отсрочено свершение данного события без нарушения сроков завершения разработки в целом.

При определении ранних и поздних сроков, следует помнить, что событие считается свершившимся только тогда, когда завершится самый длительный из предшествующих ему процессов. Например, см. рис. 6.8, если срок начального события примем равным нулю, тогда ранний срок наступления первого события:

Рис. 6.8

Ранний срок свершения конечного события показывает длину критического пути. Это самый ранний возможный срок окончания всей разработки. Для контроля определяют длину критического пути методом обратного хода. Двигаются от конца графа к началу и определяют ранние сроки свершения событий при обратном ходе: toi (обр). Ранний обратный срок свершения каждого предыдущего события t и длительности связывающей их работы tij. Ecли предыдущее событие служит началом нескольких работ, то берем максимальную сумму:

Сроки, полученные методом обратного хода, являются самыми ранними по отношению к концу графа. Следовательно, если вычесть эти сроки из длины критического пути, мы получим самые поздние сроки (t") по отношению к началу графа.

Для удобства проведения расчетов всех временных характеристик сетевого графика можно использовать различные методы: вычисления непосредственно на сетевом графике (метод используется, когда число событий невелико); табличный метод (последовательное заполнение таблицы параметров сети по определенным правилам; матричный метод (наиболее эффективный при ручных методах расчета); при наличии ЭВМ - метод расчета по таблице на основе алгоритма Форда.

Рассмотрим более подробно матричный способ (табл.6.3)

Табл. 6.3.

Число строк и столбцов в этой таблице одинаково и равно N+3, где N - число событий графика. В графе і записываем номера событий, а длительность работ записываем в клетках, лежащих справа от диагонали на пересечении строки и колонки, соответствующих индексу работы. Например, длительность работы 3.4 записываем в клетке, лежащей на пересечении строки, где і = 3 и колонки, где j = 4.

При прямом счете мы последовательно перебираем колонки слева направо и в каждой j -й колонке находим максимальную сумму раннего срока предыдущего (і-го) события и длительности работы, лежащей между і-тым и і-тым событиями, а затем записываем результат в первой графе против соответствующего события. В последней строке получим длину критического пути.

При обратном ходе мы последовательно перебираем строки снизу вверх и в каждой і-той строке находим максимум суммы раннего обратного срока последующего события (j того) и длительности работы, лежащей между і-тым и j-тым событиями, а результат записываем в последней графе. В первой строке получим длину критического пути. В двух последних строках определяются поздние сроки и резервы по событиям. События, не имеющие резервов, лежат на критическом пути. Таким образом, наиболее простой и надежный способ выявления критического пути - это определение всех последовательно расположенных событий, имеющих нулевые резервы времени.

В нашем примере маршрут критического пути проходит по событиям 0-2-4-5 (на рис.6.8 он показан двойной линией). События, имеющие резервы, называются плавающими (событие 1, событие 3).

Рассмотрим последовательность расчетов временных характеристик работ. Необходимо помнить, что событие не имеет продолжительности, а только срок свершения. Работа же отличается протяженностью во времени, она начинается предыдущим событием и кончается последующим. Поэтому работа имеет ранний и поздний сроки начала, а также поздний и ранний сроки окончания.

Рассмотрим это на примере, задавшись следующими значениями:

Работа ц может начаться, как только свершилось предыдущее событие. Поэтому ранний срок начала работы равен раннему сроку предыдущего события, а ранний срок окончания равен раннему сроку начала и плюс длительность самой работы.

Работа должна окончиться не позже самого позднего срока последующего события}. Поэтому поздний срок окончания работы равен позднему сроку свершения последующего события. Отсюда поздний срок начала работы равен позднему сроку ее окончания, минус длительность самой работы.

Для каждой работы определяют 4 вида резервов времени. Полный резерв (К^) - разность между поздним и ранним началом работы (рис. 6.10).

На рис. 6.9 показана работа начатая в ранний и поздний срок. Отрезок между ранним и поздним началом (или концом) работы представляет полный резерв.

Рис. 6.9.

Полный резерв - это самый большой из всех видов резервов по работам. Если он равен нулю, то и все прочие виды резервов отсутствуют.

Для уяснения понятия о других видах резервов по работам необходимо рассмотреть данную работу ij во взаимосвязи с предыдущей (tni) и последующей (tj) работами.

Аналогичный случай имеет место, когда данная (ij) и предыдущая (hi) работы начинаются (и оканчиваются) в поздние сроки (рис. 6.11).

Если ранний срок начала последующей работы меньше срока окончания данной работы, то это говорит о нехватке времени, т.е. возможности начать последующую работу в ранний срок.

Все резервы времени по работам могут быть легко рассчитаны по той же матрице (рис. 6.13). Под диагональю для работ, имеющих резервы времени, проставляют численные значения резервов, рассчитанных по приведенным формулам по следующей схеме:

Рис. 6.13.

Оптимизация сетевых моделей

Расчет временных характеристик сетевого графика позволяет перейти к следующему этапу сетевого планирования. На этом этапе выполняется всесторонний анализ созданного графика и предпринимаются меры для его оптимизации. Анализ сетевого графика позволяет оценить целесообразность структуры графика, загрузку исполнителей работ на всех этапах выполнения разработки, возможность смещения начала работ некритической зоны. Анализ имеет своей целью в первую очередь выявление возможностей сокращения сроков разработки в целом. Анализ сетевого графика и оптимизация его тесно связаны и проводятся обычно одновременно. В зависимости от полноты решаемых задач оптимизация может быть условно разделена на частную (минимизация времени выполнения разработки при заданной ее стоимости; минимизация стоимости всего комплекса работ при заданном времени выполнения проекта) и комплексную - нахождение оптимума в соотношениях величин затрат и сроков выполнения разработки в зависимости от конкретных целей ее реализации. Полное решение всех трех форм оптимизации пока неизвестно. Методом последовательных итераций на основе симплекс-метода линейного программирования или алгоритма Келли эти задачи получают приближенное, достаточное для практических целей решение.

В простейших случаях для частной оптимизации используют графические методы и приемы.

Наиболее известный прием - построение линейного графика и гистограммы загрузки рабочей силы.

Линейный график (рис.6.13) представляет собой развернутый в масштабе времени сетевой график. Обычно его строят по ранним срокам начала работ с учетом свободных резервов по ранним срокам.

Шкала времени может быть календаризирована в соответствии с директивным сроком окончания разработки. Такой график наглядно показывает взаимосвязь между работами и возможностями маневрирования сроками начала работ. Кроме того, он дает возможность правильно распределить производственные ресурсы (материалы, рабочую силу, оборудование и т.п.) и добиться наиболее эффективного их использования. Перераспределение ресурсов (особенно трудовых) следует проводить с учетом следующих правил:

  • - ресурсы направляются на работы критического пути, а источниками являются работы некритического пути;
  • - работы, по которым осуществляется перераспределение, должны выполняться в один и тот же период времени;
  • - перераспределять ресурсы возможно только на равнокачественных работах, т.е. таких, которые требуют работников одной и той же или взаимозаменяемой профессии или квалификации;
  • - перераспределять ресурсы необходимо по величине их убывания в работы с наибольшим дефицитом ресурсов.

Например, при использовании однородного оборудования или рабочих одной профессии важно добиться их равномерной загрузки в течение всего периода разработки. Это достигается при помощи сдвига сроков начала работ в пределах имеющихся резервов. Для этого непосредственно под линейным графиком строится диаграмма распределения рабочей силы (рис. 6.14, 6.15), где на оси повторяется та же шкала времени, что на рис. 6.14, а на оси ординат откладывается количество рабочих или механизмов. На основе этой диаграммы можно определить:

а) общую трудоемкость работ

Наиболее распространенными моделями управляемых систем, в том числе и строительства являются графические модели, в частности линейные графики, на которых в масштабе времени отражаются последовательность и сроки выполнения работ. Линейный график прост в исполнении, однако он характеризует управляемую систему как статическую систему. Строительство же представляет собой динамический, многовариантный процесс. Более адекватно отобразить графически и формализовать расчеты параметров динамических систем позволяют сетевые модели.

Сетевая модель - это ориентированный граф, отображающий совокупность логически связанных процессов и взаимосвязей между этими процессами, выполнение которых необходимо для достижения определенной цели.

Сетевой график - это сетевая модель, в которой определены сроки выполнения процессов, критический путь и другие параметры.

Любой сетевой график, независимо от его сложности и размеров, состоит из трех элементов: работы, события и пути.

Все работы (и зависимости) в сетевом графике должны быть зашифрованы (закодированы). Шифр работы (или ее код) состоит из номеров ее начального и конечного событий, записываемых через дефис: i - j.

Построение сетевых графиков выполняется с соблюдением следующих положений.

Каждая работа включаемая в график, должна иметь четкий срок ее начала и окончания;

В сетевом графике все работы взаимосвязаны, поэтому начало последующей работ должно быть обязательно связано с окончанием предшествующей работы;

В сетевом графике не может быть замкнутых контуров, т. е. такого положения, при котором работы возвращались бы к тому же событию, из которого они начинались так называемых «циклов»;

Направление стрелок в сетевом графике следует принимать слева направо; график должен иметь простую форму, без лишних пересечений;

Расчет сетевых графиков сводится к численному определению следующих его параметров:

Раннее начало работы - самый ранний из возможных сроков начала работы, который обуславливается выполнением всех предшествующих работ.

Раннее окончание работ - самый ранний из возможных сроков окончания работы. Оно равно сумме раннего начала работы и ее продолжительности.

Позднее начало работы - самый поздний допустимый срок начала работы, при котором планируемый срок достижения конечной цели не меняется.

Позднее окончание работы определяется разностью между продолжительностью критического пути и продолжительностью максимального пути от конечного события данной работы до завершающего события графика.

Общий (или полный) резерв времени работы Ri-j- это максимальное время, на которое можно увеличить продолжительность данной работы без увеличения продолжительности критического пути. Он равен разности между одноименными поздними и ранними параметрами этой работы.

Частный резерв времени - максимальное время, на которое можно увеличить продолжительность данной работы или перенести ее начало без изменения ранних сроков начала последующих работ. Он равен разности между ранним началом последующей работы и ранним окончанием данной работы.

Сетевые графики можно рассчитывать с помощью компьютерной техники и вручную. В настоящее время известно несколько методов расчета сетевых графиков вручную: табличный метод; расчет на графике - четырехсекторный метод; метод дроби; метод потенциалов и др.

Классическим методом, положившим начало теории расчета сетевых графиков, является табличный метод, или как говорят, алгоритм расчета сетевого графика по таблице.

Методы оптимизации сетевых моделей

Под оптимизацией сетевого графика понимается процесс совершенствования организации выполнения комплекса работ с учетом срока его выполнения и использования ресурсов. Сетевой график представляет абстрактное отображение реального проекта. Рассмотрение вариантов с помощью графика позволяет уменьшить затраты времени и ресурсов.

Оптимизация сетевых графиков может производиться по трем направлениям.

Оптимизация по времени предполагает в первую очередь достижения директивной продолжительности выполнения всех работ. Как правило, для этого приходится сокращать продолжительность критического пути, что возможно за счет сокращения продолжительности отдельных работ, лежащих на этом пути. Существует несколько методов решения этой проблемы.

Во-первых, можно предусмотреть перераспределение ресурсов с некритических однородных работ на критические.

Во-вторых, можно расчленить и выполнить параллельно работы, лежащие на критическом пути.

В-третьих, по возможности изменить последовательность и взаимозависимость выполнения выполняемых работ, т. е. изменить топологию сети.

В-четвертых, самым понятным образом ускорение выполнения критических работ достигается привлечением дополнительных ресурсов.

Оптимизация по ресурсам. Критерием оптимальности сетевого графика обычно считается равномерность потребления ресурсов во времени. Алгоритм рационального распределения ресурсов с постоянной интенсивностью сводится к отысканию рационального распределения ограниченных ресурсов посредством снижения пиковых суммарных интенсивностей потребления заданной величины. При решении не всегда удается выдержать ограничения в ресурсах при заданном сроке строительства. Тогда приходится увеличивать критический путь, причем на возможно меньшую величину.

Оптимизировать сетевой график по критерию минимизации затрат при заданной продолжительности выполнения всего комплекса работ можно двумя способами. Первый способ заключается в уменьшении продолжительности выполнения работ, начиная с тех, которые дают наименьший прирост затрат. Второй способ заключается в увеличении продолжительности выполнения работ, начиная с тех, которые дают наибольший прирост затрат. Определяемые любым из указанных способов оптимальные затраты должны иметь одинаковую величину.

Исходными данными для проведения оптимизации являются:

нормальная длительность работы;

ускоренная длительность;

затраты на выполнение работы в нормальный срок;

затраты на выполнение работы в ускоренный срок.

Целевые параметры исходного сетевого графика почти всегда не удовлетворяют поставленным требованиям по срокам, загрузке ресурсов или другим критериям оценки. Чтобы добиться приемлемых результатов, сетевой график и его исходные параметры подвергаются циклическим корректировкам – оптимизации. Оптимизация – процесс последовательного улучшения плана в соответствии с поставленными целями и принятыми критериями оценки достигаемых целей.

Можно представить следующую классификационную схему оптимизации сетевых графиков:

При проведении оптимизации сетевых графиков решаются следующие основные цели: 1) сокращение длительности критического пути; 2) экономия ресурсов при соблюдении заданного срока проекта; 3) принятие дополнительных ресурсов для расшивки работ критического пути.

Решение этих целей позволяет упорядочить организацию выполнения комплекса работ по проекту, предупредить возможные сбои еще на стадии планирования, повысить качество и сократить объем сверхурочных работ.

Сочетание наглядности и выделение ключевых сторон сетевого графика с интуицией позволяет решать достаточно точно многовариантную задачу за разумный промежуток времени. В этом случае оптимизация осуществляется по трем основным направлениям:

    Изменение структуры (топологии) сетевого графика.

    Изменение технологических условий выполнения работ проекта.

    Перераспределение ресурсов.

Для сокращения продолжительности сетевого графика в его топологии последовательные работы заменяются на параллельные или параллельно – последовательные

Улучшение технологических условий проявляются в использовании вариантов более прогрессивной технологии (механизация, автоматизация, интенсификация режимов и т.д.), более качественных материалов, более квалифицированных кадров и т.д., которые способствуют сокращению длительности работ и сроков выполнения проекта в целом.

Перераспределение используемых ресурсов связано с переброской работников с работ, которые имеют резервы на критические работы. При этом желательно стремиться не к максимально возможному, а к максимально целесообразному ускорению. Принимая решения по сокращению длительности проекта или минимизации потребных ресурсов, надо учитывать, что каждая работа имеет определенный предел ускорения. Для заданного объема работы, например, трудоемкости Т i – j , продолжительность ее выполнения t i – j в зависимости от размера применяемого ресурса – численности выделенных работников Ч i – j определяется из следующего функционального соотношения: t i – j = Т i – j / Ч i – j

Для большинства работ величина численности Ч i – j изменяется в пределах от нижнего Ч Н i – j до верхнего Ч В i – j уровня, а длительность работы от нормальной t Н i - j до ускоренной t У i - j , что отражается на следующем рисунке:

Оптимизация сетевого графика проекта СОНТ, построенного при ускоренной продолжительности работ (t У i - j = T i-j / Ч В i-j), осуществляется в два этапа.

На первом этапе оптимизации по срокам завершения, если критический путь превышает директивный срока, осуществляется в пять шагов.

На первом шаге проверяется адекватность структуры сетевого графика САР комплекса работ, правильность заданных оценок работ, точность вычисления временных параметров событий и выделенных работ критического пути. Определяется величина сокращения критического пути (L = L Д - L К) .

На втором шаге с учетом важности связей и уровня критичности работ по ответственным исполнителям распределяется задание по сокращению длительности работ критич пути на L.

На третьем шаге каждый ответственный исполнитель по работам критического пути вычисляет принятый верхний уровень потребности в работниках (Ч В i-j = T i-j / t У i – j).

На четвертом шаге выбирают работы критического пути такие, которые обеспечивают минимальный прирост ресурсов (  t i - j =L, если  Ч п i-j - min).

На пятом шаге рассчитываются временные параметры измененного сетевого графика. Если для вновь рассчитанного критического пути L> 0, то повторяются шаги с первого по пятый, если L = 0, то переходят ко второму этапу оптимизации.

Оптимизация загрузки трудовых ресурсов выполняется в пять шагов.

На первом шаге строится в масштабе временная диаграмма сетевого графика.

На втором шаге под временной диаграммой по каждому подразделению строится прямоугольные эпюры, основание которых длительность работ t i-j , a высота - численность занятых работников Ч i-j . Для простоты достаточно под осью временной диаграммы проставить число потребных работников по подразделениям.

На четвертом шаге ответственные исполнители выделяют зоны эпюр критического пути.

На пятом шаге ответственные исполнители работы в пределах частных резервов с перегруженных зон сдвигают вправо, заполняя менее загруженные.

При оптимизации ресурсов необходимо добиться, чтобы верхняя граница не превышала каждую неделю опр. значения. Удлиняя критический путь и используя резерв времени работ по, получаем диаграмму сетевого графика, у которого число не превышает верхнюю границу.

В результате оптимизации получают приемлемый по срокам и потребным ресурсам план работ, который доводится до ответственных исполнителей для практической реализации.

Управление ходом работ с помощью сетевого графика

Если преимущество СПУ заложено в его модели – сетевом графике, то реализуется оно через систему управления. Система СПУ охватывает следующий цикл управления: 1)подготовка; 2) планирование; 3) управление; 4) анализ.

Подготовка. В организации она начинается с осознания полезности СПУ и принятия решения первым лицом. Планирование . Этот этап по каждому объекту СПУ начинается с издания по нему приказа по предприятию, в котором назначается руководитель проекта и его штаб (группа или специалист по СПУ), ответственные исполнители, сроки разработки сетевого графика. Завершением этапа планирования является утверждение сетевого графика и подписание приказа руководителем организации на исполнение проекта. Управление . Работу по проекту руководитель его через ответственных исполнителей организует в соответствии с сетевым графиком. В процессе выполнения множество причин вызывают отклонения от намеченных параметров сетевого графика. Чтобы обеспечить достижение заданных конечных результатов, сетевой график в процессе оперативного управления подвергается контролю. После каждого контрольного периода ответственные исполнители в группу СПУ представляют отчет о выполнении работ сетевого графика. Анализ . По завершению проекта, с одной стороны, достигается поставленная цель, а с другой – руководство и разработчики по отчетным данным выполненных работ получают «фактический» сетевой график. Данные фактического сетевого графика используются в двух основных направлениях анализа: 1) оценка выполнения плана (ретроспективный анализ); 2) оценка нормативной базы (перспективный анализ). Первое направление – «оглянуться в прошлое» связано с оценкой достижения поставленных целей с выявлением мест, причин и виновников (инициаторов) отклонений параметров сетевого графика. Выявление действительной роли и усилий ответственных исполнителей позволяет более правильно осуществлять их премирование. Второе направление – «взгляд вперед», связано с усвоением знаний и закрепление полученного опыта в виде устойчивых нормативных данных о временных и ресурсных параметрах работ при планировании подобных работ в будущем.