В чем суть ступенчатого испарения воды. Способы получения сухого и чистого пара. ступенчатое испарение

С продувочной водой. Увеличение продувки котлов, вызванное невозвратом конденсата, зависит в первую очередь от количества добавляемой химически очищенной воды, а также от давления в котлах, типа водоподготовки, наличия ступенчатого испарения. 

Нормируемый показатель без ступенчатого со ступенчатым испарением более 8 до 40 бар ДО 8 бар 

Установки с барабанными парогенераторами давлением пара бар (в барабане) при регулировании температуры перегретого пара с использованием воды из общей питательной магистрали собственного конденсата парогенератора 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 3 4 5 6 7 8 9 7 8 9 7 8 9 Перечисленные схемы обессоливания воды применяют, когда при учете всего комплекса вопросов , связанных с подготовкой добавочной воды и водным режимом, использование магнезиального обескремнивания и Ма-катиони-рования (или Н-Ыа-катиони-рования) в сочетании со ступенчатым испарением оказывается неприемлемым 

Отсутствие ступенчатого испарения 

В ряде случаев тот же эффект уменьшения работы разделения может быть достигнут путем ступенчатой конденсации например, в узле деметанизации установок получения этилена) или ступенчатого испарения сырья (например, на установках первичной перегонки нефти) и ввода его в колонну в нескольких точках. 

Отмечается также заметное влияние третьих элементов, особенно натрия и калия при их содержании, превосходящем на порядок и более содержание определяемых. элементов. Наиболее существенное уменьшение интенсивности линий в присутствии Ма и К испытывают легколетучие примеси, испаряющиеся одновременно с ними для других примесей иногда удается заметно уменьшить это влияние при ступенчатом испарении путем отгонки влияющих элементов. 

Для котлов, питающихся водой с малым содержанием кремнекислоты, можно ограничиться применением промывки пара питательной водой , не прибегая одновременно к ступенчатому испарению. 

Следует отметить, что питание этих котлов химически очищенной водой вызывает дополнительные трудности , связанные с наличием избирательного уноса кремниевой кислоты . Однако и эти трудности в настоящее время устраняются путем частичного обескремнивания добавочной воды , а ступенчатого испарения и промывки пара. 

На одной ТЭЦ котлы ТП-230 (давление пара 110 ama) со ступенчатым испарением питались с добавкой химически очищенной воды (табл. 1). На этой электростанции наблюдалось прогрессирующее снижение мощности турбин высокого давления , при этом обычные промывки проточной 

НЫМ паром из котлов ТП-230 со ступенчатым испарением. Отбор проб пара производился из середины основного барабана (чистый отсек) и из правой и левой его сторон на границе выхода пара соленых отсеков из промежуточных камер в чистый отсек. Данные фиг. 6 показывают, что концентрация кремниевой кислоты в паре соленых отсеков несколько выше, чем в паре чистых отсеков. 

На тех электростанциях высокого давления , где добавкой к питательной воде служит дистиллат испарителей, целесообразно оборудовать котлы устройствами ступенчатого испарения с солеными отсеками в виде выносных циклонов . Пар этих циклонов целесообразно промывать котловой водой чистых отсеков

    Устройства отбора проб котловой воды устанавливают на линиях непрерывной продувки, а при наличии в котле ступенчатого испарения также и в чистом отсеке. При наличии в котлах с внутрибарабанными устройствами ступенчатого испарения низкой кратности концентрации солей 

Если во время опытов броски отсутствовали, но солесодержание пара оказалось выше допустимых норм , то чистоту пара определяют вновь при более низком солесодержании котловой воды . При этом может потребоваться проведение нескольких длительных опытов со снижением солесодержания котловой воды в каждом опыте ступенями на 60-.70 жг/кг в чистых отсеках котлов со ступенчатым испарением. 

Пример 3. Определить потери тепла с невозвращенным конденсатом в процентах тепла пара , расходуемого на теплопотребляющие агрегаты, для следующих условий насыщенный пар поступает из отопительно-производственной котельной , оборудованной котлами давлением в кгс1см без ступенчатого испарения тепло продувочной воды котлов используется в сепарато-ре и теплообменнике (i np=40 ккал1кг). 

Последуюш ее успешное применение паронромывочных устройств в однобарабанных котлах высокого давления типа ПК-19 и ПК-20 опровергло эти предположения. Котел ПК-19 снабжен барабаном внутренним диаметром 1500 мм и оборудован устройствами для ступенчатого испарения с выносными циклонами . Суммарная производительность соленых отсеков равна 20% (II ступень 12%, III ступень 8%). Весь вырабатываемый пар пропускается через паропромывочные устройства , расположенные в чистом отсеке барабана (см. фиг. 8). 

Применение на котле ТП-230 3-ступенчатого испарения и размыва пены (производительность соленых отсеков 17%) с

Беляков И. И., Новиков И. И., Тарасов Б. А.

Ступенчатое испарение было предложено в 30-е годы как метод получения чистого пара путем организации в барабане котла отсеков с различным солесодержанием котловой воды. При этом в “чистом” отсеке генерируется основное количество пара, содержание примесей в котором значительно меньше, чем в паре, полученном из солевого отсека, а после смешения обоих потоков обеспечивается качество пара, допустимое по условиям надежной работы пароперегревателей и турбин.
Данный способ достаточно эффективен в котлах низкого давления при наличии простейшей химводоподготовки и невысоких требований к качеству пара.
Имеется большое число литературных источников, где рассматриваются преимущества внут- рикотловых схем барабанных котлов со ступенчатым испарением только с точки зрения обеспечения требуемого качества пара.
В показано, что при наличии промывки пара, которая стала широко применяться в 50-е годы, влияние ступенчатого испарения на качестве пара практически не отражается. В связи с неизбежным повышением требований к качеству питательной воды с ростом давления вследствие увеличения примесей, особенно кремнекислоты в паре, в ряде работ рассматривался вопрос о целесообразности применения ступенчатого испарения в котлах высокого давления.
В настоящее время, даже при применении неполного обессоливания питательной воды, на ТЭС с котлами высокого давления (ВД) нет проблем по качеству пара как при ступенчатом, так и при одноступенчатом испарении (ТП-100, ВПГ-250, ТПЕ-214 и все зарубежные котлы, в том числе работающие в России котлы среднего давления).
Известно, что надежность испарительных поверхностей нагрева в значительной мере определяется интенсивностью формирования внутренних отложений. В связи с этим следует рассмотреть особенности организации водно-химического режима (ВХР) котловой воды барабанных котлов при наличии ступенчатого испарения.
Ежегодно отмечается значительное число повреждений экранных труб барабанных котлов (отдулины, коррозия) и в то же время нет таковых на прямоточных котлах высокого и сверхкритического давления (СКД). Это связано с тем, что при одинаковом качестве питательной воды в котловой воде барабанных котлов, охлаждающей экраны, содержится значительно большее количество растворимых примесей (при 1% продувки в 100 раз больше, чем в питательной воде), чем в прямоточных, что создает более благоприятные условия для образования отложений и коррозии.
Растворимые примеси солей Са, Mg, Na, S1O2 и других выводятся из барабанного котла с непрерывной продувкой. Поэтому требования к качеству котловой воды, а, следовательно, и питательной, по содержанию растворимых примесей для барабанных котлов могут быть значительно ниже,
чем для прямоточных, в которых все примеси остаются в тракте.
По содержанию оксидов железа закономерность иная, так как основная их часть осаждается на внутренней поверхности экранных труб, а не выводится с продувкой. С ростом давления ужесточаются требования к качеству котловой воды, а следовательно, и питательной, по условиям предотвращения коррозии металла и образования внутренних отложений в экранных трубах.
Тем не менее, при трехступенчатом обессоливании подпиточной или даже при установке блочных обессоливающих установок (БОУ), как на ТЭС с прямоточными котлами, в барабан котла вводится специальный реагент Na3РО4 для связывания солей жесткости и NaOH для поддержания pH = 9,5 -:- 11,0.
При применении котлов со ступенчатым испарением единая норма поддержания избытка РО4 в котловой воде в принципе невозможна из-за наличия солевой кратности в 5 - 10 раз и более между чистым и солевым отсеками.
В течение последних 30 лет отмечается тенденция к всемерному снижению избытка фосфатов в чистом отсеке с 20 - 30 до 1 - 2 мг/кг Но даже при таком избытке фосфатов концентрация их в солевом отсеке может составлять более 10 - 15 мг/кг, а это способствует интенсификации образования внутренних железофосфатных отложений и возникновению “хайд-аута” (прятание солей). Переход на пониженное фосфатирование приводит к изменению химсостава отложений, повышается содержание железа в них до 80% и более (обычно 40 - 50%), отсутствуют фосфаты и натрий, что способствует повышению их теплопроводности и уменьшению химической агрессивности.
В отмечается повышенный вынос с паром хлоридов, в зависимости от концентрации фосфатов в котловой воде, что сказывается на повышении агрессивности первичного конденсата в проточной части турбин, а, следовательно, на снижении надежности их лопаточного аппарата и дисков. Данное обстоятельство также подтверждает целесообразность минимального фосфатирования котловой воды.
Существует также точка зрения, что при наличии трехступенчатого обессоливания питательной воды вообще возможен отказ от применения фосфатирования. Однако при отсутствии БОУ весьма проблематично поддерживать требуемую жесткость питательной воды (в основном из-за прососов в конденсаторах турбин), это может привести к образованию низкотеплопроводных кальциевых отложений и резкому возрастанию вероятности перегрева и внутренней коррозии экранных труб при отсутствии фосфатирования котловой воды.
Перевод котлов в порядке эксперимента на бесфосфатный режим приводил к массовым повреждениям экранных труб через 5-7 тыс. ч. Даже в режиме минимального фосфатирования вклад фосфатов в общее солесодержание котловой воды весьма значителен и практически равен количеству всех остальных примесей.
Поддержание избытка фосфатов выше стехиометрического значения может создать условия для образования на внутренней поверхности экранных груб железофосфатных отложений и интенсификации коррозии металла.
Применение ступенчатого испарения при одинаковой продувке котловой воды обеспечивает вывод такого же количества примесей из тракта котла, что и при одноступенчатом испарении, однако количество вводимых в барабан фосфатов в котле со ступенчатым испарением во много раз выше.
Вопрос о целесообразности применения в котлах ступенчатого испарения высокого давления неоднократно обсуждался в печати. Учитывая неоднозначность точек зрения различных организаций по данному вопросу на техническом совещании в РАО “ЕЭС России” было принято решение о проведении на ряде котлов испытаний по проверке эффективности перевода их на одноступенчатое испарение.
В течение 1999 - 2000 гг. НПО ЦКТИ совместно со Свердловэнерго проводил испытания котла ТГМ-96 Среднеуральской ГРЭС. Котел ТГМ-96 изготовления таганрогского завода “Красный котельщик” имеет параметры пара: давление в барабане 15,5 МПа, температура перегретого пара 560°С и проектная паропроизводительность 480 т/ч. Регулирование перегрева пара осуществляется впрыском собственного конденсата. Топочная камера оснащена шестью горелками, установленными в два яруса на фронтовой стене, внутренний диаметр барабана котла 1800 мм и длина цилиндрической части 17 700 мм.
Проектная внутрикотловая схема имеет двухступенчатое испарение и промывку пара, солевые отсеки выполнены путем установки в торцах барабана котла специальных перегородок, что позволяет простейшим способом осуществить перевод его на одноступенчатое испарение, удалив указанные перегородки.
Перевод котлов, имеющих солевые отсеки с выносными циклонами, также возможен, однако выполнить это несколько сложнее, так как для этого требуется произвести переключение водоопускных труб .
В процессе эксплуатации котлы ТГМ-96 неоднократно подвергались реконструкции в части изменения компоновки и конструкции горелок. В настоящее время паропроизводительность котла повышена до 520 т/ч.
За время эксплуатации котлов типа ТГМ-96 СУГРЭС практически не было случаев нарушения нормативных показателей качества пара, однако, в 70-е годы отмечались многочисленные коррозионные повреждения экранных труб чистых отсеков из-за неправильного регламента фосфатирования котловой воды, рекомендованного в то время наладочными организациями (применение кислых фосфатов, низкая щелочность котловой воды, несвоевременное проведение химических промывок).

Жесткость, мкг-экв/дм3

О 2, мкг/дм3

χ, мкСм/см

ΝΗ3, мкг/дм3

Си, мкг/дм3

Fe, мкг/дм3

SiО2, мкг/дм3

N2H2, мкг/дм3

На одноступенчатое испарение котел ТГМ-96 был переведен в декабре 1998 г. Показатели качества котловой воды: за 1999 г. приведены далее.
В таблице представлены среднегодовые данные за 1999 г. качества котловой воды и пара для котла ст. № 9, имеющего двухступенчатое испарение и ст. № 10, переведенного на одноступенчатое испарение.
В котле ст. № 10 данные по чистому (ч.о) и солевому отсекам (с.о) соответствуют отборам проб котловой воды из центра барабана (ч.о) и с торцов (с.о).
Как следует из данных таблицы, качество питательной воды по всем показателям соответствует нормам ПТЭ.
Содержание кремнекислоты SiО2 и натрия в паре значительно меньше нормативных значений (для SiО2 = 10 мкг/кг, Na = 10 мкг/кг) и практически одинаково для котлов с двухступенчатым, одноступенчатым испарением.
Таким образом, перевод котлов на одноступенчатое испарение не отражается на качестве пара при одинаковом значении непрерывной продувки. Концентрация фосфатов в продувочной воде котла с одноступенчатым испарением примерно в 8 раз меньше, чем в котле с двухступенчатым испарением при поддержании равных значений pH котловой воды чистого отсека и котловой воды в барабане котла с одноступенчатым испарением.
Так как дозировка смеси фосфатов и едкого натра осуществлялась из общего банка, возникли некоторые затруднения в обеспечении подачи насосом-дозатором щелочнофосфатной смеси в барабан котла с одноступенчатым испарением (ст. № 10).
В котле с одноступенчатым испарением обеспечивается оптимальное соотношение гидратной и общей щелочностей, равное Щфф/Щобщ = 0,5, что соответствует полной нейтрализации потенциально кислых соединений в котловой воде .
Эффект непропорционального соотношения солесодержания продувочной воды в котлах с одно- и двухступенчатым испарением свидетельствует о том, что наибольший вклад в ионный состав котловой воды вносит щелочнофосфатная смесь, вводимая в барабан, концентрация которой в котловой воде котла со ступенчатым испарением значительно больше, чем в котле с одноступенчатым испарением, так как в соответствии с солевым балансом солесодержание продувочной воды определяется только величиной продувки и должно быть одинаковым для котлов с любым числом ступеней испарения.
Таким образом, перевод котлов на одноступенчатое испарение позволяет упростить эксплуатацию, снизить расход фосфатов, что уменьшает потенциальную вероятность образования железо- фосфатных отложений, а, следовательно, и возникновения подшламовой коррозии. Пониженная концентрация фосфатов в котловой воде, по-видимому, способствует снижению агрессивности первичного конденсата , что, вероятно, вызвано уменьшением выноса хлоридов, о чем свидетельствует опыт эксплуатации турбин, работающих в блоке с барабанными котлами, имеющими одноступенчатое испарение.

Список литературы

  1. Ромм Э. И. Химический перекос и ступенчатое испарение в генераторах пара: Автореф. дис. на соиск. учен, степени доктора техн. наук. М., 1938.
  2. Маргулова Т. X. Методы получения чистого пара. - ГЭИ 1955’
  3. Стырикович М. А., Маргулова Т. X. О рациональной воднохимической схеме барабанных котлов 140 атм при конденсатном питании. - Электрические станции, 1965, № 2.
  4. Маргулова Т. X, Прохоров Ф. Т. Анализ ступенчатого испарения при давлении 155 кгс/см2. - Теплоэнергетика, 1973, №6.
  5. Маргулова Т. X, Карасева М. А. Опыт перевода котла ТП-100 на режим одноступенчатого испарения. - Теплоэнергетика, 1973, №6.
  6. Лукин С. В., Зройчикова Т. В., Козлов Ю. В. О целесообразности изменения внутрикотловой схемы барабанных котлов ТЭЦ. - Энергетик, 1966, № 3.
  7. Холщев В. В. Еще раз о ступенчатом испарении. - Энергетик, 1998, № 4.
  8. Мартынова О. И. Влияние водно-химического режима барабанных котлов на некоторые характеристики пара. - Теплоэнергетика, 1998, № 2.
  9. Беляков И. И. О ступенчатом испарении котлов высокого давления. - Энергосбережение и водоподготовка, 2001, №2.
  10. Василенко Г В., Сутоцкий Г. П. О некоторых показателях качества котловой воды барабанных котлов высокого давления. - Электрические станции, 2001, № 2.

Эффективны методом повышения качество пара и сокращения непрерывной продувки в большинстве промышленных и энергетических котлов является ступенчатое испарение.

Сущность данного метода состоит в разделении испарительной системы котла на ряд отсеков или ступеней по воде и соединенных по пару. Питание первой ступени осуществляется питательной водой. Подпитка последующих ступеней или отсеков осуществляется котловой водой (продувкой) предыдущих ступеней (ступенчатая продувка). Непрерывная продувка всего котла осуществляется из последней ступени.

Первая ступень – чистый отсек (ч.о.), так как в ней минимальное солесодержание котловой воды; последний отсек – солевой отсек (с.о).

Для схемы трёхступенчатого испарения

С ПВ < С КВ I < С КВ II < С КВ III → С П I < С П II < С П III

Основное количество пара вырабатывается в чистом отсеке (n I =70-90%), а остальное в последующих ступенях (n II +n III =30-10%).

Схемы двухступенчатого испарения

Применяются два вида схем двухступенчатого испарения:

а) схема двухступенчатого испарения с солевыми отсеками в торцах барабана (разделение отсеков осуществляется перегородками с переливной трубой).

б) схема двухступенчатого испарения с солевыми отсеками в выносных циклонах (чистый отсек–барабан; солевой отсек питается из выносного циклона).

где: - паропроизводительность чистого отсека, %;

- паропроизводительность солёвого отсека, % (+=100%).

Переток котловой воды из предыдущего отсека в последующий происходит за счет разницы уровней.

В качестве примера, примем: Р = 1%;
,
;

=
=0 - условно пренебрегаем растворимостью солей в паре.

Уравнения материального солевого баланса:

для первой ступени -

.

для второй ступени -

В результате получили, что при принятых допущениях, солесодержание продувочной воды не зависит от числа ступеней испарения, а определяется только величиной продувки (Р). Общее солесодержание пара определяется как средневзвешенное, а пара полученного в первой и второй ступенях – по уравнению Стыриковича.

Схема трехступенчатого испарения

Эффективность ступенчатого испарения возрастает с увеличением числа ступеней. Однако, это нарастание с ростом числа ступеней затухает; на практике более трех ступеней испарения не применяется. При трехступенчатой схеме чистый и второй отсеки организуются в барабане, а третья ступень или солевой отсек в выносных циклонах.

Паропроизводительность котла

Уравнение баланса солей по ступеням:

1-ступень:

2-ступень:

3-ступень:

Водный режим прямоточных котлов.

В прямоточном котле отсутствует возможность вывода солей из тракта котла. Поэтому предъявляются более жесткие требования к качеству питательной воды. Растворенные примеси улавливаются в блочной обессоливающей установке (БОУ). Оставшиеся примеси выделяются в виде накипи в тракте котла или выносятся паром в турбину.

Емкость котла по накоплению отложений значительно выше, чем емкость турбины. Удаление отложений из пароводяного тракта котла осуществляется путем водной холодной и горячей отмывки тракта при каждом пуске котла. И путем кислотной отмывки нерастворимых в воде соединений во время плановых ремонтов.

Для прямоточных котлов основной задачей водного режима является снижение коррозии металла элементов пароводяного тракта и повышение теплопроводности отложений.

Применяются следующие водные режимы.

Кислородо-нейтральный . После БОУ имеем практически нейтральную воду с pH=7; в данной воде воздействие кислорода на металл зависит от его концентрации. При малых концентрациях кислорода он усиливает коррозию. При повышенных концентрациях ведет к образованию на поверхности металла защитной пленки из магнетита (
) и гематита (
) железа.Пленка препятствуют дальнейшему протеканию коррозии. Для повышения концентрации кислорода в воду дозируется кислород или перекись водорода (
) в количестве до
. Оптимальная концентрация кислорода в воде составляет
. При больших концентрациях образуется в основном окисная пленка из магнетита железа (
), которая отшелушивается от поверхности металла и и не защищает его от протекания коррозии.

Нейтральный водный режим требует:

Полного отсутствия в котельной воде
;

Отсутствия в тракте элементов из меди и ее сплавов.

Достоинства:

Значительно сокращаются затраты на реагенты;

Увеличивается межрегенерационный период фильтров БОУ.

Комплексонный водный режим .

Сущность данного способа состоит в повышении теплопроводности железоокисных отложений путем добавки комплексонов. В качестве комплексона используется этилендиаминтетрауксусная кислота (ЭТДК), которую дозируют в питательную воду, предварительно обработанную
и
, при температуре 100-200°С. При этом продукты коррозии переходят в комплексонаты железа. Хорошо растворимые в воде комплексонаты железа далее по ходу среды под действием высокой температуры разлагаются с образованием выпадающего на внутренней стенке труб плотного слоя магнетита. Последний обладает высокой теплопроводностью, что способствует замедленному росту температуры стенки металла и защищает металл от коррозии.

Дозировка комплексонов ведется автоматически в питательную воду после деаэратора и существенно улучшает режим работы теплонапряженного НРЧ, увеличивает межпромывочный период до плутора лет.

Образующиеся в процессе термического разложения комплексонов газообразные продукты вместе с паром из котла транзитом проходят турбину и удаляются из цикла отсосом из конденсатора.

Недостатки данного метода, также как и гидразинно – аммиачного большие затраты на реагенты и сокращение межрегенерационного периода работы фильтров БОУ.

ЛЕКЦИЯ №27

Процессы на внешней стороне поверхностей нагрева

    Образование внешних отложений.

    Абразивный износ.

    Коррозия.

Механизм образования отложений .

Минеральная часть топлива в процессе сжигания превращается в шлак и золовые частицы. Поведение золовых частиц в газоходе и топке зависит от химического состава и физических свойств топлива (температура плавления, вязкость, коэффициент теплопроводности, и т.д.).

Легкоплавкие компоненты золы имеют температуру плавления
. К ним относятся хлориды (
), сульфаты (
). В зоне высоких температур данные компоненты находятся в парообразном состоянии. При снижении температуры газов они могут конденсироваться на поверхности труб.

Среднеплавкие компоненты имеют температуру плавления 900-1100°С; к ним относятся
(пирит),
,
. Данные компоненты образуют первичный липкий слой на экранах и ширмах, если их касается факел.

Тугоплавкие компоненты имеют температуру плавления 1600-2800°С.

К ним относятся окислы кремния,. Эти компоненты проходят зону горения без изменения своего агрегатного состояния. Ввиду малых размеров частиц данных компонентов они, в основном, уносятся с золой.

В зоне температуры газов 700-800°С на поверхности труб конденсируются легкоплавкие соединения, образуя первичный липкий слой. На него налипают твердые частицы из среднеплавких и тугоплавких компонентов. Смесь затвердевает и образуется плотный первичный слой отложений, крепко сцепленный с поверхностью труб. Температура наружной поверхности слоя повышается, при этом конденсация прекращается. Далее на шероховатую наружную поверхность данного слоя попадают мелкие частицы тугоплавкой золы, образуя внешний сыпучий слой отложений.

В топочной камере в зоне контакта высокотемпературных газов с экранированными трубами могут появляться быстро нарастающие отложения из частиц золы и шлака, находящихся в размягченном или полужидком состоянии, которые затем охлаждаются и прочно схватываются с поверхностью труб. Имеет место процесс шлакования. Шлаковые наросты могут достигать веса нескольких тонн.

Особое внимание следует обратить на соединение окислов кальция в минеральной части топлива. При содержании CaO>40% (Березовские Б2) возникают неблагоприятные условия по загрязнению труб: (гипс). Гипс является связующим и ведут к образованию плотных отложений, крепко связанных с поверхностью труб. Спекшиеся отложения могут перекрывать межтрубные промежутки величиной до 400мм. Горизонтальные и слабонаклонные трубы загрязняются сильнее, чем вертикальные.

При организации топочного режима Березовских углей необходимо иметь температуру газов в поворотной камере не выше 800-850°С.

Для ограничения температуры газов в поворотной камере блоки 300МВт с котлами П-59 Рязанской ГРЭС, которые были рассчитаны на сжигание подмосковного угля марки Б2 и переведены на сжигание канско-ачинских углей данного месторождения, перемаркированы на пониженную нагрузку - 260 МВт. В 2001-2002 годах выполнена модернизация их топок на вихревое низкоэмиссионное сжигание, позволившая понизить уровень ядра факела и температуру газов за топкой. В результате были сняты ограничения по максимальной бесшлаковочной нагрузке на Березовских углях.

В зоне температур газов
(конвективная шахта котла) наиболее распространены сыпучие отложения. Плотный подслой здесь отсутствует (конденсация паров щелочных металлов завершилась).

Сыпучие отложения образуются, в основном, на тыльной стороне труб по отношению к направлению движения потока газов. На лобовой части только при w <= 5 м/с и наличии в потоке тонкой летучей золы

На процесс образования сыпучих отложений оказывает влияние размер золовых частиц. По размеру частицы классифицируются на 3 группы:

1).
. Данные частицы обладают минимальной инерцией, движутся по линиям тока. Следовательно, вероятность их осаждения невелика.

2).
. Эти частицы обладают большой кинетической энергией, и при контакте с отложениями разрушает их.

3).
. Данные частицы образуют основную часть сыпучих отложений.

Величина слоя отложений зависит от скорости оседания фракции третьей группы и скорости разрушения слоя крупными частицами второй группы.

Сыпучие отложения на поверхности труб ухудшают теплообмен, что учитывается коэффициентом загрязнения.

Величина сыпучих отложений определяется также расположением труб в пространстве (шахматное или коридорное -
в 1,7 – 3,5 раза) и практически не зависит от концентрации золовых частиц.


Разрушающее воздействие крупных частиц на слой пропорционально скорости потока в 3-й степени. При
загрязнение резко усиливается, поэтому при проектировании котлов
выбирается 5-6 м/с приD =0,5D.

При сжигании мазутов и особенно высокосернистых мазутов на поверхности нагрева при
образуются липкие отложения из
и сульфитов. Плотные отложения стекловидного характера имеют состав. Отложения имеют тенденцию к быстрому росту; снижению теплообмена; увеличению сопротивления газового тракта. В результате снижается КПД котла и снижается продолжительность работы котла между очистками. СоединенияV и S имеют, кислую основу, поэтому добавки к мазуту щелочных соединений приведут к образованию более рыхлых отложений. Аналогичный эффект имеем при приближении коэффициента избытка воздуха в топке -
.

Один из наиболее эффективных методов снижения потерь тепла котловой воды с непрерывной продувкой и получения более чистого пара является ступенчатое испарение.

Рисунок 2.21 – Ступенчатое испарение

Оно заключается в том, что в водном объеме барабана котла создаются зоны с различным содержанием солей в котловой воде. Это достигается разделением водяного объема барабана котла с его поверхностями нагрева на отдельные отсеки. Непрерывная продувка производится из отсека с наиболее высоким солесодержанием, а отбор пара с наименьшим. Верхний барабан разделен перегородкой с отверстием (переливной трубой) на два отсека – чистый и солевой. Питательная вода поступает в чистый отсек, а солевой питается из чистого отсека через переливную трубу. В чистом отсеке образуется примерно 80% пара, в солевом 20%. Следовательно, из чистого в солевой отсек поступает 20% котловой воды, которая для чистого отсека является продувочной. Поэтому продувка чистого отсека происходит без тепловых потерь, обеспечивая низкое солесодержание котловой воды в нем.

Существенным недостатком является возможность обратного перетока воды в чистый отсек при «вялой» циркуляции. Для устранения этого недостатка применяют ступенчатое испарение с выносными циклонами, которые являются солевыми отсеками (ДКВР-20). При использовании выносных циклонов в качестве сепарационного объема разность уровней в отсеках может быть выбрана достаточной по условиям предотвращения обратного перетока воды. Поэтому схемы с выносными циклонами предпочтительны, особенно при небольшой производительности солевого отсека.

Питательная вода поступает в барабан который служит чистым отсеком. Продувочная вода из барабана поступает в циклоны, для которых эта вода является питательной. Циклон имеет отдельный контур циркуляции и выдает пар в барабан котла. Пар проходит через сепарационное устройство чистого отсека и дополнительно очищается. Непрерывная продувка осуществляется только из циклона, если он есть. При ступенчатом испарении уменьшаются потери тепла с продувкой и повышается качество пара.

Эффективность ступенчатого испарения возрастает с увеличением числа ступеней испарения, однако это нарастание с ростом числа ступеней затухает. Наибольшее распространение получили двух- и трехступенчатые схемы. При этом вторая ступень испарения может быть организована либо внутри барабана, либо вне его - в выносных циклонах. В трехступенчатой схеме обычно первую и вторую ступени выполняют в барабане, а третью - в выносном циклоне.

Ступенчатое испарение позволяет повысить чистоту пара при заданном качестве питательной воды и данном значении продувки. Оно позволяет также получить удовлетворительную чистоту пара при воде более низкого качества, что упрощает и удешевляет водоподготовку. Ступенчатое испарение позволяет также повысить экономичность паротурбинной установки вследствие уменьшения продувки без заметного снижения качества пара.



Рисунок 2.22 – Схема трехступенчатого испарение с выносной третьей ступенью:

1 – барабан котла; 2 – нижний коллектор; 3 – опускная труба; 4 – подъемная труба; 5 – подвод питательной воды; 6 – вывод (продувка) части воды из контура циркуляции; 7 – отвод насыщенного пара; 8 – выносной циклон; 9, 10 – опускные и парообразующие трубы контура солевого отсека; 11 – отвод пароводяной смеси в циклон; 12, 13 – водо- и пароперепускные трубы; 14 – периодическая продувка.

2.2.9 Влияние внутренних отложений на экономичность и надежность работы котельной установки

Надежная и экономичная работа котла зависит от качества воды, применяемой для питания котлов.

Источниками водоснабжения котлов могут служить пруды, реки, озера, грунтовые воды или городской водопровод. Природные воды содержат примеси в виде растворенных солей и механические примеси, поэтому непригодны для питания паровых котлов без предварительной очистки.

Качество воды характеризуется следующими показателями:

1. Сухой остаток содержит общее количество растворенных в воде веществ (кальция, магния, натрия, железа, алюминия и т.д.), которые остаются после выпаривания воды и высушивания остатка при 110 о С. Сухой остаток выражают в миллиграммах (примесей) на килограмм (воды).

2. Жесткость воды характеризуется суммарным содержанием в воде солей кальция и магния, которые являются накипеобразователями. Различают общую, временную (карбонатную) и постоянную (некарбонатную). Жесткость воды выражается в миллиграмм-эквивалент на 1 кг раствора (мг-экв/кг).

3. Щелочность воды характеризуется содержанием в ней щелочных соединений (гидраты, например едкий натр NaOH, карбонаты Na 2 CO 3 – кальцинированная сода, бикарбонаты). Различают гидратную, карбонатную и бикарбонатную щелочность.

4. Окисляемость характеризуется наличием в воде кислорода и двуокиси углерода, выраженных в миллиграммах на килограмм.

В питательной воде, поступающей в котел, всегда остается какая-то часть примесей.

В процессе получения пара и отвода его из котла, а также поступления в котел новых порций питательной воды в котловой воде увеличивается количество солей, так как сухой пар не растворяет их.

При увеличении солесодержания выше нормы начинается выпадение их в осадок и образование накипи на поверхности нагрева и шлама в толще воды, появится пенообразование и усилится унос паром котловой воды с растворенными в ней солями. Это приведет к заносу паропровода солями.

Для получения пара нужного качества котловая вода обрабатывается специальными реагентами, которые заставляют накипеобразующие соли выпадать в котле в виде шлама, который легко удаляется продувкой.

Кроме этого на надежность работы котельной установки влияет коррозия металла. Разъедание стенок котла может происходить от воздействия на них растворенных в питательной воде кислорода, двуокиси углерода, водорода и т.д.

Cтраница 2


В настоящее время высокосернистые нефти перегоняют на установках АВТ, запроектированных для переработки сернистых нефтей. Атмосферная перегонка их производится по схеме двухкратного испарения. Ниже дается краткая характеристика перегонки высокосернистой нефти типа арланской.  

Схема атмосферной части комбинированной установки ГК-3.  

Наряду с числом тарелок и их конструкцией существенное влияние на фракционирующую способность колонны оказывает кратность орошения в отдельных ее секциях, а также схема перегонки. Опыт эксплуатации показал, что применение схемы двухкратного испарения целесообразно при наличии в перерабатываемой нефти больших количеств растворенных газов (порядка 1 - 3 вес.  

Атмосферная часть установки на заводе АВТ в Уайтинге (США.  

Большой интерес представляет крупнейшая установка АВТ в Делавэре (США), на которой перерабатывают около 20000 т / сутки высокосернистой нефти и получают легкий бензин, лигроин, легкий и тяжелый газойль и остаток вакуумной колонны - гудрон. Атмосферная часть этой установки работает по схеме двухкратного испарения. В первой колонне выделяются наиболее легкие фракции, вторая колонна является основной для получения остальных компонентов светлых нефтепродуктов.  

На установках АВТ, работающих по схеме двухкратного испарения, количество тарелок в колоннах [ в первой 14 тарелок, во второй (основной) 23 ] не обеспечивало удовлетворительного фракционирования.  

Процесс осуществляют в первой ректификационной колонне. Как на всех установках АВТ, работающих по схеме двухкратного испарения, с верха первой ректификационной колонны отбирают фракции, выкипающие до 85 С.  

Отмечено, что композиционные конденсаты, полученные по схемам одновременного испарения нескольких разноименных катодов и испарения как одно -, так и многокомпонентных катодов, дают слоистые многокомпонентные системы. Конденсаты, полученные при испарении в вакуумное пространство только катодов с жесткой регламентацией элементов, входящих в их состав, обеспечивают монолитные покрытия с ярко выраженным столбчатым строением. Установлена качественная корреляционная связь между составами многокомпонентных сплавленных катодов и композиционных покрытий.  

С разделяется на узкие фракции в блоке вторичной перегонки широкой бензиновой фракции 14, работающем по схеме, аналогичной схеме предыдущей установки. Принципиально новым (в отличие от установки, работающей по схеме двухкратного испарения) является работа электродегидраторов при абсолютном давлении 16 кгс / см2 и 150 - 155 С.  

Топочная камера призматическая полностью экранирована трубами с наружным диаметром 60 мм, шаг которых 64 мм. Нижняя часть экранной поверхности образует так называемую холодную воронку, по откосам которой частички шлака в твердом виде скатываются вниз, в шлаковый комод. Схема испарения двухступенчатая, с промывкой пара питательной водой. Первая ступень испарения включена непосредственно в барабан котла, второй ступенью служат выносные паросепарационные циклоны, включенные в схему циркуляции средних боковых блоков экрана.  

В июне 1976 г. по этой причине на ТЭЦ целлюлозно-бумажного комбината произошла авария на паровом котле типа Б КЗ-220-100 ф паропроизводительно-стью 220 т / ч с параметрами пара 100 кгс / сма и 540 С, изготовленном на Барнаульском котлостроительном заводе в 1964 г. Котел однобарабанный с естественной циркуляцией, выполнен по П - образной схеме. Топочная камера призматическая полностью экранирована трубами с наружным диаметром 60 мм, шаг которых 64 мм. Нижняя часть экранной поверхности образует так называемую холодную воронку, по откосам которой частички шлака в твердом виде скатываются вниз, в шлаковый комод. Схема испарения двухступенчатая, с промывкой пара питательной водой. Первая ступень испарения включена непосредственно в барабан котла, второй ступепью служат выносные паросепарационные циклоны, включенные в схему циркуляции средних боковых блоков экрана.  

Вся серия котлоагрегатов ДКВр на давление пара 14 и 24 кгс / см2 имеет общую конструктивную схему - экранированную топочную камеру, продольное размещение барабанов и раз-зитый котельный пучок с коридорным рас-лоложением кипятильных труб. Котлоагрегаты разной производительности отличаются по длине и ширине. Движение газов в котлоагрегатах - горизонтальное поперечное с несколькими поворотами, за исключением котлоагрегатов ДКВр-20, в которых применена пролетная схема движения газов. Схема испарения одноступенчатая с внутрибарабанными сепарационными устройствами; у ДКВр-10-39 и ДКВр-20 - двухступенчатая (первая ступень испарения - внутрибарабанные сепарационные устройства, вторая - выносные циклоны) с питанием контуров испарения второй ступени из нижнего барабана. Котлоагрегаты ДКВр могут работать на всех видах твердого топлива, включая фрезерный торф и древесные отходы, а также на жидком и газообразном топливе.  

Первоначальная проектная мощность этой установки была определена в 1 млн. т / год малосернистой нефти. Однако в начале строительства было принято решение об увеличении ее мощности до 1 5 млн. т / год без существенного изменения размеров основной аппаратуры. Установка работает по схеме двухкратного испарения - с предварительным выделением легких бензиновых компонентов. Перепад температур в колонне регулируется снятием избыточного тепла тремя циркулирующими потоками. Схема атмосферной перегонки на данной установке аналогична схеме типовой установки АВТ производительностью 2 млн. т / год.  

Обезвоженная и обессоленная нефть из емкости двумя потоками прокачивается в тешюобменные аппараты, где она нагревается за счет горячих потоков атмосферной и вакуумной части и крекинга соответственно до 134 и 172 С. Затем оба потока соединяются и при 150 С поступают в теплообменники котельного топлива. Выходя из них при 210 С, нефть подается в первую ректификационную колонну. Блок атмосферно-ва-куумной перегонки нефти и мазута работает по схеме двухкратного испарения. Балансовый избыток верхнего продукта первой ректификационной колонны направляется в блок стабилизации, работающий при абсолютном давлении 5 кгс / см2 и температуре низа 124 и верха 60 С. В основной ректификационной колонне с верха отбирается фракция 85 - 140 С; в виде боковых погонов выводятся фракции 140 - 180, 180 - 240, 240 - 300 и 300 - 350 С. Для получения четырех боковых фракций колонна оборудована 51 тарелкой и оснащена четырьмя отпарными колоннами.