Жизненный цикл системы с разными. Тема: «Роль экономиста в создании и эксплуатации. Типовая модель жизненного цикла по версии Министерства обороны США

1. Жизненный цикл ИС и его структура. 2

1.1 Стадии жизненного цикла ИС.. 3

1.2 Стандарты жизненного цикла ИС.. 4

2. Модели жизненного цикла. 6

2.1 Типы моделей жизненного цикла ИС.. 6

2.2 Достоинства и недостатки моделей жизненного цикла ИС.. 8

3. Процессы жизненного цикла ИС.............................................................. 11

3.1 Основные процессы жизненного цикла. 11

3.2 Вспомогательные процессы жизненного цикла. 13

3.3 Организационные процессы.. 14

Список использованной литературы.. 16


Жизненный цикл информационной системы - период времени, который начинается с момента принятия решения о необходимости создания информационной системы и заканчивается в момент ее полного изъятия из эксплуатации.

Понятие жизненного цикла является одним из базовых понятий методологии проектирования информационных систем.

Методология проектирования информационных систем описывает процесс создания и сопровождения систем в виде жизненного цикла (ЖЦ) ИС, представляя его как некоторую последовательность стадий и выполняемых на них процессов. Для каждого этапа определяются состав и последовательность выполняемых работ, получаемые результаты, методы и средства, необходимые для выполнения работ, роли и ответственность участников и т.д. Такое формальное описание ЖЦ ИС позволяет спланировать и организовать процесс коллективной разработки и обеспечить управление этим процессом.

Полный жизненный цикл информационной системы включает в себя, как правило, стратегическое планирование, анализ, проектирование, реализацию, внедрение и эксплуатацию. В общем случае жизненный цикл можно в свою очередь разбить на ряд стадий. В принципе, это деление на стадии достаточно произвольно. Мы рассмотрим один из вариантов такого деления, предлагаемый корпорацией Rational Software – одной из ведущих фирм на рынке программного обеспечения средств разработки информационных систем (среди которых большой популярностью заслуженно пользуется универсальное CASE-средство Rational Rose).


1.1 Стадии жизненного цикла ИС

Стадия - часть процесса создания ИС, ограниченная определенными временными рамками и заканчивающаяся выпуском конкретного продукта (моделей, программных компонентов, документации), определяемого заданными для данной стадии требованиями. Соотношение между процессами и стадиями также определяется используемой моделью жизненного цикла ИС.

Согласно методологии, предлагаемой Rational Software, жизненный цикл информационной системы подразделяется на четыре стадии.

Границы каждой стадии определены некоторыми моментами времени, в которые необходимо принимать определенные критические решения и, следовательно, достигать определенных ключевых целей.

1) Начальная стадия

На начальной стадии устанавливается область применения системы и определяются граничные условия. Для этого необходимо идентифицировать все внешние объекты, с которыми должна взаимодействовать разрабатываемая система, и определить характер этого взаимодействия на высоком уровне. На начальной стадии идентифицируются все функциональные возможности системы и производится описание наиболее существенных из них.

2) Стадия уточнения

На стадии уточнения проводится анализ прикладной области, разрабатывается архитектурная основа информационной системы.

При принятии любых решений, касающихся архитектуры системы, необходимо принимать во внимание разрабатываемую систему в целом. Это означает, что необходимо описать большинство функциональных возможностей системы и учесть взаимосвязи между отдельными ее составляющими.

В конце стадии уточнения проводится анализ архитектурных решений и способов устранения главных факторов риска в проекте.

3) Стадия конструирования

На стадии конструирования разрабатывается законченное изделие, готовое к передаче пользователю.

По окончании этой стадии определяется работоспособность разработанного программного обеспечения.

4) Стадия передачи в эксплуатацию

На стадии передачи в эксплуатацию разработанное программное обеспечение передается пользователям. При эксплуатации разработанной системы в реальных условиях часто возникают различного рода проблемы, которые требуют дополнительных работ по внесению корректив в разработанный продукт. Это, как правило, связано с обнаружением ошибок и недоработок.

В конце стадии передачи в эксплуатацию необходимо определить, достигнуты цели разработки или нет.

1.2 Стандарты жизненного цикла ИС

Современные сети разрабатываются на основе стандартов, что позволяет обеспечить, во-первых, их высокую эффективность и, во-вторых, возможность их взаимодействия между собой.

Среди наиболее известных стандартов можно выделить следующие:

ГОСТ 34.601-90 - распространяется на автоматизированные системы и устанавливает стадии и этапы их создания. Кроме того, в стандарте содержится описание содержания работ на каждом этапе. Стадии и этапы работы, закрепленные в стандарте, в большей степени соответствуют каскадной модели жизненного цикла.

ISO/IEC 12207(International Organization of Standardization /International Electrotechnical Commission)1995 - стандарт на процессы и организацию жизненного цикла. Распространяется на все виды заказного ПО. Стандарт не содержит описания фаз, стадий и этапов.

Rational Unified Process (RUP) предлагает итеративную модель разработки, включающую четыре фазы: начало, исследование, построение и внедрение. Каждая фаза может быть разбита на этапы (итерации), в результате которых выпускается версия для внутреннего или внешнего использования. Прохождение через четыре основные фазы называется циклом разработки, каждый цикл завершается генерацией версии системы. Если после этого работа над проектом не прекращается, то полученный продукт продолжает развиваться и снова минует те же фазы. Суть работы в рамках RUP - это создание и сопровождение моделей на базе UML.

Microsoft Solution Framework (MSF) сходна с RUP, так же включает четыре фазы: анализ, проектирование, разработка, стабилизация, является итерационной, предполагает использование объектно-ориентированного моделирования. MSF в сравнении с RUP в большей степени ориентирована на разработку бизнес-приложений.

Extreme Programming (XP). Экстремальное программирование (самая новая среди рассматриваемых методологий) сформировалось в 1996 году. В основе методологии командная работа, эффективная коммуникация между заказчиком и исполнителем в течение всего проекта по разработке ИС, а разработка ведется с использованием последоват ельно дорабатываемых прототипов.


2. Модели жизненного цикла

Модель жизненного цикла ИС - структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач на протяжении жизненного цикла. Модель жизненного цикла зависит от специфики, масштаба и сложности проекта и специфики условий, в которых система создается и функционирует.

Модель ЖЦ ИС включает в себя:

результаты выполнения работ на каждой стадии;

ключевые события - точки завершения работ и принятия решений.

Модель жизненного цикла отражает различные состояния системы, начиная с момента возникновения необходимости в данной ИС и заканчивая моментом ее полного выхода из употребления.

2.1 Типы моделей жизненного цикла ИС

В настоящее время известны и используются следующие модели жизненного цикла:

Каскадная модель (рис. 2.1) предусматривает последовательное выполнение всех этапов проекта в строго фиксированном порядке. Переход на следующий этап означает полное завершение работ на предыдущем этапе.

Поэтапная модель с промежуточным контролем (рис. 2.2). Разработка ИС ведется итерациями с циклами обратной связи между этапами. Межэтапные корректировки позволяют учитывать реально существующее взаимовлияние результатов разработки на различных этапах; время жизни каждого из этапов растягивается на весь период разработки.

Спиральная модель (рис. 2.3). На каждом витке спирали выполняется создание очередной версии продукта, уточняются требования проекта, определяется его качество, и планируются работы следующего витка. Особое внимание уделяется начальным этапам разработки - анализу и проектированию, где реализуемость тех или иных технических решений проверяется и обосновывается посредством создания прототипов (макетирования).

Рис. 2.1. Каскадная модель ЖЦ ИС

Рис. 2.2. Поэтапная модель с промежуточным контролем

Рис. 2.3. Спиральная модель ЖЦ ИС

На практике наибольшее распространение получили две основные модели жизненного цикла:

каскадная модель (характерна для периода 1970-1985 гг.);

спиральная модель (характерна для периода после 1986.г.).

2.2 Достоинства и недостатки моделей жизненного цикла ИС

В ранних проектах достаточно простых ИС каждое приложение представляло собой единый, функционально и информационно независимый блок. Для разработки такого типа приложений эффективным оказался каскадный способ. Каждый этап завершался после полного выполнения и документального оформления всех предусмотренных работ.

Можно выделить следующие положительные стороны применения каскадного подхода:

на каждом этапе формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;

выполняемые в логической последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Каскадный подход хорошо зарекомендовал себя при построении относительно простых ИС, когда в самом начале разработки можно достаточно точно и полно сформулировать все требования к системе. Основным недостатком этого подхода является то, что реальный процесс создания системы никогда полностью не укладывается в такую жесткую схему, постоянно возникает потребность в возврате к предыдущим этапам и уточнении или пересмотре ранее принятых решений. В результате реальный процесс создания ИС оказывается соответствующим поэтапной модели с промежуточным контролем.

Спиральная модель ЖЦ была предложена для преодоления перечисленных проблем. На этапах анализа и проектирования реализуемость технических решений и степень удовлетворения потребностей заказчика проверяется путем создания прототипов. Каждый виток спирали соответствует созданию работоспособного фрагмента или версии системы. Это позволяет уточнить требования, цели и характеристики проекта, определить качество разработки, спланировать работы следующего витка спирали. Таким образом углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который удовлетворяет действительным требованиям заказчика и доводится до реализации.

Основная проблема спирального цикла - определение момента перехода на следующий этап. Для ее решения вводятся временные ограничения на каждый из этапов жизненного цикла, и переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. Планирование производится на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.

Несмотря на настойчивые рекомендации экспертов в области проектирования и разработки ИС, многие компании продолжают использовать каскадную модель вместо какого-либо варианта итерационной модели. Основные причины, по которым каскадная модель сохраняет свою популярность, следующие:

Привычка - многие ИТ-специалисты получали образование в то время, когда изучалась только каскадная модель, поэтому она используется ими и в наши дни.

Иллюзия снижения рисков участников проекта (заказчика и исполнителя). Каскадная модель предполагает разработку законченных продуктов на каждом этапе: технического задания, технического проекта, программного продукта и пользовательской документации. Разработанная документация позволяет не только определить требования к продукту следующего этапа, но и определить обязанности сторон, объем работ и сроки, при этом окончательная оценка сроков и стоимости проекта производится на начальных этапах, после завершения обследования. Очевидно, что если требования к информационной системе меняются в ходе реализации проекта, а качество документов оказывается невысоким (требования неполны и/или противоречивы), то в действительности использование каскадной модели создает лишь иллюзию определенности и на деле увеличивает риски, уменьшая лишь ответственность участников проекта.

Проблемы внедрения при использовании итерационной модели. В некоторых областях спиральная модель не может применяться, поскольку невозможно использование/тестирование продукта, обладающего неполной функциональностью (например, военные разработки, атомная энергетика и т.д.). Поэтапное итерационное внедрение информационной системы для бизнеса возможно, но сопряжено с организационными сложностями (перенос данных, интеграция систем, изменение бизнес-процессов, учетной политики, обучение пользователей). Трудозатраты при поэтапном итерационном внедрении оказываются значительно выше, а управление проектом требует настоящего искусства. Предвидя указанные сложности, заказчики выбирают каскадную модель, чтобы "внедрять систему один раз".

Процесс определяется как совокупность взаимосвязанных действий, преобразующих входные данные в выходные. Описание каждого процесса включает в себя перечень решаемых задач, исходных данных и результатов.

В соответствии с базовым международным стандартом ISO/IEC 12207 все процессы ЖЦ ПО делятся на три группы:

3.1 Основные процессы жизненного цикла

Приобретение (действия и задачи заказчика, приобретающего ИС)

Поставка (действия и задачи поставщика, который снабжает заказчика программным продуктом или услугой)

Разработка (действия и задачи, выполняемые разработчиком: создание ПО, оформление проектной и эксплуатационной документации, подготовка тестовых и учебных материалов и т. д.)

Эксплуатация (действия и задачи оператора - организации, эксплуатирующей систему)

Сопровождение (действия и задачи, выполняемые сопровождающей организацией, то есть службой сопровождения). Сопровождение - внесений изменений в ПО в целях исправления ошибок, повышения производительности или адаптации к изменившимся условиям работы или требованиям.

Среди основных процессов жизненного цикла наибольшую важность имеют три: разработка, эксплуатация и сопровождение. Каждый процесс характеризуется определенными задачами и методами их решения, исходными данными, полученными на предыдущем этапе, и результатами.

Разработка

Разработка информационной системы включает в себя все работы по созданию информационного программного обеспечения и его компонентов в соответствии с заданными требованиями. Разработка информационного программного обеспечения также включает:

оформление проектной и эксплуатационной документации;

подготовку материалов, необходимых для тестирования разработанных программных продуктов;

разработку материалов, необходимых для обучения персонала.

Разработка является одним из важнейших процессов жизненного цикла информационной системы и, как правило, включает в себя стратегическое планирование, анализ, проектирование и реализацию (программирование).

Эксплуатация

Эксплуатационные работы можно подразделить на подготовительные и основные. К подготовительным относятся:

конфигурирование базы данных и рабочих мест пользователей;

обеспечение пользователей эксплуатационной документацией;

обучение персонала.

Основные эксплуатационные работы включают:

непосредственно эксплуатацию;

локализацию проблем и устранение причин их возникновения;

модификацию программного обеспечения;

подготовку предложений по совершенствованию системы;

развитие и модернизацию системы.

Сопровождение

Службы технической поддержки играют весьма заметную роль в жизни любой корпоративной информационной системы. Наличие квалифицированного технического обслуживания на этапе эксплуатации информационной системы является необходимым условием решения поставленных перед ней задач, причем ошибки обслуживающего персонала могут приводить к явным или скрытым финансовым потерям, сопоставимым со стоимостью самой информационной системы.

Основными предварительными действиями при подготовке к организации технического обслуживания информационной системы являются:

выделение наиболее ответственных узлов системы и определение для них критичности простоя (это позволит выделить наиболее критичные составляющие информационной системы и оптимизировать распределение ресурсов для технического обслуживания);

определение задач технического обслуживания и их разделение на внутренние, решаемые силами обслуживающего подразделения, и внешние, решаемые специализированными сервисными организациями (таким образом производится четкое определение круга исполняемых функций и разделение ответственности);

проведение анализа имеющихся внутренних и внешних ресурсов, необходимых для организации технического обслуживания в рамках описанных задач и разделения компетенции (основные критерии для анализа: наличие гарантии на оборудование, состояние ремонтного фонда, квалификация персонала);

подготовка плана организации технического обслуживания, в котором необходимо определить этапы исполняемых действий, сроки их исполнения, затраты на этапах, ответственность исполнителей.

3.2 Вспомогательные процессы жизненного цикла

Документирование (формализованное описание информации, созданной в течение ЖЦ ИС)

Управление конфигурацией (применение административных и технических процедур на всем протяжении ЖЦ ИС для определения состояния компонентов ИС, управления ее модификациями).

Обеспечение качества (обеспечение гарантий того, что ИС и процессы ее ЖЦ соответствуют заданным требованиям и утвержденным планам)

Верификация (определение того, что программные продукты, являющиеся результатами некоторого действия, полностью удовлетворяют требованиям или условиям, обусловленным предшествующими действиями)

Аттестация (определение полноты соответствия заданных требований и созданной системы их конкретному функциональному назначению)

Совместная оценка (оценка состояния работ по проекту: контроль планирования и управления ресурсами, персоналом, аппаратурой, инструментальными средствами)

Аудит (определение соответствия требованиям, планам и условиям договора)

Разрешение проблем (анализ и решение проблем, независимо от их происхождения или источника, которые обнаружены в ходе разработки, эксплуатации, сопровождения или других процессов)

3.3 Организационные процессы

Управление (действия и задачи, которые могут выполняться любой стороной, управляющей своими процессами)

Создание инфраструктуры (выбор и сопровождение технологии, стандартов и инструментальных средств, выбор и установка аппаратных и программных средств, используемых для разработки, эксплуатации или сопровождения ПО)

Усовершенствование (оценка, измерение, контроль и усовершенствование процессов ЖЦ)

Обучение (первоначальное обучение и последующее постоянное повышение квалификации персонала)

Управление проектом связано с вопросами планирования и организации работ, создания коллективов разработчиков и контроля за сроками и качеством выполняемых работ. Техническое и организационное обеспечение проекта включает:

выбор методов и инструментальных средств для реализации проекта;

определение методов описания промежуточных состояний разработки;

разработку методов и средств испытаний созданного программного обеспечения;

1. Избачков С.Ю., Петров В.Н. Информационные системы–СПб.: Питер, 2008. – 655 с

2. http://ru.wikipedia.org

3. http://www.intuit.ru

Понятие жизненного цикла является одним из базовых понятий методологии про­ектирования информационных систем. Жизненный цикл информационной сис­темы представляет собой непрерывный процесс, начинающийся! с момента приня­тия решения о создании информационной системы и заканчивается в момент полного изъятия ее из эксплуатации.

Стандарт ISO/IEC 12207 определяет структуру жизненного цикла, содержащую процессы, действия и задачи, которые должны быть выполнены во время создания информационной системы. Согласно данному стандарту структура жизненного цикла основывается на трех группах процессов:

1. основные процессы жизненного цикла (приобретение, поставка, разработка, эксплуатация, сопровождение);

2. вспомогательные процессы, обеспечивающие выполнение основных процессов (документирование, управление конфигурацией, обеспечение качества, вери­фикация, аттестация, оценка, аудит, разрешение проблем);

3. организационные процессы (управление проектами, создание инфраструктуры проекта, определение, оценка и улучшение самого жизненного цикла, обучение).

Среди основных процессов жизненного цикла наибольшую важность разработка, эксплуатация и сопровождение. Каждый процесс характеризуется определенными задачами и методами их решения, исходными данными; полученными на предыдущем этапе, и результатами.

1. Разработка

Разработка информационной системы включает в себя все работы по разработке информационного программного обеспечения и его компонентов в соответствии с заданными требованиями. Разработка информационного программного обеспечения также включает:

1. оформление проектной и эксплуатационной документации;

2. подготовку материалов, необходимых для проведения тестирования тайных программных продуктов;

3. разработку материалов, необходимых для организации обучения персонала.

Разработка является одним из важнейших процессов жизненного цикла информационной системы и, как правило, включает в себя стратегическое планирование, анализ, проектирование и реализацию (программирование).

2. Эксплуатация

Эксплуатационные работы можно подразделить на подготовительные и основные. К подготовительным относятся:

1. конфигурирование базы данных и рабочих мест пользователей;

2. обеспечение пользователей эксплуатационной документацией;

3. обучение персонала.

Основные эксплуатационные работы включают;

1. непосредственно эксплуатацию;

2. локализацию проблем и устранение причин их возникновения;

3. модификацию программного обеспечения;

4. подготовку предложений по совершенствованию системы;

5. развитие и модернизацию системы.

3. Сопровождение

Службы технической поддержки играют весьма заметную роль в жизни любой корпоративной информационной системы. Наличие квалифицированного технического обслуживания на этапе эксплуатации информационной системы яв­ляется необходимым условием для решения поставленных перед ней задач. При­чем ошибки обслуживающего персонала могут приводить к явным или скрытым финансовым потерям сопоставимым со стоимостью самой информационной си­стемы.



Модели жизненного цикла

Под моделью жизненного цикла понимается структура, определяющая последовательность выполнения и взаимосвязи процессов, действий и задач, выполняемых на протяжении жизненного цикла. Модель жизненного цикла зависит от специфики информационной системы и специфики условий, в которых последняя создается и функционирует

К настоящему времени наибольшее распространение получили следующие основные модели жизненного цикла:

1. задачная модель;

2. каскадная модель (или системная) (70-85 г.г.);

3. спиральная модель (настоящее время).

Задачная модель

При разработке системы "снизу-вверх" от отдельных задач ко всей системе (задачная модель) единый поход к разработке неизбежно теряется, возникают проблемы при информационной стыковке отдельных компонентов. Как правило, по мере увеличения количества задач трудности нарастают, приходится постоянно изменять уже существующие программы и структуры данных. Скорость развития системы замедляется, что тормозит и развитие самой организации. Однако в отдельных случаях такая технология может оказаться целесообразной:

Крайняя срочность (надо чтобы хоть как-то задачи решались; потом придется все сделать заново);

Эксперимент и адаптация заказчика (не ясны алгоритмы, решения нащупываются методом проб и ошибок).

Общий вывод: достаточно большую эффективную информационной системы таким способом создать невозможно.

Каскадная модель

В ранних не очень больших по объему однородных информационных систем каждое приложение представляло собой единое целое. Для разработки такого типа приложений применялся каскадный способ. Его основной характеристикой является разбиение всей разработки на этапы, причем переход с одного этапа на следующий происходит только после того, как будет полностью завершена работа на текущем (рис. 2). Каждый этап завершается выпуском полного комплекта документации, достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков.

Положительные стороны применения каскадного подхода заключаются в следующем:

на каждом этапе формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;

выполняемые в логичной последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Рис. . Каскадная схема разработки

Каскадный подход хорошо зарекомендовал себя при построении информационных систем, для которых в самом начале разработки можно достаточно точно и полно сформулировать все требования, с тем, чтобы предоставить разработчикам свободу реализовать их как можно лучше с технической точки зрения. В эту категорию попадают сложные расчетные системы, системы реального времени и другие подобные задачи. Однако в процессе использования этого подхода обнаружился ряд его недостатков, вызванных прежде всего тем, что реальный процесс создания систем никогда полностью не укладывался в такую жесткую схему. В процессе создания постоянно возникала потребность в возврате к предыдущим этапам и уточнении или пересмотре ранее принятых решений. В результате реальный процесс создания программного обеспечения принимал следующий вид (рис. 3):

Рис. 3. Реальный процесс разработки ПО по каскадной схеме

Основным недостатком каскадного подхода является существенное запаздывание с получением результатов. Согласование результатов с пользователями производится только в точках, планируемых после завершения каждого этапа работ, требования к информационным системам "заморожены" в виде технического задания на все время ее создания. Таким образом, пользователи могут внести свои замечания только после того, как работа над системой будет полностью завершена. В случае неточного изложения требований или их изменения в течение длительного периода создания программного обеспечения, пользователи получают систему, не удовлетворяющую их потребностям. Модели (как функциональные, так и информационные) автоматизируемого объекта могут устареть одновременно с их утверждением. Сущность системного подхода к разработке ИС заключается в ее декомпозиции (разбиении) на автоматизируемые функции: система разбивается на функциональные подсистемы, которые в свою очередь делятся на подфункции, подразделяемые на задачи и так далее. Процесс разбиения продолжается вплоть до конкретных процедур. При этом автоматизируемая система сохраняет целостное представление, в котором все составляющие компоненты взаимоувязаны. Таким образом, данная модель основным достоинством имеет системность разработки, а основные недостатки - медленно и дорого.

Спиральная модель

Для преодоления перечисленных проблем была предложена спиральная модель жизненного цикла (рис. 4), делающая упор на начальные этапы жизненного цикла: анализ и проектирование. На этих этапах реализуемость технических решений проверяется путем создания прототипов. Каждый виток спирали соответствует созданию фрагмента или версии программного обеспечения, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Таким образом, углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который доводится до реализации.

Разработка итерациями отражает объективно существующий спиральный цикл создания системы. Неполное завершение работ на каждом этапе позволяет переходить на следующий этап, не дожидаясь полного завершения работы на текущем. При итеративном способе разработки недостающую работу можно будет выполнить на следующей итерации. Главная же задача - как можно быстрее показать пользователям системы работоспособный продукт, тем самым, активизируя процесс уточнения и дополнения требований.

Основная проблема спирального цикла - определение момента перехода на следующий этап. Для ее решения необходимо ввести временные ограничения на каждый из этапов жизненного цикла. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.

Рис 4. Спиральная модель ЖЦ ИС

Одним из возможных подходов к разработке программного обеспечения в рамках спиральной модели жизненного цикла является получившая в последнее время широкое распространение методология быстрой разработки приложений RAD (Rapid Application Development). Под этим термином обычно понимается процесс разработки программного обеспечения, содержащий 3 элемента:

небольшую команду программистов (от 2 до 10 человек);

короткий, но тщательно проработанный производственный график (от 2 до 6 мес.);

повторяющийся цикл, при котором разработчики, по мере того, как приложение начинает обретать форму, запрашивают и реализуют в продукте требования, полученные через взаимодействие с заказчиком.

Жизненный цикл программного обеспечения по методологии RAD состоит из четырех фаз:

1. фаза определения требований и анализа;

2. фаза проектирования;

3. фаза реализации;

4. фаза внедрения.


Лекция 6. Классификация информационных систем

Информационная система - взаимосвязанная совокуп­ность средств, методов и персонала, используемых для хра­нения, обработки и выдачи информации в интересах дости­жения поставленной цели

Классификация по масштабу

По масштабу информационные системы подразделяются на следующие группы:

1. одиночные;

2. групповые;

3. корпоративные.

Одиночные информационные системы реализуются, как правило, на автономном персональном компьютере (сеть не используется). Такая система может содержать несколько простых приложений, связанных общим информационным фондом, и рассчитана на работу одного пользователя или группы пользователей, разделяющих по времени одно рабочее место. Подобные приложения создайся с помощью так называемых настольных или локальных систем управления базами данных (СУБД). Среди локальных СУБД наиболее известными являются Clarion, Clipper, FoxPro, Paradox, dBase и Microsoft Access.

Групповые информационные системы ориентированы на коллективное использова­ние информации членами рабочей группы и чаще всего строятся на базе локальной вычислительной сети. При разработке таких приложений используются серверы баз данных (Называемые также SQL-серверами) для рабочих групп. Существует доволь­но большое количество различных SQL-серверов, как коммерческих, так и свобод­но распространяемых. Среди них наиболее известны такие серверы баз данных, как Oracle, DB2, Microsoft SQL Server, InterBase, Sybase, Informix.

Корпоративные информационные системы являются развитием систем для рабочих групп, они ориентированы на крупные компании и могут поддерживать тер­риториально разнесенные узлы или сети. В основном они имеют иерархическую структуру из нескольких уровней. Для таких систем характерна архитектура кли­ент-сервер со специализацией серверов или же многоуровневая архитектура. При разработке таких систем могут использоваться те же серверы баз данных, что и при разработке групповых информационных систем. Однако в крупных информационных системах наибольшее распространение получили серверы Oracle, DB2 и Microsoft SQL Server.

Для групповых и корпоративных систем существенно повышаются требования к надежности функционирования и сохранности данных. Эти свойства обеспечиваются поддержкой целостности данных, ссылок и транзакций в серверах баз.

Классификация по сфере применения

По сфере применения информационные системы обычно подразделяются на четыре группы:

1. системы обработки транзакций;

2. системы принятия решений;

3. информационно-справочные системы;

4. офисные информационные системы.

Системы обработки транзакций , в свою очередь, по оперативности обработки данных, разделяются на пакетные информационные системы и оперативные инфор­мационные системы. В информационных системах организационного управлений преобладает режим оперативной обработки транзакций, для отражения актуального состояния предметной области в любой момент времени, а пакетная обработка занимает весьма ограниченную часть.

Системы поддержки принятия решений - DSS (Decision Support Systeq) - пред­ставляют собой другой тип информационных систем, в которых с помощью довольно сложных запросов производится отбор и анализ данных в различных разрезах: временных, географических и по другим показателям.

Обширный класс информационно-справочных систем основан на гипертекстовых документах и мультимедиа. Наибольшее развитие такие информационные систе­мы получили в сети Интернет.

Класс офисных информационных систем нацелен на перевод бумажных докумен­тов в электронный вид, автоматизацию делопроизводства и управление докумен­тооборотом.

Классификация по способу организации

По способу организации групповые и корпоративные информационные системы подразделяются на следующие классы:

1. системы на основе архитектуры файл-сервер;

2. системы на основе архитектуры клиент-сервер;

3. системы на основе многоуровневой архитектуры;

4. системы на основе Интернет/интранет - технологий.

В любой информационной системе можно выделить необходимые функциональ­ные компоненты, которые помогают понять ограничения различных архитектур информационных систем.

Архитектура файл-сервер только извлекает данные из файлов так, что дополнительные пользователи и приложения добавляют лишь незначительную нагрузку на центральный процессор. Каждый новый клиент добавляет вычислительную мощность к сети.

Архитектура клиент-сервер предназначена для разрешения проблем файл-сервер­ных приложений путем разделения компонентов приложения и размещения их там, где они будут функционировать наиболее эффективно. Особенностью архитектуры клиент-сервер является использование выделенных серверов баз данных, пони­мающих запросы на языке структурированных запросов SQL (Structured Query Language) и выполняющих поиск, сортировку и агрегирование информации.

В настоящее время архитектура клиент-сервер получила признание и широкое распространение как способ организации приложений для рабочих групп и информационных систем корпоративного уровня. Подобная организация работы повышает эффективность выполнения приложений за счет использования воз­можностей сервера БД, разгрузки сети и обеспечения контроля целостности дан­ных.

Многоуровневая архитектура стала развитием архитектуры клиент-сервер и в своей классической форме состоит из трех уровней:

1. нижний уровень представляет собой приложения клиентов, имеющие программ­ный интерфейс для вызова приложения на среднем уровне;

2. средний уровень представляет собой сервер приложений;

3. верхний уровень представляет собой удаленный специализированный сервер базы данных.

Трехуровневая архитектура позволяет еще больше сбалансировать нагрузку на разные узлы и сеть, а также способствует специализации инструментов для раз­работки приложений и устраняет недостатки двухуровневой модели клиент-сер­вер.

В развитии технологии Интернет/интранет основной акцент пока что делается на разработке инструментальных программных средств. В то же время наблюдается отсутствие развитых средств разработки приложений, работающих с базами данных. Компромиссным решением для создания удобных и простых в использовании и сопровождении информационных систем, эффективно работающих с базами данных, стало объединение Интернет/интранет-технологии с многоуровневой архитектурой. При этом структура информационного приложения приобретает следующий вид: браузер - сервер приложений - сервер баз данных - сервер динамических страниц - web-сервер.

По характеру хранимой информации БД делятся на фактографические и документальные . Если проводить аналогию с описанными выше примерами информационных хранилищ, то фактографические БД - это картотеки, а документальные - это архивы. В фактографических БД хранится краткая информация в строго определенном формате. В документальных БД - всевозможные документы. Причем это могут быть не только текстовые документы, но и графика, видео и звук (мультимедиа).

Автоматизированная система управления (АСУ) - это комплекс технических и программных средств, совместно с организационными структурами (отдельными людьми пли коллективом), обеспечивающий управление объектом (комплексом) в производственной, научной или общественной среде.

Выделяют информационные системы управления образования (Например, кадры, абитуриент, студент, библиотечные программы). Автоматизированные системы для научных исследований (АСНИ), представляющие собой программно-аппаратные комплексы, обрабатывающие данные, поступающие от различного рода экспериментальных установок и измерительных приборов, и на основе их анализа облегчающие обнаружение новых эффектов и закономерностей.Системы автоматизированного проектирования и геоинформационные системы.

Систему искусственного интеллекта, построенную на основе высококачествен­ных специальных знании о некоторой предметной области (полученных от экспер­тов - специалистов этой области), называют экспертной системой. Экспертные системы - один из немногих видов систем искусственного интеллекта - получили широкое распространение, и нашли практическое применение. Существу­ют экспертные системы по военному делу, геологии, инженерному делу, информа­тике, космической технике, математике, медицине, метеорологии, промышленности, сельскому хозяйству, управлению, физике, химии, электронике, юриспруденции и т.д. И только то, что экспертные системы остаются весьма сложными, дорогими, а главное, узкоспециализированными программами, сдерживает их еще более широ­кое распространение.

Экспертные системы (ЭС) - это компьютерные программы, созданные для выполнения тех видов деятельности, которые под силу человеку-эксперту. Они работают таким образом, что имитируют образ действий человека-эксперта, и существенно отличаются от точных, хорошо аргументированных алгоритмов и не похожи на математические процедуры большинства традиционных разработок.

по электротехнике). Этот стандарт определяет структуру ЖЦ, содержащую процессы, действия и задачи, которые должны быть выполнены во время создания ПС.

В данном стандарте ПС (или программный продукт ) определяется как набор компьютерных программ, процедур и, возможно, связанной с ними документацией и данных. Процесс определяется как совокупность взаимосвязанных действий, преобразующих некоторые входные данные в выходные (Г. Майерс называет это трансляцией данных ). Каждый процесс характеризуется определенными задачами и методами их решения. В свою очередь , каждый процесс разделен на набор действий, а каждое действие – на набор задач. Каждый процесс, действие или задача инициируется и выполняется другим процессом по мере необходимости, причем не существует заранее определенных последовательностей выполнения (естественно, при сохранении связей по входным данным).

Следует отметить, что в Советском Союзе, а затем в России создание программного обеспечения ( ПО ) первоначально, в 70-е годы прошлого столетия, регламентировалось стандартами ГОСТ ЕСПД (Единой системы программной документации – серии ГОСТ 19.ХХХ), которые были ориентированы на класс относительно простых программ небольшого объема, создаваемых отдельными программистами. В настоящее время эти стандарты устарели концептуально и по форме, их сроки действия закончились и использование нецелесообразно.

Процессы создания автоматизированных систем ( АС ), в состав которых входит и ПО , регламентированы стандартами ГОСТ 34.601-90 "Информационная технология. Комплекс стандартов на автоматизированные системы. Стадии создания", ГОСТ 34.602-89 "Информационная технология. Комплекс стандартов на автоматизированные системы. Техническое задание на создание автоматизированной системы" и ГОСТ 34.603-92 "Информационная технология. Виды испытаний автоматизированных систем". Однако многие положения этих стандартов устарели, а другие отражены недостаточно, чтобы их можно было применять для серьезных проектов создания ПС. Поэтому в отечественных разработках целесообразно использовать современные международные стандарты.

В соответствии со стандартом ISO / IEC 12207 все процессы ЖЦ ПО разделены на три группы (рис.5.1).


Рис. 5.1.

В группах определено пять основных процессов: приобретение, поставка, разработка, эксплуатация и сопровождение. Восемь вспомогательных процессов обеспечивают выполнение основных процессов, а именно документирование , управление конфигурацией , обеспечение качества, верификация , аттестация , совместная оценка, аудит , разрешение проблем. Четыре организационных процесса обеспечивают управление, создание инфраструктуры, усовершенствование и обучение.

5.2. Основные процессы ЖЦ ПС

Процесс приобретения состоит из действий и задач заказчика, приобретающего ПС. Данный процесс охватывает следующие действия :

  1. инициирование приобретения;
  2. подготовку заявочных предложений;
  3. подготовку и корректировку договора;
  4. надзор за деятельностью поставщика;
  5. приемку и завершение работ.

Инициирование приобретения включает следующие задачи:

  1. определение заказчиком своих потребностей в приобретении, разработке или усовершенствовании системы, программных продуктов или услуг;
  2. принятие решения относительно приобретения, разработки или усовершенствования существующего ПО;
  3. проверку наличия необходимой документации, гарантий, сертификатов, лицензий и поддержки в случае приобретения программного продукта;
  4. подготовку и утверждение плана приобретения, включающего требования к системе, тип договора, ответственность сторон и т.д.

Заявочные предложения должны содержать:

  1. требования, предъявляемые к системе;
  2. перечень программных продуктов;
  3. условия приобретения и соглашения;
  4. технические ограничения (например, по среде функционирования системы).

Заявочные предложения направляются к выбранному поставщику или нескольким поставщикам в случае тендера. Поставщик – это организация, которая заключает договор с заказчиком на поставку системы, ПО или программной услуги на условиях, оговоренных в договоре.

Подготовка и корректировка договора включает следующие задачи:

  1. определение заказчиком процедуры выбора поставщика, включающей критерии оценки предложений возможных поставщиков;
  2. выбор конкретного поставщика на основе анализа предложений;
  3. подготовку и заключение договора с поставщиком ;
  4. внесение изменений (при необходимости) в договор в процессе его выполнения.

Надзор за деятельностью поставщика осуществляется в соответствии с действиями, предусмотренными в процессах совместной оценки и аудита. В процессе приемки подготавливаются и выполняются необходимые тесты. Завершение работ по договору осуществляется в случае удовлетворения всех условий приемки.

Процесс поставки охватывает действия и задачи, выполняемые поставщиком, который снабжает заказчика программным продуктом или услугой. Данный процесс включает следующие действия:

  1. инициирование поставки;
  2. подготовку ответа на заявочные предложения;
  3. подготовку договора;
  4. планирование работ по договору;
  5. выполнение и контроль договорных работ и их оценку;
  6. поставку и завершение работ.

Инициирование поставки заключается в рассмотрении поставщиком заявочных предложений и принятии решения, соглашаться ли с выставленными требованиями и условиями или предложить свои (согласовать). Планирование включает следующие задачи:

  1. принятие решения поставщиком относительно выполнения работ своими силами или с привлечением субподрядчика;
  2. разработку поставщиком плана управления проектом, содержащего организационную структуру проекта, разграничение ответственности, технические требования к среде разработки и ресурсам, управление субподрядчиками и др.

Процесс разработки предусматривает действия и задачи, выполняемые разработчиком, и охватывает работы по созданию ПО и его компонентов в соответствии с заданными требованиями. Сюда включается оформление проектной и эксплуатационной документации, подготовка материалов, необходимых для проверки работоспособности, и качества программных продуктов , материалов, необходимых для организации обучения персонала и др.

Процесс разработки включает следующие действия:

  1. подготовительную работу;
  2. анализ требований, предъявляемых к системе;
  3. проектирование архитектуры системы;
  4. анализ требований, предъявляемых к программному обеспечению;
  5. проектирование архитектуры программного обеспечения;
  6. детальное проектирование программного обеспечения;
  7. кодирование и тестирование программного обеспечения;
  8. интеграцию программного обеспечения;
  9. квалификационное тестирование программного обеспечения;
  10. интеграцию системы;
  11. квалификационное тестирование системы;
  12. установку программного обеспечения;
  13. приемку программного обеспечения.

Подготовительная работа начинается с выбора модели ЖЦ ПО , соответствующей масштабу, значимости и сложности проекта. Действия и задачи процесса разработки должны соответствовать выбранной модели. Разработчик должен выбирать, адаптировать к условиям проекта и использовать согласованные с заказчиком стандарты, методы и средства разработки , а также составить план выполнения работ .

Анализ требований, предъявляемых к системе, подразумевает определение ее функциональных возможностей, пользовательских требований , требований к надежности, безопасности, требований к внешним интерфейсам, производительности и т.д. Требования к системе оцениваются, исходя из критериев реализуемости и возможности проверки при тестировании.

Проектирование архитектуры системы заключается в определении компонентов ее оборудования (аппаратуры), программного обеспечения и операций, выполняемых эксплуатирующим систему персоналом. Архитектура системы должна соответствовать требованиям, предъявляемым к системе, а также принятым проектным стандартам и методам.

Анализ требований к программному обеспечению предполагает определение следующих характеристик для каждого компонента ПО :

  1. функциональных возможностей, включая характеристики производительности и среды функционирования компонента;
  2. внешних интерфейсов;
  3. спецификаций надежности и безопасности;
  4. эргономических требований;
  5. требований к используемым данным;
  6. требований к установке и приемке;
  7. требований к пользовательской документации;
  8. требований к эксплуатации и сопровождению.

Требования к программному обеспечению оцениваются, исходя из критериев соответствия требованиям, предъявляемым к системе в целом, реализуемости и возможности проверки при тестировании.

Проектирование архитектуры ПО включает следующие задачи для каждого компонента ПО :

  1. трансформацию требований к ПО в архитектуру, определяющую на высоком уровне структуру ПО и состав его компонентов;
  2. разработку и документирование программных интерфейсов ПО и баз данных (БД);
  3. разработку предварительной версии пользовательской документации;
  4. разработку и документирование предварительных требований к тестам и плана интеграции ПО.

Детальное проектирование ПО включает следующие задачи:

  1. описание компонентов ПО и интерфейсов между ними на более низком уровне, достаточном для последующего кодирования и тестирования;
  2. разработку и документирование детального проекта базы данных;
  3. обновление (при необходимости) пользовательской документации;
  4. разработку и документирование требований к тестам и плана тестирования компонентов ПО;

Кодирование и тестирование ПО включает следующие задачи:

  1. кодирование и документирование каждого компонента ПО и базы данных, а также подготовку совокупности тестовых процедур и данных для их тестирования;
  2. тестирование каждого компонента ПО и БД на соответствие предъявляемым к ним требованиям с последующим документированием результатов тестирования;
  3. обновление документации (при необходимости);
  4. обновление плана интеграции ПО.

Интеграция ПО предусматривает сборку разработанных компонентов ПО в соответствии с планом интеграции и тестирования агрегированных компонентов. Для каждого из агрегированных компонентов разрабатываются наборы тестов и тестовые процедуры, предназначенные для проверки каждого из квалификационных требований при последующем квалификационном тестировании. Квалификационное требование – это набор критериев или условий, которые необходимо выполнить, чтобы квалифицировать программный продукт как соответствующий своим спецификациям и готовый к использованию в условиях эксплуатации.

Квалификационное тестирование ПО проводится разработчиком в присутствии заказчика (

Процесс эксплуатации охватывает действия и задачи организации оператора, эксплуатирующего систему. Процесс эксплуатации включает следующие действия.

  1. Подготовительная работа, которая включает проведение оператором следующих задач:

    1. планирование действий и работ, выполняемых в процессе эксплуатации, и установка эксплуатационных стандартов;
    2. определение процедур локализации и разрешения проблем, возникающих в процессе эксплуатации.
  2. Эксплуатационное тестирование, осуществляемое для каждой очередной редакции программного продукта, после чего эта редакция передается в эксплуатацию.
  3. Собственно эксплуатация системы, которая выполняется в предназначенной для этого среде в соответствии с пользовательской документацией.
  4. анализ проблем и запросов на модификацию ПО (анализ сообщений о возникшей проблеме или запроса на модификацию, оценка масштаба, стоимости модификации, получаемого эффекта, оценка целесообразности модификации);
  5. модификацию ПО (внесение изменений в компоненты программного продукта и документацию в соответствии с правилами процесса разработки);
  6. проверку и приемку (в части целостности модифицируемой системы);
  7. перенос ПО в другую среду (конвертирование программ и данных, параллельная эксплуатация ПО в старой и новой среде в течение некоторого периода времени);
  8. снятие ПО с эксплуатации по решению заказчика при участии эксплуатирующей организации, службы сопровождения и пользователей. При этом программные продукты и документации подлежат архивированию в соответствии с договором.

ЛЕКЦИЯ 10

ЖИЗНЕННЫЙ ЦИКЛ СИСТЕМЫ

Модели ЖЦ и его основные этапы

При описании жизненного цикла системы используются следую­щие понятия:

процесс - цепочка последовательно выполняемых работ;

этапы - последовательные отрезки времени, в течение кото­рого выполняются работы . В течение этапа могут выполняться работы, относящиеся к разным процессам. В основе деятельности по созданию и использованию автомати­зированной системы управления предприятием (АСУП) лежит по­нятие ее жизненного цикла (ЖЦ). ЖЦ является моделью создания и использования АСУП, отражающей ее различные состояния, начи­ная с момента возникновения необходимости в данном изделии и заканчивая моментом его полного выхода из употребления у всех без исключения пользователей.

Традиционно выделяются следующие основные этапы ЖЦ АСУП:

анализ требований;

проектирование;

программирование/внедрение;

тестирование и отладка;

эксплуатация и сопровождение.

ЖЦ образуется в соответствии с принципом нисходящего про­ектирования и, как правило, носит итерационный характер: реа­лизованные этапы, начиная с самых ранних, циклически повторя­ются в соответствии с изменениями требований и внешних усло­вий, введением ограничений и т. п. На каждом этапе ЖЦ порождает­ся определенный набор документов и технических решений, при этом для каждого этапа исходными являются документы и реше­ния, полученные на предыдущем этапе. Каждый этап завершается верификацией порожденных документов и решений с целью про­верки их соответствия исходным.

Существующие модели ЖЦ определяют порядок исполнения эта­пов в ходе разработки, а также критерии перехода от этапа к этапу. В соответствии с этим наибольшее распространение получили три следующие модели ЖЦ:

1. Каскадная модель (в 70-80-е годы) - предполагает переход на следующий этап после полного окончания работ по предыдущему этапу и характеризуется четким разделением данных и процессов их обработки.

2. Поэтапная модель с промежуточным контролем (в 80-85-е го­ды) - итерационная модель разработки с циклами обратной связи между этапами. Преимущество такой модели заключается в том, что межэтапные корректировки обеспечивают меньшую трудоемкость по сравнению с каскадной моделью; с другой стороны, время жиз­ни каждого из этапов растягивается на весь период разработки.

3. Спиральная модель (в 86-90-е годы) - делает упор на началь­ные этапы ЖЦ: анализ требований, проектирование специфика­ций, предварительное и детальное проектирование. На этих этапах проверяется и обосновывается реализуемость технических решений путем создания прототипов. Каждый виток спирали соответствует поэтапной модели создания фрагмента или версии системы, на нем уточняются цели и характеристики проекта, определяется его каче­ство, планируются работы следующего витка спирали. Таким обра­зом углубляются и последовательно конкретизируются детали про­екта и в результате выбирается обоснованный вариант, который доводится до реализации.

Специалистами отмечаются следующие преимущества спираль­ной модели:

накопление и повторное использование программных средств, моделей и прототипов;

ориентация на развитие и модификацию системы в процессе ее проектирования;

анализ риска и издержек в процессе проектирования

. Отметим, что главная особенность индустрии АСУП состоит в концентрации сложности на начальных этапах ЖЦ (анализ, проек­тирование) при относительно невысокой сложности и трудоемкос­ти последующих этапов. Более того, нерешенные вопросы и ошиб­ки, допущенные на этапах анализа и проектирования, порождают на последующих этапах трудные, часто неразрешимые проблемы и, в конечном счете, могут лишить успеха.

Анализ требований

Анализ требований является первой фазой разработки АСУП, на которой требования заказчика уточняются, формализуются и документируются. Фактически на этом этапе дается ответ на воп­рос: «Что должна делать будущая система?». Именно здесь лежит ключ к успеху всего проекта. В практике создания больших систем известно немало примеров неудачной реализации проекта именно из-за неполноты и нечеткости определения системных требований.

Список требований к АСУП должен включать:

Совокупность условий, при которых предполагается эксплуа­тировать будущую систему (аппаратные и программные ре­сурсы, предоставляемые системе; внешние условия ее функ­ционирования; состав людей и работ, имеющих к ней отно­шение);

Описание выполняемых системой функций;

Ограничения в процессе разработки (директивные сроки за­вершения отдельных этапов, имеющиеся ресурсы, организа­ционные процедуры и мероприятия, обеспечивающие защи­ту информации).

Целью анализа является преобразование общих, неясных знаний о требованиях к будущей системе в точные (по возможности) опре­деления. Результатом этапа должна являться модель требований к системе (по другому - системный проект) , определяющая:

Архитектуру системы, ее функции, внешние условия, распре­деление функций между аппаратной и программной частями (ПЧ);

Интерфейсы и распределение функций между человеком и системой;

Требования к программным и информационным компонентам ПЧ, необходимые аппаратные ресурсы, требования к базе данных, физические характеристики компонент ПЧ, их ин­терфейсы. Модель требований должна включать:

Полную функциональную модель требований к будущей сис­теме с глубиной проработки до уровня каждой операции каж­дого должностного лица;

Спецификации операций нижнего уровня;

Пакет отчетов и документов по функциональной модели, вклю­чающий характеристику объекта моделирования, перечень под­систем, требования к способам и средствам связи для инфор­мационного обмена между компонентами, требования к ха­рактеристикам взаимосвязей системы со смежными система­ми, требования к функциям системы;

Концептуальную информационную модель требований;

Пакет отчетов и документов по информационной модели;

Архитектуру системы с привязкой к концептуальной инфор­мационной модели;

Предложения по оргштатной структуре для поддержки сис­темы.

Таким образом, модель требований содержит функциональную, информационную и, возможно, событийную (в случае если целе­вая система является системой реального времени) модели, обес­печивающие ряд преимуществ по сравнению с традиционной мо­делью:

1. Для традиционной разработки характерно осуществление на­чальных этапов кустарными неформализованными способами. В ре­зультате заказчики и пользователи впервые могут увидеть систему после того, как она уже в большей степени реализована. Естествен­но, эта система будет отличаться от того, что они ожидали увидеть. Поэтому далее последует еще несколько итераций ее разработки или модификации, что требует дополнительных (и значительных) затрат денег и времени. Ключ к решению этой проблемы и дает модель требований, позволяющая:

Описать, «увидеть» и скорректировать будущую систему до того, как она будет реализована физически;

Уменьшить затраты на разработку и внедрение системы;

Оценить разработку по времени и результатам;

Достичь взаимопонимания между всеми участниками работы (заказчиками, пользователями, разработчиками, програм­мистами и т. д.);

Улучшить качество разрабатываемой системы, а именно вы­полнить ее функциональную декомпозицию и спроектировать оптимальную структуру интегрированной базы данных.

2. Модель требований полностью независима и отделяема от кон­кретных разработчиков, не требует сопровождения ее создателями и может быть безболезненно передана другим лицам. Более того, если по каким-либо причинам предприятие не готово к реализации систе­мы на основе модели требований, она может быть положена «на пол­ку» до тех пор, пока в ней не возникнет необходимость.

3. Модель требований может быть использована для самостоя­тельной разработки или корректировки уже реализованных на ее основе программных средств силами программистов отдела автома­тизации предприятия.

4. Модель требований может использоваться для автоматизиро­ванного и быстрого обучения новых работников конкретному на­правлению деятельности предприятия, поскольку ее технология содержится в модели.

Этап анализа требований является важнейшим среди всех этапов ЖЦ. Он оказывает существенное влияние на все последующие эта­пы, являясь в то же время наименее изученным и понятным про­цессом. На этом этапе, во-первых, необходимо понять, что предпо­лагается сделать, а во-вторых, задокументировать это, так как если требования не зафиксированы и не сделаны доступными для участ­ников проекта, то они вроде бы и не существуют. При этом язык, на котором формулируются требования, должен быть достаточно прост и понятен заказчику.

С другой стороны, рассматриваемый этап ЖЦ является наиболее трудной частью разработки. Нижеследующие проблемы, с которы­ми сталкивается системный аналитик, взаимосвязаны (и это явля­ется одной из главных причин сложности их разрешения):

Аналитик не всегда располагает исчерпывающей информаци­ей для оценки требований к системе с точки зрения заказ­чика;

Заказчик, в свою очередь, не имеет достаточной информации о проблеме обработки данных для того, чтобы судить, что выполнимо, а что нет;

Аналитик сталкивается с чрезмерным количеством подробных сведений как о предметной области, так и о новой системе;

Традиционная (текстовая) спецификация системы из-за объе­ма технических терминов часто непонятна заказчику;

Если такая спецификация понятна заказчику, она будет недо­статочной для проектировщиков и программистов, создаю­щих или адаптирующих систему.

Конечно, применение известных аналитических методов снима­ет отдельные проблемы анализа, однако приемлемое решение сово­купности этих проблем может быть найдено только путем примене­ния современных методик системной и программной инженерии, ключевое место среди которых занимают методологии структурного и объектно-ориентированного анализа.

Структурные методы анализа

Структурным анализом принято называть метод исследования си­стемы, который начинается с общего обзора ее и затем детализиру­ется, приобретая иерархическую структуру со все большим числом уровней . Для таких методов характерно:

Разбиение на уровни абстракции с ограничением числа эле­ментов на каждом из уровней (обычно от 3 до 7, при этом верхняя граница соответствует возможностям человеческого мозга воспринимать определенное количество взаимоувязан­ных объектов, а нижняя выбрана из соображений здравого смысла);

Ограниченный контекст, включающий лишь существенные на каждом уровне детали;

Использование строгих формальных правил записи;

Последовательное приближение к конечному результату.

Методы структурного анализа позволяют преодолеть сложность больших систем путем расчленения их на части («черные ящики») и иерархической организации этих черных ящиков . Преимущество ис­пользования черных ящиков заключается в том, что их пользователю не требуется знать, как они работают, необходимо знать лишь его входы и выходы, а также его назначение (т. е. функцию, которую он выполняет). В окружающем нас мире черные ящики встречаются в большом количестве: магнитофон и телевизор на бытовом уровне, предприятие с позиций клиента и т. п. Проиллюстрируем преимуще­ства систем, составленных из них, на примере музыкального центра.

Конструирование системы черных ящиков существенно упро­щается. Намного легче разработать магнитофон или проигры­ватель, если не беспокоиться о создании встроенного усили­тельного блока.

Облегчается тестирование таких систем. Если появляется пло­хой звук одной из колонок, можно поменять колонки места­ми. Если неисправность переместилась с колонкой, то имен­но она подлежит ремонту; если нет, тогда проблема в усили­теле, магнитофоне или местах их соединения.

Имеется возможность простого реконфигурирования системы черных ящиков. Если колонка неисправна, то можно отдать ее в ремонтную мастерскую и продолжать слушать записи в моно­режиме.

Облегчается доступность для понимания и освоения. Можно стать специалистом по магнитофонам без углубленных зна­ний о колонках.

Повышается удобство при модификации. Можно приобрести колонки более высокого качества и более мощный усилитель, но это совсем не означает, что необходим проигрыватель боль­ших размеров.

Таким образом, первым шагом упрощения сложной системы является ее разбиение на черные ящики (принцип «разделяй и вла­ствуй» - принцип решения трудных проблем путем разбиения их на множество независимых задач, легких для понимания и решения), при этом такое разбиение должно удовлетворять следующим крите­риям:

Каждый черный ящик должен реализовывать единственную функцию системы;

Функция каждого черного ящика должна быть легко понимае­ма независимо от сложности ее реализации (например, в си­стеме управления ракетой может быть черный ящик для рас­чета места ее приземления: несмотря на сложность алгорит­ма, функция черного ящика очевидна - расчет точки при­земления);

Связь между черными ящиками должна вводиться только при наличии связи между соответствующими функциями систе­мы (например, в бухгалтерии один черный ящик необходим для расчета общей заработной платы служащего, а другой - для расчета налогов необходима связь между этими черными ящиками: размер заработанной платы требуется для расчета налогов);

Связи между черными ящиками должны быть простыми, на­сколько это возможно, для обеспечения независимости меж­ду ними.

Второй важной идеей, лежащей в основе структурных методов," является идея иерархии. Для понимаемости сложной системы недо­статочно разбиения ее на части, необходимо эти части организовать определенным образом, а именно в виде иерархических структур. Все сложные системы Вселенной организованы в иерархии. Да и сама она включает галактики, звездные системы, планеты, молеку­лы, атомы, элементарные частицы. Человек при создании сложных систем также подражает природе. Любая организация имеет дирек­тора, заместителей по направлениям, иерархию руководителей под­разделений, рядовых служащих. Таким образом, второй прин­цип структурного анализа (принцип иерархического упорядочения) в дополнение к тому, что легче понимать проблему, если она разби­та на части, декларирует, что устройство этих частей также суще­ственно для понимания. Понимаемость проблемы резко повышается при организации ее частей в древовидные иерархические структу­ры, т. е. система может быть понята и построена по уровням, каж­дый из которых добавляет новые детали.

Наконец, третий принцип: структурные методы широко исполь­зуют графические нотации, также служащие для облегчения пони­мания сложных систем. Известно, что «одна картинка стоит тысячи слов».

Соблюдение указанных принципов необходимо при организации работ на начальных этапах ЖЦ независимо от типа разрабатывае­мой системы и используемых при этом методологий. Руководство всеми принципами в комплексе позволяет на более ранних стадиях разработки понять, что будет представлять собой создаваемая сис­тема, обнаружить промахи и недоработки, что, в свою очередь, облегчит работы на последующих этапах ЖЦ и понизит стоимость разработки.

Для целей структурного анализа традиционно используются три группы средств, иллюстрирующих:

функции, которые система должна выполнять,

отношения между данными,

зависящее от времени поведение системы (аспекты реальноговремени).

Среди многообразия графических нотаций, используемых для ре­шения перечисленных задач, в методологиях структурного анализа наиболее часто и эффективно применяются следующие:

DFD (Data Flow Diagrams) - диаграммы потоков данных совмес­тно со словарями данных и спецификациями процессов (мини-специ­фикациями);

ERD (Entity-Relationship Diagrams) -диаграммы «сущность -связь »;

STD (State Transition Diagrams) - диаграммы переходов состо­яний.

Классическая DFD показывает внешние по отношению к систе­ме источники и стоки (адресаты) данных, идентифицирует логи­ческие функции (процессы) и группы элементов данных, связыва­ющие одну функцию с другой (потоки), а также идентифицирует хранилища (накопители) данных, к которым осуществляется дос­туп. Структуры потоков данных и определения их компонент хра­нятся и анализируются в словаре данных. Каждая логическая функ­ция (процесс) может быть детализирована с помощью DFD нижне­го уровня; когда дальнейшая детализация перестает быть полезной, переходят к выражению логики функции при помощи специфика­ции процесса (мини-спецификации). Содержимое каждого храни­лища также сохраняют в словаре данных, модель данных хранили­ща раскрывается с помощью ERD. В случае наличия реального вре­мени DFD дополняется средствами описания зависящего от време­ни поведения системы, раскрывающимися с помощью STD. Эти взаимосвязи показаны на рис. 20.

Необходимо отметить, что для функционального моделирова­ния наряду с DFD достаточно часто применяется и другая нота­ция - SADT (точнее, ее стандартизованное подмножество IDEFO). Сравнительный анализ этих двух подходов к моделированию фун­кций системы будет приведен ниже.

Таким образом, перечисленные выше средства позволяют сде­лать полное описание системы независимо от того, является ли она существующей или разрабатываемой с нуля. Такое подробное опи­сание того, что должна делать система, освобожденное насколько это возможно от рассмотрения путей реализации, получило назва­ние спецификации требований, дающей проектировщику, реализу­ющему следующий этап ЖЦ, четкое представление о конечных ре­зультатах, которые должны быть достигнуты.

Перечисленные выше графические нотации используются (в том или ином наборе) практически во всех современных методологиях структурного системного анализа. Роль этих методологий заключает­ся в регламентации основ разработки сложных систем. Они описывают последовательность шагов, модели и

Рис. 20

подходы, тщательное сле­дование которым приведет к хорошо работающим системам. Хотя методологии, вообще говоря, не гарантируют качества построен­ных систем, тем не менее они помогают охватить и учесть все важ­ные этапы, шаги и моменты разработки, помогают справиться с проблемами размерности и, в конечном итоге, оценить продвиже­ние вперед. Более того, методологии обеспечивают организацион­ную поддержку, позволяющую большим коллективам разработчи­ков функционировать скоординированным образом.

Другими словами, методология структурного анализа определя­ет руководящие указания для построения и оценки модели требова­ний разрабатываемой системы, шаги работы, которые должны быть выполнены, их последовательность, а также правила распределе­ния и назначения применяемых при этом операций и методов.

В настоящее время успешно используются практически все из­вестные методологии структурного анализа, однако наибольшее распространение получили методологии SADT (Structured Analysis and Design Technique), структурного системного анализа Гейна-Сарсона (Gane-Sarson), структурного анализа и проектирования Йодана-Де Марко (Yourdon-DeMarko), развития систем Джексо­на (Jackson), развития структурных систем Варнье-Орра (Warmer- Orr), анализа и проектирования систем реального времени Уорда- Меллора (Ward-Mellor) и Хатли (Hatley), информационного моде­лирования Мартина (Martin).

Перечисленные структурные методологии жестко регламентиру­ют фазы анализа требований и проектирования спецификаций и отражают подход к системной разработке с позиций рецептов «ку­линарной книги». Спецификации требований включают особеннос­ти целевой системы и ее прогнозируемые характеристики, проекты пользовательских интерфейсов (меню, экраны и формы), критерии работоспособности системы, программное и аппаратное окружение. Полученный документ спецификации требований в дальнейшем преобразуется в проектные спецификации, детализирующие пред­полагаемую реализацию ПЧ. Проектные спецификации идентифи­цируют главные модули, маршруты связи поданным и управлению между модулями, основные подпрограммы внутри каждого модуля, структуры данных, спецификации форматов входных и выходных файлов. Для ключевых процессов проектные спецификации часто включают детали алгоритмов на языке проектирования мини-спе­цификаций. В дальнейшем структурные методологии предлагают ме­тодику трансляции проектных спецификаций в программные коды. Кодогенерация предполагает наличие кодовых стандартов, специ­фицирующих формат заголовков подпрограмм, ступенчатый вид вложенных блоков, номенклатуру для спецификации переменных и имен подпрограмм и т. п.

Современные структурные методологии классифицируются по трем следующим признакам:

по отношению к школам - Software Engineering (SE) и Information Engineering (IE);

по порядку построения модели - процедурно-ориентирован­ные и информационно-ориентированные;

по типу целевых систем - для систем реального времени (СРВ) и информационных систем (ИС).

SE является универсальной дисциплиной разработки програм­мных систем всех типов (ИС, СРВ). IE является дисциплиной пост­роения ИС вообще, а не только их программной компоненты и вклю­чает этапы более высокого уровня (например, стратегическое пла­нирование), однако на этапе анализа требований к программной части эти дисциплины аналогичны.

Традиционный процедурно-ориентированный подход регламен­тирует первичность проектирования функциональных компонент по отношению к проектированию структур данных: требования к данным раскрываются через функциональные требования. При инфор­мационно-ориентированном подходе вход и выход являются наибо­лее важными - структуры данных определяются первыми, а проце­дурные компоненты являются производными отданных.

Основная особенность систем реального времени заключается в том, что они контролируют и контролируются внешними события­ми; реагирование на эти события во времени - главная и первооче­редная функция таких систем. Принципиальные отличия информа­ционных систем от систем реального времени приведены в табл. 2;

Таблица 2

Средствами поддержки этих особенностей и различаются соответ­ствующие структурные методологии. Необходимо отметить, что для целей анализа требований к системам реального времени использу­ются специальные типы структурных диаграмм: диаграммы потоков управления, диаграммы переходов состояний, матрицы состояний/ событий, таблицы решений и др. Однако многие из них являются вариациями структурных диаграмм для анализа требований к ин­формационным системам. Более того, известные методологии ана­лиза и проектирования СРВ (в частности, методологии Хатли и Уор-да-Меллора) базируются на перечисленных методологиях анализа и проектирования ИС, расширяя их соответствующими диаграмм­ными техниками.

В табл. 3 приведена классификация наиболее часто используемых методологий в соответствии с вышеперечисленными признаками (данные по частоте использования получены на основе анализа ин­формации по 127 CASE-пакетам).

Как уже отмечалось, наиболее существенное различие между разновидностями структурного анализа заключается в методах и сред­ствах функционального моделирования. С этой точки зрения все раз­новидности структурного системного анализа могут быть разбиты на две группы: применяющие методы и технологию DFD (в различ­ных нотациях) и использующие SADT-методологию. По материа­лам наиболее авторитетной в рассматриваемой области исследовательской компании CASE Consulting Group соотношение примене­ния этих двух разновидностей структурного анализа на практике составляет 90% для DFD и 10% для SADT.

Таблица 3

Методологии

Частота использования

Школа

Порядок построения

Тип целевых систем

Йодан- Де Марко

процедурно-ориентированная

Гейн- Сарсон

процедурно-ориентированная

Константайн

процедурно-ориентированная

информационно-ориентированная

Варнье-Орр

информационно-ориентированная

информационно-ориентированная

процедурно-ориентированная

Предваряя сравнительный анализ DFD- и SADT-подходов , в ка­честве примера рассмотрим верхний уровень модели требований к системе автоматизации управления компанией, занимающейся рас­пределением товаров по заказам (рис. 21 и рис. 22 соответственно). Заказы подвергаются входному контролю и сортировке. Если заказ не отвечает номенклатуре товаров или оформлен неправильно, то он аннулируется с соответствующим уведомлением заказчика. Если заказ не аннулирован, то определяется, имеется ли на складе соот­ветствующий товар. В случае положительного ответа выписывается счет к оплате и предъявляется заказчику, при поступлении платежа товар отправляется заказчику. Если заказ не обеспечен складскими запасами, то отправляется заявка на товар производителю. После поступления требуемого товара на склад компании заказ становится обеспеченным и повторяет вышеописанный маршрут.


Сравнительный анализ этих двух разновидностей методологий проводится по следующим параметрам:

адекватность средств рассматриваемой проблеме;

согласованность с другими средствами структурного анализа;

интеграция с последующими этапами разработки (и прежде всего с этапом проектирования).

1) Адекватность. Выбор той или иной структурной методологии напрямую зависит от предметной области, для которой создается модель. В нашем случае методологии применяются к автоматизиро­ванным системам управления предприятием, а не к системам вооб­ще, как это предполагается в SADT. Для рассматриваемых задач DFD вне конкуренции.

Во-первых, SADT-диаграммы значительно менее выразительны и удобны для моделирования АСУП (сравните рис. 21 и рис. 22). Так, дуги в SADT жестко типизированы (вход, выход, управление, меха­низм). В то же время применительно к АСУП стирается смысловое различие между входами и выходами, с одной стороны, и управле­ниями и механизмами, с другой: входы, выходы, механизмы и уп­равления являются потоками данных и/или управления и правила­ми их трансформации. Анализ системы при помощи потоков данных и процессов, их преобразующих, является более прозрачным и не­двусмысленным.

ких систем (например, хранилища данных являются прообразами файлов или баз данных, внешние сущности отражают взаимодействие моделируемой систе­мы с внешним миром).

Во-вторых, в SADT вообще отсутствуют выразительные средства для моделирования особенностей АСУП. DFD с самого начала со­здавались как средство проектирования информационных систем, являющихся ядром АСУП, и имеют более богатый набор элемен­тов, адекватно отражающих специфику та третьих, наличие мини-спецификаций DFD-процессов ниж­него уровня позволяет преодолеть логическую незавершенность SADT (а именно обрыв модели на некотором достаточно низком уровне, когда дальнейшая ее детализация становится бессмысленной) и построить полную функциональную спецификацию разрабатывае­мой системы.

2) Согласованность. Главным достоинством любых моделей явля­ется возможность их интеграции с моделями других типов. В данном случае речь идет о согласованности функциональных моделей со средствами информационного и событийного (временного) моде­лирования. Согласование SADT-модели с ERD и/или STD практи­чески невозможно или носит тривиальный характер. В свою очередь, DFD, ERD и STD взаимно дополняют друг друга и по сути являют­ся согласованными представлениями различных аспектов одной и той же модели (см. рис. 20). В табл. 4 отражена возможность такой интеграции для DFD- и SADT-моделей.

Таблица 4

Название

Структурные карты

Отметим, что интеграция DFD-STD осуществляется за счет рас­ширения классической DFD специальными средствами проектиро­вания систем реального времени (управляющими процессами, по­токами, хранилищами данных), и STD является детализацией уп­равляющего процесса, согласованной по управляющим потокам и хранилищам. Интеграция DFD-ERD осуществляется с использова­нием отсутствующего в SADT объекта - хранилища данных, струк­тура которого описывается с помощью ERD и согласуется по соот­ветствующим потокам и другим хранилищам на DFD.

3) Интеграция с последующими этапами. Важная характеристика методологии - ее совместимость с последующими этапами приме­нения результатов анализа (и прежде всего с этапом проектирова­ния, непосредственно следующим за анализом и опирающимся на его результаты). DFD могут быть легко преобразованы в модели про­ектирования (структурные карты) - это близкие модели. Более того, известен ряд алгоритмов автоматического преобразования иерархии DFD в структурные карты различных видов, что обеспечивает логич­ный и безболезненный переход от этапа анализа требований к проек­тированию системы. С другой стороны, неизвестны формальные ме­тоды преобразования SADT-диаграмм в проектные решения АСУП.

Тем не менее необходимо отметить, что рассмотренные разно­видности структурного анализа по сути - два приблизительно оди­наковых по мощности языка для передачи понимания. И одним из основных критериев выбора является следующий: насколько хоро­шо каждым из этих языков владеет консультант или аналитик, на­сколько грамотно он может на этом языке выражать свои мысли.

Из рабочей учебной программы:

Тема 2. Стандарты и нормативные руководства по системной и программной инженерии.

Стандарт ISO/IEC 15288 «Системная инженерия - процессы жизненного цикла систем".

ГОСТ 34: Комплекс стандартов на автоматизированные системы.

Ключевые идеи системной инженерии: системный подход, жизненный цикл системы, инжиниринг требований, архитектурный дизайн, процессный подход, проектный подход.

2.1. Стандарт ISO 15288 «Системная инженерия - процессы жизненного цикла систем".

2.2. Жизненный цикл системы.

2.3. Представления жизненного цикла системы.

2.4. Жизненный цикл информационной системы

2.5. Модели жизненного цикла

2.6. Выбор модели жизненного цикла

2.1. Стандарт iso 15288 «системная инженерия - процессы жизненного цикла систем".

Системная инженерия применяется для решения проблем, связанных с ростом сложности рукотворных систем. Стандарт ISO 15288, описывающий методы системной инженерии, предписывает иметь описание жизненного цикла системы и его практик. Такое описание требуется для успешного продвижения системы по жизненному циклу. Но стандарт не указывает на методы, с помощью которых требуется создавать подобное описание.

Задачи стандарта:

    Дать возможность организациям (внешним и внутренним контракторам) договориться о совмещении замыслов, процессов проектирования, создания, эксплуатации и вывода из эксплуатации самых разных рукотворных систем – от зубочисток до атомных станций, от систем стандартизации до корпораций

    Внедрить в практику организации ряд ключевых идей системной инженерии:

    • системного подхода

      жизненного цикла

      инжиниринга требований

      архитектурного дизайна

      процессного подхода

      проектного подхода

      культуры контрактации

Ис т ория создания

    Совместная разработка ISOиIEC, активное участиеINCOSE

    Начало работ в 1996, версии в 2002, 2005 (ГОСТ Р ИСО/МЭК 15288-2005), 2008

    Призван гармонизировать так называемое «болото стандартов» системной инженерии (многочисленные стандарты, принятые различными военными ведомствами, государствами, отраслевыми организациями стандартизации)

К разработке стандарта были привлечены специалисты различных областей: системной инженерии, программирования, управления качеством, человеческими ресурсами, безопасностью и пр. Был учтен практический опыт создания систем в правительственных, коммерческих, военных и академических организациях. Стандарт применим для широкого класса систем, но его основное предназначение - поддержка создания компьютеризированных систем.

2.2. Жизненный цикл системы

Аббревиатура русск: ЖЦ

Аббревиатура англ: LC (Life Cycle )

Русский: «жизненный цикл» . Английское life cycle в технике ранее означало и переводилось как «срок службы», и иногда даже «срок службы до первого капитального ремонта». «Жизненный цикл» -- это относительно новый перевод. Иногда «цикл» переводят как «период», но такой перевод не устоялся (хотя он и точнее в данном случае: «период жизни» системы). Слово «цикл» не должно смущать – ничего циклического в жизненном цикле нет. Слово «цикл» имеет смысл «типичности», говоря о том, что то же самое происходит и с другими системами.

Формально: жизненный цикл – это смена состояний системы (эволюция системы) в период времени от замысла до прекращения её существования.

Система и жизненный цикл -- близнецы-братья. Мы говорим система -- подразумеваем жизненный цикл, мы говорим жизненный цикл -- подразумеваем система.

Определения.

    Определение стандарта ISO/IEC 15288:2008 (Определение: life cycle -- evolution of a system, product, service, project or other human-made entity from conception through retirement (ISO 15288, 4.11):

жизненный цикл (ЖЦ) – это эволюция системы, продукции, услуги, проекта или иного рукотворного объекта от замысла до прекращения использования.

    Определение стандарта ISO 15704 (Industrial automation systems - Requirements for enterprise-reference architectures and methodologies Системы промышленной автоматизации. Требования к архитектуре эталонных предприятий и методологии. Описывает эталонную архитектуру предприятия и средства реализации проектов в рамках полнрго жизненного цикла предприятия):

жизненный цикл (ЖЦ) – это конечный набор основных фаз и шагов, которые система проходит на протяжении всей истории существования.

Каждая система, вне зависимости от ее вида и масштаба, проходит весь свой жизненный цикл согласно некоторому описанию. Продвижение системы по частям этого описания и есть жизненный цикл системы. Описание жизненного цикла, таким образом, - это концептуальная сегментация по стадиям , способствующим планированию, разворачиванию, эксплуатации и поддержке целевой системы.

Стадии (табл. 2.1) представляют наиболее крупные периоды жизненного цикла, ассоциируемые с системой, и соотносятся с состояниями описания системы или реализацией системы как набора продуктов или услуг. Стадии описывают основные контрольные точки продвижения и успехов системы по ходу жизненного цикла. Такие сегменты дают упорядоченное продвижение системы через установленные пересмотры выделения ресурсов, что снижает риски и обеспечивает удовлетворительное продвижение. Основной причиной применения описаний жизненного цикла является потребность в принятии решений по определенным критериям до продвижения системы на следующую стадию.

Таблица 2.1

Стадии создания систем (ISO/IEC 15288)

п./п

Стадия

Описание

Формирование концепции

Анализ потребностей, выбор концепции и проектных решений

Разработка

Проектирование системы

Реализация

Изготовление системы

Эксплуатация

Ввод в эксплуатацию и использование системы

Поддержка

Обеспечение функционирования системы

Снятие с эксплуатации

Прекращение использования, демонтаж, архивирование системы