Тугоплавкий металл рений. Рений - элемент периодической системы, представляет собой серый металл. Ход реализации проекта

На планете существует большое количество разнообразных металлов, различающихся редкостью и сложностью добычи. Специалисты данной области делят их на две группы: природные и искусственно получаемые в лабораторных условиях. Стоимость некоторых представителей второй группы сильно отличается от стоимости природных металлов, присутствующих на мировом рынке, по причине длительного и трудоемкого процесса их изготовления.
В данном рейтинге представлено 13 самых дорогих металлов в мире.

13-место: Индий – ценный серебристо-белый металл из группы легких металлов, обладающий сильным блеском. Был открыт в 1863 году в Германии в химической лаборатории ученых Фердинанда Рейха и Теодора Рихтера, которые изучали добытые в горах Саксонии цинковые минералы. Он мягкий, легкоплавкий и ковкий, его без труда можно порезать обычным ножом. Самостоятельных месторождений индий не образует и входит в состав руд цинка, свинца, меди и олова. Ежегодно производится несколько сотен тонн данного металла. Благодаря своим уникальным свойствам он нашел широкое применение в микроэлектронике, полупроводниковой технике, машиностроении. Его используют для изготовления зеркал, фотоэлементов, зубных цементов, в качестве уплотнителя и даже в космических технологиях. Цена 1 грамма металла индия равняется 0,5-0,7 долларам.


12-е место: Серебро – известный с давних времен и один из популярнейших драгоценных металлов, встречающийся как в самородном состоянии, так и в виде соединений. Используется для покрытия зеркал, изготовления ювелирных украшений и монет. Он активно применяется в электронике, стоматологии, фотографии, обладает отличной электро- и теплопроводностью. Крупнейшие запасы данного металла сосредоточены в Польше, Китае, Мексике, Чили, Австралии, США и Канаде. Стоимость грамма серебра составляет 0,55-1 у.е.

11-е место: Рутений – яркий серебристый металл, характеризующийся тугоплавкостью, твердостью и хрупкостью одновременно, самый редкий из платиновой группы. Был открыт в 1844 году профессором Карлом Клаусом, занимавшимся исследованиями в Казанском университете. Характеристики рутения делают его востребованным материалом в ювелирном деле, химической и электронной промышленности. Его используют для изготовления лабораторной посуды, контактов, электродов, проводов. В Японии и Западной Европе большое количество рутения идет на производство печатных схем и резисторов, а также для получения хлора и разнообразных щелочей. Данный металл часто используется как катализатор для множества химических реакций. Его производство полностью сосредоточено в ЮАР. Стоимость одного грамма рутения составляет 1,5-2 доллара.

10-е место: Скандий – легкий и высокопрочный металл серебристого цвета с желтым отливом. Впервые элемент был обнаружен в 1879 году шведским химиком Ларсом Нильсоном, который назвал его в честь Скандинавии. Скандий активно применяется в мире высоких и инновационных технологий. Его используют при конструировании роботов, ракет, самолетов, спутников и лазерной техники. Также сплавы данного металла служат в спортивной сфере – для изготовления высококлассного инвентаря, такого как клюшки для гольфа и высокопрочные рамы для . Самые крупные месторождения богатых скандием минералов находятся в Норвегии и на Мадагаскаре. Стоимость одного грамма данного металла равняется 3-4 долларам США.

9-е место: Рений – серебристо-белый металл, относящийся к самым востребованным, труднодоступным и редким элементам в мире. Он очень плотный и имеет третью самую высокую температуру плавления среди всех своих сородичей. Обнаруженный в 1925 году металл используется в электронной и химической промышленности. Высокая плотность позволяет изготовлять из него лопатки турбин, сопла для реактивных двигателей и т.д. Цена на грамм рения колеблется от 2,4 до 5 условных единиц за грамм.

8-е место: Осмий – голубовато-серебристый металл, характеризующийся высокой плотностью и хрупкостью. В чистом виде в недрах его не существует, встречается только в связках с другим металлом из платиновой группы – иридием. Был открыт в 1803 году двумя британскими химиками Смитсоном Теннантом и Уильямом Волластоном. Свое название металл получил от греческого слова osme, что означает “запах”. Осмию действительно присущ довольно резкий и неприятный запах, напоминающий смесь чеснока и хлорки. Добывают данный металл на Урале, в Сибири, Южной Африке, Канаде, США и Колумбии. Используется в основном в химической промышленности в качестве катализатора и в фармакологии. Цена одного грамма осмия на мировом рынке составляет 12-15 долларов.

7-е место: Иридий – тяжелый, твердый и одновременно хрупкий металл серебристо-белого цвета. Мир впервые узнал о нем в 1803 году благодаря британскому химику С. Теннанту, который также открыл вышеупомянутый элемент. Самостоятельно иридий практически нигде не применяется и чаще всего используется для создания сплавов. Он обладает высокой температурой плавления, плотный и выступает в качестве наиболее коррозиестойкого металла. Ювелиры добавляют его к платине, поскольку он делает ее втрое тверже, а украшения из такого сплава практически не изнашиваются и очень красиво выглядят. Также он востребован при изготовлении хирургических инструментов, электроконтактов, точных лабораторных весов. Из него делают кончики для дорогих авторучек. Иридий применяется в аэрокосмической технике, биомедицине, стоматологии, химической промышленности. В течение года мировая металлургия расходует приблизительно одну тонну данного металла. Основное месторождение иридия находится в ЮАР. Его стоимость равняется 16-18 долларам за 1 грамм.

6-е место: Палладий – легкий, гибкий серебристо-белый металл из платиновой группы. Он очень пластичный, легкоплавкий, хорошо полируется, не тускнеет и довольно стоек к коррозии. Был открыт в 1803 году британским химиком Уильямом Волластоном, отделившим незнакомый металл от платиновой руды, которая прибыла из Южной Америки. Сегодня палладий приобретает все большую популярность среди ювелиров, поскольку невысокая цена, доступность и легковесность позволяют дизайнерам создавать из него самые смелые ювелирные творения, относящиеся к различным ценовым категориям и стилям. Платиновый металл широко используется в очистительных устройствах и для антикоррозийных покрытий. Наибольшее количество данного элемента на мировые рынки поступает из России, но крупные месторождения также есть в ЮАР. Стоимость палладия составляет 25-30 у.е. за один грамм.

5-е место: Родий – твердый благородный металл из платиновой группы серебристого цвета, обладающий сильными отражающими свойствами. Он очень твердый, устойчив к воздействию высоких температур и окислению. Был открыт в 1803 году в Англии химиком Уильямом Волластоном в процессе работы с самородной платиной. Родий считается редким элементом – ежегодно добывается около 30 тонн данного металла. Самые крупные месторождения находятся в России, ЮАР, Колумбии и Канаде. Примерно 80 % родия служит катализатором в автомобильной и химической промышленности. Из него изготовляют зеркала и фары для автомобилей, а в ювелирном деле он применяется в ходе конечной обработки изделий. Главное достоинство родия – участие в производстве ядерных реакторов. Стоимость ценного платинового металла колеблется в пределах 30-45 долларов за 1 грамм.

4-е место: Золото – главный драгоценный металл, который в природе встречается исключительно в чистом виде. Оно очень прочно, однородно, устойчиво к коррозии и считается самым ковким. Из-за своей долговечности и пластичности уже много лет золото носит звание самого популярного благородного металла. Широко используется в ювелирной, электронной промышленности, стоматологии. Крупнейшие страны-золотодобытчики – США, Китай, ЮАР, Австралия. Стоимость одного грамма золота на мировом рынке составляет 35-45 у.е.

3-е место: Платина – благородный металл серебристо-белого цвета с особенным блеском, встречающийся в природе только как естественный сплав с другими металлами: благородными и неблагородными. Она приобрела большую популярность благодаря присущей ей пластичности, плотности и отличному виду. Получение данного металла осуществляется в результате сложных химических процессов. Кроме производства ювелирных изделий и монет, платина широко используется в медицинской и электронной промышленности, в аэронавтике, производстве оружия. Крупнейшие страны-добытчики платины - ЮАР, Россия, США, Зимбабве, Канада. Цена одного грамма данного металла колеблется в пределах 40-50 долларов.

2-е место: Осмий-187 – редкий изотоп, процесс добычи которого отличается особой сложностью и занимает около девяти месяцев. Он представляет собой черный мелкокристаллический порошок с фиолетовым оттенком, носящий звание самого плотного вещества на планете. При этом изотоп Осмий-187 очень хрупок, его можно растолочь в обычной ступе на мелкие частички. Он имеет важное научно-исследовательское значение, его используют как катализатор химических реакций, для изготовления измерительных приборов высокой точности и в медицинской отрасли. Казахстан - первое и единственное государство, продающее Осмий-187 на мировом рынке. Рыночная стоимость уникального металла составляет 10 тысяч у.е. за 1 грамм, а в книге рекордов Гиннесса он оценивается в 200 тысяч американских долларов.

1-е место: Калифорний-252 – один из изотопов калифорния, самый дорогой металл в мире, стоимость которого достигает 10 миллионов долларов США за 1 грамм. Его баснословная цена вполне оправдана – ежегодно производится всего 20-40 микрограммов данного элемента, а общий мировой запас составляет не более 8 граммов. Создают калифорний-252 в лабораторных условиях с помощью двух ядерных реакторов, которые находятся в США и России. Впервые данный металл был получен в Калифорнийском Университете в Беркли в 1950 году. Уникальность калифорния кроется не только в его стоимости, но и в его особых свойствах – энергия, вырабатываемая одним граммом изотопа, равняется энергии среднего атомного реактора. Применение самого дорогого металла в мире распространяется на область медицины и научные исследования ядерной физики. Калифорний-252 – мощный источник нейтронов, что позволяет использовать его для обработки злокачественных опухолей, где другая лучевая терапия бездейственна. Уникальный металл позволяет просвечивать части реакторов, детали самолетов, и обнаруживать повреждения, которые обычно тщательно скрываются от рентгеновских лучей. С его помощью удается находить запасы золота, серебра и месторождения нефти в недрах земли.

На фото - калифорний рядом с гвоздем

Рений считается одним из самых тяжёлых металлов, он практически в 3 раза тяжелее железа. Ему характерна это необычайная тугоплавкость. Температура плавления составляет 3180 градусов. А что касается температуры кипения, она настолько высока, что учёными до сих пор не установлены точные данные. Известно лишь, что она около 6000 °С.

Одним из важнейших свойств этого металла, является высокое электросопротивление.

Если оценивать все виды металлов по их антикоррозийным свойствам, то рений будет находиться на одном из самых почётных мест.

Применение рения в современной технике многогранно. Особенно в создании различных кислотоупорных и жиропрочных сплавов. Техника нашего столетия предъявляет всё более жёсткие требования к конструкционным материалам. Жаропрочные сплавы рения с танталом и вольфрамом уже успели завоевать признание многих конструкторов, так как, мало какому металлу удаётся сохранять при огромных температурах свои механические свойства.

Также существует понятие, именуемое «рениевый эффект», заключающийся в весьма благотворном влиянии на свойства молибдена и вольфрама. Хотя природа данного эффекта ещё очень слабо изучена.

Применение рения

Такой обширный диапазон свойств рения объясняет многогранность сфер, в которых его применяют. Данный металл используется при изготовлении:

    Платинорениевых катализаторов;

    Фольфрам – рениевых термопар, устройства для измерения температуры;

    Сплавов с добавлением вольфрама и молибдена;

    Нити накала в масс - спектрометрах и в ионных манометрах

Кроме выше перечисленного, из этого металла изготавливают самоочищающиеся электрические контакты. Также рений используется при изготовлении камер сгорания, выхлопных сопел реактивных двигателей, лопаток турбин и т.д.

Сравнительно новая, но очень важная область применения рения – катализ. Металлический рений, а также его многочисленные сплавы и различного рода соединения, оказались превосходными катализаторами многих процессов. Самый хороший катализатор, это порошкообразный рений. По мнению учёных, в самом ближайшем будущем на катализационные нужды будет использоваться половина рения от добычи во всём мире.

Из вышесказанного абсолютно ясно, что «безработица» этому металлу никак не грозит. Приобрести магний , рений и любой интересующий металл в настоящее время не составляет проблемы. В любом браузере вбейте в поисковую строку «магний купить» и перед вами откроется огромное количество предложений. Цены на них конечно будут колебаться, но не на много. Так как они устанавливаются в прямом соответствии с установленными ценами на мировом рынке.

Рений - химический элемент с атомным номером 75 в Периодической системе химических элементов Д.И. Менделеева, обозначается символом Re (лат. Rhenium). При стандартных условиях представляет собой плотный серебристо-белый металл.
Рений - один из редчайших элементов земной коры. По геохимическим свойствам он схож со своими гораздо более распространёнными соседями по периодической системе - молибденом и вольфрамом. Поэтому в виде малых примесей он входит в минералы этих элементов. Основным источником рения служат молибденовые руды некоторых месторождений, где его извлекают как попутный компонент. Кларковое число рения - 10 -3 г/т.

Рений встречается в виде редкого минерала джезказганита (CuReS4), найденного вблизи казахстанского города Джезказган (современное название - Жезказган). Кроме того, в качестве примеси рений входит в колумбит, колчедан, а также в циркон и минералы редкоземельных элементов.
О чрезвычайной рассеянности рения говорит тот факт, что в мире известно только одно экономически выгодное месторождение рения. Оно находится в России: запасы в нём составляют около 10 -15 тонн. Это месторождение было открыто в 1992 году на вулкане Кудрявый, остров Итуруп, Курильские острова. Месторождение в кальдере на вершине вулкана представлено фумарольным полем размерами 50-20 м с постоянно действующими источниками высокотемпературных глубинных флюидов - фумаролами. Это означает, что месторождение активно формируется по сегодняшний день. Рений находится здесь в форме минерала рениит ReS2, со структурой, аналогичной молибдениту.
Ещё один минерал, содержащий рений, - таркианит (Cu,Fe)(Re,Mo)4S8 с 53,61 мас. % рения - был обнаружен в концентрате из месторождения Хитура в Финляндии.
По природным запасам рения на первом месте в мире Чили, на втором месте США, а на третьем Россия. Общие мировые запасы рения составляют около 13 000 тонн, в том числе 3500 тонн в молибденовом сырье и 9500 т - в медном. При перспективном уровне потребления рения в количестве 40-50 тонн в год человечеству этого металла может хватить ещё на 250-300 лет. Приведённое число носит оценочный характер без учёта степени повторного использования металла. Запасы рения в виде рениита на острове Итуруп оцениваются в 10-15 тонн, в виде вулканических газов - до 20 тонн в год.
В практическом отношении важнейшими сырьевыми источниками получения первичного рения в промышленном масштабе являются молибденовые и медные сульфидные концентраты. В общем балансе производства рения в мире на них приходится более 80%. Остальное в основном приходится на вторичное сырьё.

Запасы на месторождениях рения в 2012 году, тонн *

Чили 1,300.0
США 390.0
Россия 310.0
Казахстан 190.0
Армения 95.0
Прочие страны 215.0
Всего запасы 2,500.0

* данные US Geological Survey

Коммерческий рений извлекается из молибденового газа в обжиговой печи, полученного из руд сульфида меди. Некоторые руды молибдена содержат от 0,001% до 0,2% рения. Оксид рения (VII) и рениевая кислота с легкостью распадаются в воде; они выщелачиваются из газовой пыли, извлекаются осаждением с калием или нашатырным спиртом как соли рения, и очищаются перекристаллизацией. Полное мировое первичное производство рения составляет 40-50 тонн/год; главные производители находятся в Чили, США, Перу и Казахстане. Переработка использованных платино-рениевых катализаторов и специальных сплавов позволяет получать еще около 10 тонн металла ежегодно.
Мировая добыча рения в 2012 году, по предварительным данным Геологической службы США, повысилась по сравнению с 2011 годом на 0,7% - до 54,9 т и достигла уровня 2008 года.
В 2012 году мировым лидером по добыче рения оставалась Чили, второе место сохранилось за США. В значительной степени свои позиции в последние годы потерял Казахстан, где в 2009-2010 годах добыча рения упала более чем вдвое по сравнению с предыдущими годами.
В США в 2012 году выпуск рения повысился благодаря росту попутного производства молибденовых концентратов в стране. В последние годы четыре лидирующих медно-молибденовых рудника повысили уровни попутного извлечения молибдена, а один менее крупный продуцент начал осуществлять такое производство. В 2012 году ренийсодержащие руды в США добывали пять компаний (три - в шт. Аризона и по одной - в штатах Монтана и Юта). В последние годы несколько компаний в стране в малых масштабах осуществляли вторичную переработку молибденорениевого и вольфраморениево-го лома с целью извлечения рения. В число выпускаемых в США ренийсодержащих продуктов входят перренат аммония, металлический рениевый порошок и перрениевая кислота.
США, несмотря на относительно крупные масштабы внутреннего производства рения, попрежнему заметно зависят от импортных поставок данного металла и его соединений.

* данные US Geological Survey

Рений применяется как добавка к термостойким суперсплавам, которые используются, чтобы делать части реактивного двигателя. На это расходуется примерно 70% мирового рениевого производства. Другое основное применение рения находится в платино-рениевых катализаторах, которые прежде всего используются в создании не содержащего свинца, высокооктанового бензина.
Рений добавляется в основанные на никеле суперсплавы для улучшения их характеристик. Сплавы обычно содержат 3% или 6% рения. Сплавы второго поколения содержат 3%; эти сплавы использовались в двигателях F-16 и F-15, в то время как более новые одно-кристаллические сплавы третьего поколения содержат 6% рения; они используются в F-22 и двигателях F-35. Рений также используется в суперсплавах, таких как CMSX-4 (2-ого поколения) и CMSX-10 (3-его поколения), которые используются в промышленных газотурбинных двигателях как GE 7FA. Рений может стать причиной микроструктурной непостоянности суперсплавов, формируя нежелательные TCP (топологически близко упакованные) фазы. В сплавах 4-ого и 5-ого поколений рутений используется, чтобы избежать этого эффекта. Среди других можно отметить новые суперсплавы - EPM-102 (с 3% Ru) и TM 162 (с 6% Ru), оба содержащие 6%-ый рений, так же как и сплавы TM 138 и TM 174.
В 2012 году в США 70% рения было использовано для производства суперсплавов компаниями General Electric, Rolls-Royce plc и Pratt & Whitney, в то время как использование рения в катализаторах составило только 20%, а оставшиеся области применения - 10%. Возрастающий спрос на военные реактивные двигатели и постоянную поставку стал причиной использования суперсплавов с более низким содержанием рения. Например, в более новых турбинах высокого давления (HPT) CFM56, будет использоваться сплав Rene N515 с содержанием рения 1,5% вместо Рене N5 с 3% рения.
Рений улучшает свойства вольфрама. Рений-вольфрамовые сплавы более податливы при низкой температуре, в результате они более легко обрабатываются. Также улучшается стабильность при высокой температуре. Увеличение эффекта происходит с ростом концентрации рения, поэтому вольфрамовые сплавы производятся с максимальным содержанием рения до 27%, которое является пределом растворимости. Одна из областей применения рений-вольфрамовых сплавов - источники рентгена. Высокая точка плавления обоих составов, вместе с высокой атомной массой, делает их устойчивыми против длительного электронного воздействия. Рений-вольфрамовые сплавы также применяются как термопары, чтобы измерить температуры до 2200°C.
Стабильность при высокой температуре, низкое давление пара, хорошая износостойкость и способность противостоять коррозии - эти свойства рения полезны в самоочищающихся электрических контактах. В частности разгрузка, происходящая во время переключения, окисляет контакты. Однако, оксид рения Re2O7 имеет плохую стабильность (сублимируется при температуре ~360 °C) и поэтому удаляется во время разгрузки.
Рений имеет высокую точку плавления и низкое давление пара, подобное танталу и вольфраму, однако, рений не формирует изменчивых оксидов. Поэтому, рениевые нити показывают более высокую стабильность, если нитью управляют не в вакууме, а в содержащей кислород атмосфере. Эти нити широко используются в массовых спектрометрах, измерителях ионов и в лампах фотовспышки в фотографии.
Рений в форме сплава с платиной используется в качестве катализатора для преобразования нефтяного керосина с низким октановым числом в динамичные жидкие продукты. Во всем мире 30% катализаторов, используемых для этого процесса, содержат рений. Метатезис олефина - еще одна реакция, для которой рений используется в качестве катализатора. Обычно Re2O7 на глиноземе используется для этого процесса. Рениевые катализаторы очень стойкие к химическому отравлению азотом, серой и фосфором, и так используются в определенных видах гидрогенизационных реакций.
Изотопы 188Re и 186Re - радиоактивны и используются для лечения рака печени. Они обладают похожей глубиной проникновения в ткани (5 мм для 186Re и 11 мм для 188Re), но 186Re имеет преимущество более большой период жизни (90 часов против 17 часов).
В начале 2000-ых на рынке рения отмечался избыток металла, так как в период с 2002 по 2005 год производство продолжало расти, несмотря на снижение спроса со стороны производителей авиационных двигателей. С 2007 по 2009 год рениевое производство не успевало за рынком, так как потребление металла в авиакосмической промышленности резко увеличилось. В результате излишки, которые накапливались в начале 2000-ых, быстро были использованы. В период с 2009 по 2012 год поставки были практически в балансе с потреблением. По мнению Roskill, обладая лучшим пониманием динамики рынка производители должны более четко определять будущие объемы производства для соответствия спросу.
Потребление рения в мире в 2012 году составило 59,1 тонны, из них 44,0 тонны пришлось на США, а 15,1 тонны на прочие страны.
Крупными сферами использования рения в США являются производство катализаторов, применяемых при риформинге нефти (20% суммарного потребления), и специальных сплавов для изготовления компонентов турбинных двигателей, работающих в условиях высоких температур (70%). Биметаллические платинорениевые катализаторы используются в нефтеперерабатывающей промышленности для производства высокооктановых углеводородов, которые применяются при получении бессвинцового бензина. Рений улучшает высокотемпературные (1000°С) характеристики ряда спецсплавов на базе никеля. Рениевые сплавы используются в производстве тиглей, электрических контактов, электромагнитов, электронных ламп и мишеней, нагревательных элементов, ионизационных манометров, масс-спектрографов, металлических покрытий, полупроводников, регуляторов температуры, термопар, электровакуумных приборов и прочей продукции.

Производство и потребление рения в мире, тонн*

год 2008 2009 2010 2011 2012
Всего производство 55.8 48.0 53.0 54.0 59.0
США 51.6 37.1 39.7 42.1 44.0
Прочие страны 10.4 16.4 13.5 14.1 15.1
Всего потребление 62.0 53.5 53.2 56.2 59.1
Баланс рынка -6.3 -5.5 -0.2 -2.2 -0.1

* данные Roskill

Цены за металл быстро выросли в 2006-2008 годах от примерно 1200 долл./кг в 2005 году до более чем 10000 долл./кг в 2008 году. Причиной этому стал резкий рост спроса на рений в США и в мире в целом со стороны сектора космических суперсплавов и, как следствие, возникший дефицит металла на рынке. Однако в течение двух следующих лет цены на рений снизились более чем вдвое, в основном, из-за воздействия мирового экономического кризиса, а также увеличения поставок.
В 2011 году средняя цена на металлический рений составила 4670 долл./кг, что чуть ниже показателя 2010 года. К началу 2013 года рениевый рынок уже три года был относительно стабилен, после значительной изменчивости в 2006-2009 годах. Начиная с конца 2009 наличная цена осталась ниже 5000 долл./кг и оставалась между 3500 долл./кг и 3700 долл./кг в январе 2013 года.

Несмотря на некоторые опасения промышленников относительно будущих поставок, Roskill полагает, что первичные и вторичные ресурсы достаточны, чтобы позволить производителям и потенциальным производителям идти в ногу со спросом. Это должно означать продолжение стабильности на рениевом рынке и безопасность поставки для потребителей по приемлемым ценам.
Однако, по мнению консалтинговой фирмы Oakdene Hollins на рынке рения, наряду с теллуром, редкоземельными металлами, индием и скандием, ожидается сильный рост спроса, в связи с чем вероятный баланс мирового рынка рения будет выглядеть отрицательным уже в ближайшем будущем, тем более, что перспективы увеличения поставок первичного металла, составляющих сейчас примерно 55 тонн в год, выглядят весьма ограниченными.

Рений (от латинского Rhenium) в периодической системе Дмитрия Ивановича Менделеева обозначается символом Re. Рений - химический элемент побочной подгруппы седьмой группы, шестого периода; его атомный номером 75, а атомный вес 186,21. В свободном состоянии семьдесят пятый элемент - тяжелый (только осмий, иридий и платина по плотности немного превосходят рений), прочный, тугоплавкий светло-серый металл, довольно пластичный (его можно прокатывать, ковать, вытягивать в проволоку), по внешнему виду напоминающий платину. Естественно, что пластичность рения, как и большинства других металлов, зависит от чистоты.

Известно тридцать четыре изотопа рения от 160Re до 193Re. Природный рений состоит из двух изотопов - 185Re (37,40 %) и 187Re (62,60 %). Единственный стабильный изотоп - 185Re, изотоп 187Re радиоактивен (испытывает β-распад), но период полураспада огромен - 43,5 миллиарда лет. Испуская β-лучи, 187Re превращается в осмий.

История открытия семьдесят пятого элемента весьма протяженная по времени: еще в 1871 году Д. И. Менделеев говорил, что в природе «обязаны» существовать два химических аналога марганца, которые в периодической системе должны располагаться под ним, занимая пустовавшие в то время клетки № 43 и 75. Менделеев условно назвал эти элементы эка-марганцем и дви-марганцем. Многие пытались заполнить пустующие клетки, однако ни к чему, кроме отработанных вариантов, это не привело. Правда, для химиков XX века круг поисков значительно сузился благодаря стараниям многих ученых со всего мира.

Результата добились немецкие химики - супруги Вальтер и Ида Ноддак, занявшиеся данной проблемой в 1922 году. Проделав колоссальную работу по рентгеноспектральному анализу более чем полутора тысяч минералов, Вальтер и Ида в 1925 году заявили об открытии недостающих элементов, сорок третья позиция в периодической системе, по их мнению, должна была заняться «мазурием», а семьдесят пятая - «рением». Проверить достоверность научного открытия вызвался известный немецкий химик Вильгельм Прандтль. Жаркая полемика продолжалась долго, результатом которой была патовая ситуация - убедительных доказательств в отношении мазурия супруги Ноддак представить не смогли, зато рений в 1926 году был уже выделен в количестве двух миллиграмм! Кроме того, открытие нового элемента подтверждали независимые работы других ученых, которые всего на несколько месяцев позже супругов Ноддак начали свои поиски семьдесят пятого элемента. Однако новому семьдесят пятому элементу было суждено получить имя от своих первооткрывателей, которые назвали его в честь Рейнской провинции Германии - родины Иды Ноддак.

Большая часть получаемого рения расходуется на создание сплавов, обладающих особыми свойствами. Так, рений и его сплавы с молибденом и вольфрамом применяются в производстве электрических ламп и электровакуумных приборов - ведь они имеют больший срок службы и являются более прочными, чем вольфрам. Из сплавов вольфрама с семьдесят пятым элементом изготовляют термопары, которые можно использовать в интервале температур от 0 до 2 500 °C. Жаропрочные и тугоплавкие сплавы рения с вольфрамом, танталом, молибденом применяются при изготовлении некоторых ответственных деталей. Семьдесят пятый элемент используется при изготовлении нитей накала в масс-спектрометрах и ионных манометрах. Рений и некоторые его соединения служат катализаторами при окислении аммиака и метана, гидрировании этилена. Кроме того, из рения делают самоочищающиеся электрические контакты, а также этот редкий и весьма ценный элемент используется при изготовлении реактивных двигателей.

Биологические свойства

О биологических свойствах семьдесят пятого элемента известно очень мало. Возможно, данный факт связан с поздним открытием этого металла, и в дальнейшем человечество сможет сказать нечто более определенное по поводу биологической роли рения в живых организмах. Сейчас утверждается, что участие рения в биохимических процессах маловероятно.

Весьма слабо изучена токсичность рения и его соединений, известно лишь, что растворимые соединения рения мало токсичны. Пыль металлического рения не вызывает интоксикации, а при введении через органы дыхания приводит к слабо текущему фиброзу. Семиокись рения Re2O7 более токсична, чем металлическая пыль рения. При концентрации ее в воздухе 20 мг/м3 однократное действие вызывает острый процесс в легких; при концентрации 6 мг/м3 (при постоянном действии) появляется слабо выраженная интоксикация. Во всяком случае, при работе с соединениями рения следует быть осторожным. Экспериментальному токсикологическому изучению подвергались лишь перренаты калия и натрия и некоторые хлористые соединения рения. При этом, введенный в организм рений спустя 1-1,5 часа обнаруживается в органах, накапливаясь (подобно элементам VII группы) в щитовидной железе. Тем не менее, рений быстро выводится из организма: через сутки выводится 9,2 % от всего поступившего, спустя 16 суток - 99 %. Перренат калия не оказал токсического действия при внутрибрюшном введении лабораторным белым мышам в количестве 0,05-0,3 мг. Внутрибрюшное введение NaReO4 в количестве 900-1000 мг/кг вызывало смерть лабораторных крыс. У собак при внутривенном введении 62-86 мг NaReO4 наблюдалось кратковременное повышение артериального давления. Определенно большей токсичностью обладают хлориды рения.

На фоне этих скудных исследований токсикологии рения и его соединений куда важнее выглядят другие научные изыскания, связанные с семьдесят пятым элементом. Речь идет о разработках новейших технологий получения различных медицинских изотопов. Ведь уже известно, что достижения в области ядерной медицины позволяют не только осуществлять уникальную диагностику, но и излечивать тяжелые заболевания.

В этой связи особого внимания заслуживает рений-188. Этот изотоп относится к числу так называемых «волшебных пуль». Препараты на его основе, позволяют осуществлять радионуклидную диагностику новообразований скелета, метастаз опухолей различной локализации в кости, воспалительных заболеваний опорно-двигательного аппарата. Этот радионуклид имеет очень хорошие характеристики для терапии: период полураспада семнадцать часов, β-излучение с пробегом в ткани около 0,5 см, а наличие γ-излучения с энергией 155 кэВ позволяет с использованием γ-камер осуществлять «слежение» за радиофармпрепаратом. Весьма существенно, что помимо терапевтического действия радиофармпрепараты с рением-188 значительно уменьшают болевые синдромы при метастазах в скелете. Более того, применение терапевтических препаратов на основе рения-188 позволяет препятствовать тромбообразованию. И что самое главное - рений-188 не имеет аналогов за рубежом, является научной разработкой российских ученых, а следовательно, он более доступен.

Препарат получают в Радиевом институте имени В. Г. Хлопина с использованием генератора, где в качестве исходного радиоизотопа применяется 188W с периодом полураспада 69 дней. Вольфрам-188 образуется при облучении нейтронами изотопа вольфрама-186. Работы по созданию централизованного генератора 188Re на основе центробежного экстрактора в Радиевом институте были начаты в 1999 г. совместно с НИКИМТ. Исследования, проведенные на высокоактивных растворах, показали хорошие перспективы создания экстракционного генератора 188Re: выход рения составляет более 85 %; радиохимическая чистота более 99 %.

Своим именем семьдесят пятый элемент обязан реке Рейн (стоит отметить, что ни одной другой реке нашей планеты химики и физики не оказали столь высокой чести) и Рейнской области - родине Иды Ноддак (Такке). Впрочем, здесь же сам рений впервые и увидел свет - промышленное производство нового металла развернулось в начале 30-х годов в Германии, где были найдены молибденовые руды с высоким содержанием рения - сто грамм на тонну. Что касается якобы открытого супругами Ноддак сорок третьего элемента - «мазурия», то, считается, что своё имя он получил в честь Мазурской области - родины Вальтера Ноддака (на самом деле, Ноддак родился в Берлине, учился и работал в Берлинском университете). Открытие «мазурия» не было подтверждено, а в последствии этот элемент был синтезирован искусственно и получил название «технеций».

Возможно выбор имен совпадение, однако некоторые историки химии считают, что оба названия содержат большую долю национализма: рейнская область и мазурские озера оказались во время первой мировой войны местами крупных удачных для германских войск сражений. Вполне вероятно, что несуществующий элемент был назван в честь победы немецких войск в 1914 году над русской армией генерала Самсонова у Мазурских болот.

Известно, что существует рений-осмиевый метод определения возраста минералов. С его помощью был определен возраст молибденитов из месторождений Норвегии и Чили. Оказалось, что норвежские молибдениты в большинстве случаев образовались примерно 700-900 миллионов лет назад. Молибдениты Чили (из месторождения Сан-Антонио) намного моложе: их возраст всего 25 миллионов лет.

Нам хорошо известны такие способы борьбы с коррозией, как хромирование, никелирование, цинкование, однако, вы наверняка не слышали о ренировании, ведь процесс этот сравнительно новый, однако весьма действенный - тончайшие рениевые покрытия по стойкости не знают себе равных. Они надежно защищают различные детали от действия кислот, щелочей, морской воды, сернистых соединений и многих других опасных для металла веществ. Цистерны и баки, изготовленные из ренированных стальных листов, применяют, например, для перевозки соляной кислоты.

Ренирование позволяет в несколько раз продлить срок службы вольфрамовых нитей в электролампах, электронных трубках, электровакуумных приборах. После откачки воздуха в полости электролампы неизбежно остаются следы кислорода и водяных паров; они же всегда присутствуют и в газонаполненных лампах. На вольфрам эти нежелательные примеси действуют разрушающе, но если покрыть нити рениевой «рубашкой», то водород и пары воды уже не в силах причинить вольфраму вред. При этом расход рения совсем невелик: из одного грамма можно получить сотни метров ренированной вольфрамовой нити.

Особый интерес металлургов и металловедов вызывает «рениевый эффект» - благотворное влияние рения на свойства вольфрама и молибдена (Re повышает одновременно и прочность, и пластичность Mo и W). Данное явление было открыто в Англии в 1955 году, тем не менее, природа «рениевого эффекта» еще недостаточно изучена. Предполагается, что в процессе производства в вольфрам и молибден иногда проникает «инфекция» углерода. Поскольку в твердом состоянии эти металлы совершенно не растворяют углерод, ему ничего не остается, как расположиться в виде тончайших карбидных пленок по границам кристаллов. Именно эти пленки и делают металл хрупким. У рения же с углеродом иные «взаимоотношения»: если его добавить к вольфраму или молибдену, то ему удается удалить углерод с пограничных участков и перевести в твердый раствор, где тот практически безвреден.

Нашей стране уже известны истории попыток «сравнительно честного» отъёма ценных ресурсов. Не обошли стороной и столь редкий элемент, как рений. В 1929 году крупная западная фирма обратилась к директору одного из металлургических заводов Сибири с выгодным, как казалось, предложением - продать ей отвалы пустой породы, скопившиеся около заводской территории. Заподозрив подвох, директор завода распорядился провести экспертизу якобы пустой породы. И действительно, оказалось, что отвалы содержат редчайший металл рений, открытый за несколько лет до описываемых событий. Поскольку мировое производство рения измерялось в то время буквально граммами, цена на него была поистине фантастической!

Другой пример попыток подобного «изъятия» происходит в наше время - в 1992 году сотрудники Института экспериментальной минералогии и Института геологии рудных месторождений, производя режимное наблюдение на вулканах Южнокурильской гряды и на вершине вулкана Кудрявый на острове Итуруп в местах выхода вулканического газа, обнаружили новый минерал - рениит. Напоминающий молибденит, сульфид рения содержит до 80 % редкого металла, а ведь это уже заявка на возможность промышленного использования рениита для получения рения! И хотя сульфида рения в самом вулкане накопилось немного (10-15 тонн), однако учеными подсчитано, что ежегодно с газами вулкан выбрасывает в атмосферу до 20 тонн рения, а уж как уловить ценный металл из этих газов наука знает давно. Не связано ли это с новой волной территориальных претензий Японии?

История

Открытие периодического закона позволило предположить существование элементов, ранее не обнаруженных, но которые просто «должны» были существовать и занимать отведенные им места в таблице. Некоторые из таких элементов даже были подробно описаны: «экабор» (скандий), «экаалюминий» (галлий) и «экасилиций» (германий). Что касается недостающих элементов VII группы - аналогов марганца, то их существование в 1871 году предположил сам автор периодической системы - Д.И. Менделеев. Дмитрий Иванович назвал отсутствующие элементы № 43 и № 75 подгруппы марганца «экамарганцем» и «двимарганцем» (от санскритских «эка» - один и «дви» - два). Сообщения об открытии этих элементов (уралий, люций, плюраний, ильмений, ниппоний, дэвий) стали появляться довольно скоро, однако ни одно не подтверждалось на деле. Единственным исключением можно назвать дэвий, открытый русским ученым С. Керном и названный в честь знаменитого английского химика Г. Дэви. Этот элемент давал реакцию, которую и в наше время используют в аналитической химии для определения рения. Однако сообщение С. Керна не приняли всерьез, потому что повторить его опыты не удалось…

Период неопределенности продолжался довольно долго, пока поиском марганцевых эквивалентов не занялись немецкие ученые-химики Вальтер Ноддак и Ида Такке, ставшая позже супругой Ноддака. Прекрасно зная законы периодической системы, немецкие химики удостоверились в том, что найти элемент под номером 75 будет нелегко, ведь в природе элементы с нечетными атомными номерами распространены всегда меньше, чем их соседи слева и справа. Так как элементы № 74 и № 76 (вольфрам и осмий) довольно редки, то, следовало предположить, что элемент № 75 распространен еще меньше. Зная, что содержание осмия в земной коре составляет величину порядка 10-6 %, Вальтер и Ида Ноддак предположили, что для элемента № 75 следовало ожидать величины еще меньшей, примерно 10-7 %.

Поиски столь редкого элемента начались с изучения платиновых руд, а также редкоземельных минералов - колумбита и гадолинита. Правда, от платиновых руд вскоре пришлось отказаться - слишком дорогой материал для изучения, однако работы это не убавило - более доступных руд для исследования хватало. Супруги Ноддак и их помощник Отто Берг работали, не покладая рук: изо дня в день им приходилось выделять из каждого нового элемента доступные для рентгеноскопического исследования препараты, что требовало многократного повторения однообразных и долгих операций - растворения, выпаривания, выщелачивания, перекристаллизации. Три года тяжелой кропотливой работы, более 1 600 проверенных образцов, и вот, наконец, в рентгеновском спектре одной из фракций колумбита были обнаружены пять новых линий, принадлежащих элементу № 75! Новый элемент получил имя «рений» - в честь реки Рейн и Рейнской провинции, родины Иды Ноддак. Об открытии «двимарганца» группа немецких ученых во главе с Идой и Вальтером Ноддак сообщила в Нюрнберге в собрании немецких химиков 5 сентября 1925 года, а уже в следующем году они выделили из минерала молибденита MoS2 первые два миллиграмма рения.

Несколько месяцев спустя вслед за открытием супругов Ноддак чешский химик И. Друце и англичанин Ф. Лоринг сообщили об открытии элемента № 75 в марганцевом минерале пиролюзите МnO2. Кроме того, чешские ученые Я. Гейровский и В. Долейжек установили наличие следов рения в неочищенных марганцевых препаратах с помощью изобретенного Я. Гейровским полярографа, позже Долейжек подтвердил наличие нового элемента рентгенографическими исследованиями.

Таким образом, рений стал последним элементом, обнаруженным в природных минералах - в дальнейшем пустые клетки периодической системы заполнялись искусственно полученными элементами (с помощью ядерных реакций).

Нахождение в природе

Рений - редчайший и весьма сильно рассеянный элемент, по современным оценкам (по версии академика А.П. Виноградова) его кларк (среднее содержание в природе) в земной коре равен 7 10–8 % (по массе), что еще меньше, чем предполагалось ранее (1 10–7 %). Кларк рения меньше, чем кларк любого металла из группы платиноидов или лантаноидов, считающихся одними из самых редких. На самом деле, если не принимать во внимание кларки инертных газов в земной коре, то можно назвать рений самым редким из элементов со стабильными изотопами. Чтобы понять насколько этот элемент редкий лучше всего сравнить его с другими металлами, например, золота в природе в 5 раз больше, серебра в 100 раз больше, чем рения; вольфрам в 1 000 раз распространеннее семьдесят пятого элемента, а марганец в 900 000 раз!

Рений (за редкими исключениями) не образует собственных минералов, а лишь сопутствует минералам различных элементов - от повсеместно распространенного пирита до редких платиновых руд. Следы его находят даже в бурых углях. Собственные минералы рения (к примеру, джезказганит, Pb4Re3Mo3S16) настолько редки, что представляют не промышленный, а скорее научный интерес. Джезказганит был обнаружен в джезказганских медных и медно-свинцово-цинковых рудах, разрабатываемых вблизи казахского города Джезказган (современное название - Жезказган). Минерал представляет собой тонкие прожилки (вкрапления в породу) длиной не больше 0,1 мм; исследования советских ученых установили, что джезказганит содержит сульфид рения, а также сульфиды молибдена и свинца.

Самым богатым промышленным рений содержащим минералом является молибденит MoS2, в котором находят до 1,88 % рения, это легко объясняется ярко выраженным геохимическим сходством рения и молибдена: оба металла проявляют одинаково высокое сродство к сере, высшие галогениды молибдена и рения обладают повышенной летучестью и близкой реакционной способностью. Кроме того, ионные радиусы четырехзарядных ионов Re4+ и Mo4+ практически одинаковы. Однако молибденит не единственный минерал, содержащий семьдесят пятый элемент - довольно велико содержание рения в минералах гранитных пегматитов (цирконе, альвите, колумбите, танталите, гадолините и других), в которых рений заключен в виде тонко рассеянных сульфидов. Этот металл есть в медистых песчаниках (группа месторождений Джезказганского региона в Казахстане), медно-молибденовых и полиметаллических рудах, в колчеданах, он обнаружен и в минералах платины и вольфрама. Отмечается накопление рения, наряду с другими тяжелыми металлами, в битуминозных остатках.

Относительно велико содержание рения в метеоритном железе - 0,01 г/т, что значительно превышает кларк рения в земной коре. Зато в минералах своего аналога - марганца, рений почти не содержится! Причиной такого отсутствия является, скорее всего, заметное различие в радиусах ионов Mn2+, Mn3+ и Re4+. Казалось бы - рений находят во многих рудных месторождениях - следовательно, не так уж и редок этот элемент, однако еще не известно ни одного месторождения, промышленную ценность которого определял бы только рений. Почти всегда рения в таких рудах очень мало - от миллиграммов до нескольких граммов на тонну. Его повсеместное присутствие объясняется миграцией в земной коре. В подземных водах содержатся вещества, имеющие воздействие на минералы содержащие рений. Под влиянием этих веществ заключенный в них рений окисляется до Re2O7 (высший окисел, который образует сильную одноосновную кислоту HReO4). Этот оксид в свою очередь реагирует с оксидами и карбонатами щелочных металлов, вследствие чего образуются водорастворимые соли - перренаты. Вот почему рений отсутствует в окисленных рудах цветных металлов и присутствует в водах шахт и карьеров, где добывают руды многих металлов. В воде артезианских скважин и естественных водоемов, расположенных близ ренийсодержащих рудных месторождений, тоже находят следы этого элемента.

По предположению академика А. Е. Ферсмана, для рения характерно «тяготение» к тем зонам земного шара, которые прилегают к его ядру. Поэтому в будущем возможно открытие богатейшего рениевого месторождения где-нибудь в недрах нашей Земли. Считается, что первое место по запасам рения занимают США (62 % мировых запасов), второе место принадлежит Казахстану.

Применение

Вплоть до начала семидесятых годов двадцатого века спрос на рений был ниже предложения. Цены на этот металл из года в год оставались на одном уровне, а государства, производящие семьдесят пятый элемент не видели смысла в повышении производительности и продолжали выплавку рения на старом уровне - тонна, две в год. Мировая рениевая промышленность находилась в относительном покое, до тех самых пор, пока не началось освоение новых катализаторов нефтеперерабатывающей промышленностью. Опытные образцы рениево-платиновых катализаторов позволили намного увеличить выход бензинов с высоким октановым числом. Дальнейшие же исследования показали, что использование этих катализаторов вместо устаревших платиновых позволяет на 40-45 % увеличить пропускную способность установок. К тому же срок службы новых катализаторов в среднем в четыре раза больше, чем старых. С тех пор примерно 65 % производимого в мире рения идет на получение платинорениевых катализаторов для нефтеперерабатывающей промышленности (получение бензина с высоким октановым числом). Такой бурный всплеск потребности и интерес к редкому металлу вызвал рост цен и спрос на него в разы. Поскольку платина и рений весьма дороги, эти катализаторы регулярно, через 3-5 лет, подлежат восстановлению для вторичного использования. При этом потери металла не превышают 10 %.

Другая обширная область применения рения, некогда использовавшая большую долю производимого в мире металла - металлургия. Благодаря своим уникальным свойствам (очень высокая температура плавления, устойчивость к химическим реагентам и прочие) семьдесят пятый элемент частый компонент жаропрочных сплавов на основе вольфрама и молибдена, а также сплавов на основе никеля, хрома, титана и других элементов. Причем сплавы рения с другими тугоплавкими металлами (такими как вольфрам, молибден или тантал) имеющие высокие жаропрочные характеристики используются при изготовлении деталей сверхзвуковых самолетов и ракет.

Наиболее используемые сплавы вольфрама с 5, 20 или 27 % рения (ВР-5, ВР-20, ВР-27ВП) и молибдена - с 8, 20 и 47 % рения, а также молибден-вольфрам-рениевые сплавы. Такие сплавы высокопрочны, пластичны (и, следовательно, технологичны), хорошо свариваются. Изделия из них сохраняют свои свойства и формы в самых трудных условиях эксплуатации. Рений работает на морских судах и самолетах, в космических кораблях (сплав тантала с 2,5 % рения и 8 % вольфрама предназначен для изготовления теплозащитных экранов аппаратов, возвращающихся из космоса в атмосферу Земли) и в полярных экспедициях. Сплав никеля с рением, называемый «монокристаллическим», используется для изготовления деталей газовых турбин. Ведь именно такой сплав обладает большой стойкостью к высоким температурам и резким температурным перепадам, он выдерживает температуру до 1 200 °С, поэтому в турбине можно поддерживать стабильно высокую температуру, полностью сжигая горючее, так что при этом с выхлопными газами выбрасывается меньше токсичных веществ и сохраняется высокий КПД турбины. В настоящее время ни одна газовая турбина не изготавляется без использования ренийсодержащего жаропрочного сплава. Для атомной техники сплавы, содержащие рений (сплав вольфрама с 26 % рения) - перспективный конструкционный материал (оболочки ТВЭЛов и прочих деталей, работающих в реакторах при температурах от 1 650 до 3 000 °С).

Семьдесят пятый элемент стал важным материалом для электронной и электронно-вакуумной промышленности. Именно данные области полностью раскрывают потенциал этого металла и его сплавов. Особенно широко в этих отраслях использует рений Япония (65-75 % своего потребления). Из рения и сплавов на его основе делают нити накала, сетки, подогреватели катодов. Детали из сплавов рения есть в электронно-лучевых трубках, приемно-усилительных и генераторных лампах, в термоионных генераторах, в масс-спектрометрах и других приборах. Из сплавов содержащих рений делают, в частности, керны (опора, на которой вращается рамка прибора) измерительных приборов высших классов точности. Материал таких опор должен отвечать ряду строгих условий: высокая твердость, немагнитность, высокая коррозионная стойкость, малый износ в процессе эксплуатации. Всем этим условиям отвечает многокомпонентный сплав на кобальтовой основе 40 КНХМР, легированный 7 % рения. Этот же сплав используют для производства упругих элементов крутильных весов и гироскопических приборов.

Рений используют при изготовлении вольфрам-рениевых термопар, позволяющих измерять температуры до 2 600 °C. Такие термопары значительно превосходят применяемые в промышленности стандартные термопары из вольфрама и молибдена. Кроме того, рений является прекрасным материалом для электрических контактов, покрытий, рентгеновских трубок, ламп-вспышек и вакуумных ламп. Наконец, на реакции β-распада 187Re основан рений-осмиевый метод определения возраста горных пород и метеоритов.

Производство

Производственное освоение рения началось в Германии в 1929 году, тогда «мировое производство» этого металла составляло всего 3 г! Однако уже к 1940 году Германия обладала запасами в 200 кг рения, чего вполне хватало для мирового потребления тех лет. После начала второй мировой войны американцы начали извлекать рений из молибденовых концентратов и в 1943 году получили 4,5 кг собственного семьдесят пятого элемента. После окончания второй мировой войны число стран производителей рения резко возросло - к Германии и США добавились СССР, Англия, Франция, Бельгия и Швеция. Тем не менее, даже в наши дни производство рения значительно уступает производству многих редких металлов - добыча подобных распыленных элементов представляет даже при нынешнем уровне знания и при разнообразии приемов достаточно сложную задачу.

Любое рудное сырье, содержащее семьдесят пятый элемент - это комплексное сырье, в котором далеко не рений главное богатство, с чем, собственно, и связаны большие потери и без того скудного элемента рения. Основные сырьевые источники семьдесят пятого элемента рения - молибденитовые концентраты (содержание рения 0,01-0,04 %), медные концентраты некоторых месторождений (0,002-0,003 % рения), отходы от переработки медистых сланцев (например, свинцово-цинковые пыли, содержащие 0,04 % рения), а также сбросные воды гидрометаллургической переработки бедных молибденитовых концентратов (10-50 мг/л рения).

Дело в том, что способы извлечения рения во многом зависят от специфики технологии производства основных металлов, а чаще всего технологические схемы извлечения основных металлов и рения не совпадают, что приводит к потерям семьдесят пятого элемента. Так, при флотационном обогащении молибденовых и медно-молибденовых руд от 40 до 80 % бывшего в руде рения переходят в молибденовый концентрат, а в рениевые слитки, в конечном счете, превращается лишь незначительная часть этого металла, добываемая из уже переработанных отвалов. По подсчетам американских ученых из молибденовых концентратов богатых рением извлекается всего 6 % этого металла от общего содержания. Но и при флотационном обогащении медно-молибденовых руд рений не теряется, а всего лишь переходит в молибденовый концентрат, потери начинаются дальше - при обжиге концентратов и в процессе плавки.

Технология обработки молибденовых концентратов включает обязательный окислительный обжиг при 550...650° C, а при таких температурах, как мы хорошо знаем, активно начинает окисляться и рений, в основном до Re2O7 - рениевый ангидрид летуч, получается, что большое количество семьдесят пятого элемента просто «вылетает в трубу». На различных стадиях производства черновой меди рений также удаляется с отходящими газами. Получается, чтобы получить рений на молибденовых предприятиях необходимо, прежде всего, уловить его из уходящих газов. Для этого на заводах устанавливают сложные системы циклонов, скрубберров, электрофильтров. В итоге рений концентрируется в шламовых растворах, образующихся при очистке пылеуловительных систем. Если печные газы направляются на производство H2SO4, рений концентрируется в промывной кислоте электрофильтров.

Для извлечения рения из пыли и шламов применяют выщелачивание слабой серной кислотой или теплой водой с добавкой окислителя (МnО2). В случае неполной возгонки рения (в многоподовых печах она составляет всего 50...60 %, в печах кипящего слоя - почти 96 %) при обжиге молибденитовых концентратов, часть его остается в металлическом огарке и затем переходит в аммиачные или содовые растворы выщелачивания огарков. Таким образом, источниками получения рения при переработке молибденитовых концентратов могут служить сернокислотные растворы мокрых систем пылеулавливания и маточные растворы после гидрометаллургической переработки огарков.

Из растворов рений извлекают в основном сорбционными (с применением слабо- и сильноосновных ионитов) и экстракционными (экстр-агентами выступают триалкиламин, трибутилфосфат и прочие соединения) методами. В результате десорбции или реэкстракции растворами NH3 образуется NH4ReO4, восстановлением которого водородом получают порошок рения:

2NH4ReO4 + 7H2 → 2Re + 2NH3 + 8H2O

Восстановление осуществляют в две стадии: первая протекает при 300-350 °С, вторая - при 700-800 °С. Полученный порошок прессуют в штабики, которые спекают при 1 200-1 300 °С, а затем при 2 700-2 850 °С в токе водорода. Спеченные штабики уплотняют ковкой или прокаткой на холоду с промежуточными отжигами. Для получения компактного рения применяют также плавку в электроннолучевых печах.

В последнее время разрабатываются новые способы гидрометаллургической переработки концентратов содержащих рений. Такие методы более перспективны в основном потому, что нет тех огромных потерь рения, которые неизбежны в пирометаллургии. Уже сейчас семьдесят пятый элемент извлекают из концентратов различными растворами - в зависимости от состава концентрата, а из этих растворов - жидкими экстр-агентами или в ионнобменных колоннах.

Физические свойства

Рений - серебристо-серый металл, своим внешним видом напоминающий сталь или платину. Порошок металла - чёрного или темно-серого цвета в зависимости от дисперсности. Рений кристаллизуется в гексагональной плотноупакованной решетке с параметрами а = 2,760 A, с = 4,458 A, z = 2. Атомный радиус 1,373 A, ионный радиус Re7+ 0,56 A. В полном соответствии с положением в таблице Менделеева, рений во многом похож на марганец. В основном эта схожесть на уровне строения атомов - имея в наружном электронном слое атома всего два электрона, марганец и его аналоги не способны присоединять электроны и, в отличие от галогенов, соединений с водородом не образуют. Однако у семьдесят пятого элемента больше отличий - рений четвёртый в списке элементов с наибольшей плотностью в твёрдом состоянии (21,02 г/см3), то есть тяжелее этого элемента только осмий (22,5 г/см3), иридий (22,4 г/см3) и платина (21,5 г/см3).

Вообще по своим физическим свойствам рений схож с тугоплавкими металлами VI группы вольфрамом и молибденом, а также с металлами платиновой группы. Кроме близости ряда физических характеристик с молибденом его роднит и близость атомного и ионных радиусов. Например, радиусы ионов Re4+ и Мо4+ отличаются всего на 0,04 ангстрема. Сульфиды MoS2 и ReS2 образуют к тому же однотипные кристаллические решетки. Именно этими причинами объясняют геохимическую связь рения с молибденом. Рений лишь немного тяжелее вольфрама, плотность которого 19,32 г/см3, по температуре плавления (3 180 °С) он уступает вольфраму (3 400 °С), однако температуры кипения обоих металлов настолько высоки, что их не могли с точностью определить долгое время - для рения она порядка 5 870 °С, для вольфрама 5 900 °С. Однако существует и немаловажное различие - рений гораздо пластичнее вольфрама: его можно прокатывать, ковать, вытягивать в проволоку при обычных условиях.

Рений пластичен в литом и рекристаллизованном состоянии и деформируется на холоде. Только вот пластичность рения, как и многих других металлов, во многом зависит от чистоты. Известно, что примеси кальция, железа, никеля, алюминия и других элементов снижают пластичность рения. Модуль упругости семьдесят пятого элемента 470 Гн/м2, или 47 000 кгс/мм2 (выше, чем у других металлов, за исключением осмия и иридия), что обуславливает высокое сопротивление деформации и быстрый наклеп при обработке давлением. Для восстановления пластичности и снятия наклепа рений отжигают в водороде, инертном газе или вакууме.

Еще одно важное свойство рения - высокая жаропрочность. Рений отличается высокой длительной прочностью при температурах 500-2 000 °С, он выдерживает многократные нагревы и охлаждения без потери прочностных показателей. Его прочность при температуре до 2 000 °C выше, чем у вольфрама, и значительно превосходит прочность молибдена и ниобия. Твердость по Виккерсу отожженного рения 2 450 МПа, деформированного - 7 840 МПа. Удельное объемное электросопротивление рения при температуре 20 °С составляет 19,3 10-6 ом см, что в четыре раза больше, чем у вольфрама и молибдена. Термический коэффициент линейного расширения для рения равен 6,7 10-6 (в интервале температур от 20 до 500° С); удельная теплоемкость рения 153 дж/(кг К) или 0,03653 кал/(г град) (при температурах от 0 до 1 200 °С); теплопроводность 48,0 Вт/(м К) при температуре 25° С и 46,6 Вт/(м К) при температуре 100° С. Температура перехода рения в состояние сверхпроводимости 1,699 К; работа выхода электрона 4,80 эВ. Рений парамагнитен, удельная магнитная восприимчивость этого элемента составляет +0,368 10-6 (при температуре 20,2° С).

Химические свойства

У атома рения семь внешних электронов; конфигурация высших энергетических уровней 5d56s2. По своим химическим свойствам - особенно стойкости к агрессивным средам - рений напоминает металлы платиновой группы. В компактном состоянии (в виде слитков, прессованных штабиков) рений устойчив на воздухе при обычных температурах. При неизменности благоприятных условий металл может годами не тускнеть на воздухе, таким же «результатом» могут похвастать лишь некоторые благородные металлы: золото и платина. При температурах выше 300° C начинает наблюдаться окисление металла с образованием оксидов (ReO3, Re2O7), интенсивно этот процесс протекает при температурах выше 600 °C, а в атмосфере кислорода при нагревании свыше 400 °С металл сгорает. Появление при этом белого дыма свидетельствует об образовании семиокиси рения Re2O7, которая очень летуча. Порошкообразный рений окисляется во влажном воздухе до рениевой кислоты HReO4:

4Re + 7O2 + 2H2O → 4HReO4

Рений более устойчив к окислению, чем вольфрам и молибден, ведь он не реагирует непосредственно с азотом и водородом; порошок рения лишь адсорбирует водород. Семьдесят пятый элемент не растворяется в соляной и плавиковой кислотах любых концентраций на холоде и при нагревании до 100° С и выше. В азотной кислоте, горячей концентрированной серной кислоте, в пероксиде водорода металл растворяется во всех случаях с образованием рениевой кислоты:

3Re + 7HNO3 → 3HReO4 + 7NO + 2H2O

2Re + 7H2SO4 → 2HReO4 + 7SO2 + 6H2O

2Re + 7H2O2 → 2HReO4 + 6H2O

В растворах щелочей при нагревании рений медленно корродирует, расплавленные щелочи растворяют его быстро (особенно в присутствии окислителей - Na2O2, KNO2 и даже O2), давая метаперренаты (VII) MReO4.

Рений энергично взаимодействует с галогенами, причем сила взаимодействия уменьшается от фтора к брому. При этом не образуется соединений рения высшей валентности. При нагревании металлический рений взаимодействует с фтором, хлором, серой, селеном, бромом:

Re + 3F2 → ReF6

2Re + 5Cl2 → 2ReCl5

Re + 2S → ReS2

С фтором при нагревании образуется смесь ReF5, ReF6 и ReF7, с хлором - ReCl5 и ReCl4, с бромом - ReBr5, с йодом рений не реагирует. Кроме того, даже при повышенной температуре компактный рений не реагирует с оксидом углерода (II), метаном и углеродом (взаимодействие порошков рения и графита происходит при 1 000 °С и давлении 920 кПа, в итоге получается карбид ReC). С фосфором выше 750-800 °С рений образует фосфиды ReP3, ReP2, ReP и Re2P, с мышьяком - арсенид ReAs2,1-2,3, с кремнием при спекании - силициды ReSi, Re3Si, Re2Si, а также ReSi2 (полупроводник). Пары серы при 700-800 °С дают с рением сульфид ReS2. Аналогично сульфидам получают селениды Re2Se7 и ReSe2.

Для рения известны все валентные состояния от +7 до -1, что обусловливает многочисленность и разнообразие его соединений. Известно относительно небольшое число соединений одно, двух, трех, пяти и шестивалентного рения, все они малоустойчивы. Наиболее устойчивы соединения четырех- и семивалентного рения. К наиболее важным из них стоит отнести диоксид рения, ReO2, нелетучий коричнево-черный кристаллический порошок с металлическим типом проводимости, устойчивый на воздухе при комнатной температуре. ReO2 является промежуточным продуктом при получении рения. Триоксид рения, ReO3, кристаллы темно-красного цвета с металлическим блеском. Оксид рения Re2O7, или рениевый ангидрид, светло-желтые, буроватые кристаллы. Хорошо растворяется в воде, спирте, ацетоне. При растворении в воде дает бесцветный раствор рениевой кислоты. HReO4 - сильная кислота, в свободном виде не выделена.

Плотный, серебристо-белый твёрдый металл
Рений - редкий металл, который до последнего времени считался рассеянным. В природе он встречается в основном в виде примесей в молибдените. А минералы рения (к примеру, джезказганит) настолько редки, что представляют собой не промышленную, а научную ценность.

Существование рения было предсказано Д. И. Менделеевым («тримарганец») в 1871 году, по аналогии свойств элементов в группе периодической системы.

Элемент открыли в 1925 году немецкие химики Ида и Вальтер Ноддак, исследуя минерал колумбит спектральным анализом в лаборатории компании Siemens & Halske. Об этом было доложено на собрании немецких химиков в Нюрнберге. В следующем году группа учёных выделила из молибденита первые 2 мг рения. Относительно чистый рений удалось получить только в 1928 году. Для получения 1 г рения требовалось переработать более 600 кг норвежского молибденита.

Первое промышленное производство рения было организовано в Германии в 1930-х годах. Мощность установки составляла 120 кг в год, что полностью удовлетворяло мировую потребность в этом металле. В 1943 году в США после переработки молибденовых концентратов были получены первые 4,5 кг рения.

Рений стал последним открытым элементом, у которого известен стабильный изотоп. Все элементы, которые были открыты позднее рения (в том числе и полученные искусственно), не имели стабильных изотопов.

Рений - металл высоких технологий. Высокопрочные суперсплавы для космической и авиационной техники, содержащие от 4 до 10% рения, выдерживают температуры до 2000 градусов и более без потери прочности. Из них изготавливаются корпуса и лопасти турбин, сопла двигателей ракет и самолетов. Кроме того, рений используется в нефтехимической промышленности - в биметаллических катализато рах при крекинге и риформинге нефти. Он применяется в электронике и электротехнике (термопары, антикатоды, полупроводники, электронные трубки и т. д.). Особенно широко в этой отрасли промышлен ности использует рений Япония (65-75% своего потребления).

Мировая потребность в редких металлах обычно меняется скачкообразно. Интерес к ним не постоянный, а пульсирующий. Он зависит от внедрения в производство новых высокотехнологичных сплавов с различными добавками. Сегодня в такие сплавы требуется добавлять какой-либо редкий металл, а завтра, может быть, ему найдут замену, и потребность в нем отпадет практически полностью. Что касается рения, еще лет десять назад он использовался редко.

За период 1925-1967 годов мировая промышленность израсходовала всего 4,5 тонны рения. А сегодня только потребность Соединенных Штатов составляет около 30 тонн в год. На США приходится более 50% мирового потребления рения, причем за последние пять лет спрос на этот редкий металл увеличился в 3,6 раза.

Мировая добыча рения в 2006 году составила около 40 тонн. Крупнейшим производителем является чилийская компания Molymet. Производство рения стабильно растёт и в 2008 году составило уже 57 тонн

По природным запасам рения на первом месте в мире стоит Чили, на втором месте - США, а на третьем - Россия.

Общие мировые запасы рения составляют около 13 000 тонн, в том числе 3500 тонн в молибденовом сырье и 9500 тонн - в медном. При перспективном уровне потребления рения в количестве 40-50 тонн в год человечеству этого металла может хватить ещё на 250-300 лет. Приведённое число носит оценочный характер без учёта степени повторного использования металла.

Рений - дорогой металл. Стоимость неочищенного сырья (перринат калия) составляет около 800 долларов за килограмм. Килограмм очищенного рения на мировом рынке стоит не менее 1500 долларов. Высокочистый рений стоит и того дороже - до 900 долларов за грамм. Раньше рений получали исключительно как побочный продукт производства меди и молибдена. В обоих случаях при обжиге медного или молибденового концентрата рений в виде оксида вылетает из печных труб. Летучий оксид рения пропускают на выходе из трубы через серную кислоту, а из полученного в результате химической реакции перрината калия выделяют чистый рений.

В СССР основным потребителем рения и его соединений была Россия (около 70% суммарного потребления), а производителем - Казахстан (более 70% суммарного производства). В 1990 году Советский Союз использовал порядка 10 тонн рения, из которых 70% - в авиации, 5% - в нефтехимии, 5% - в электронике и 20% - в других отраслях. После развала союзного государства потребление рения резко снизилось и составило всего лишь около 1,5 тонны в год (1994 год). Сейчас оно немного возросло - до 2-2,5 тонны в год, но в России рения производит ся всего лишь сотни килограммов... А российской промышленности требуется не менее 5 тонн рения в год.

В Советском Союзе было три значительных месторождения, где получали рений: медистые песчаники Джезказганского месторождения в Казахстане и медно-молибденовые месторождения в Узбекистане и Армении. Его также добывали в дружественной нам Монголии, на крупнейшем в мире медно-молибденовом месторождении Эрдэнет. Волею судеб все оказались теперь в ближнем зарубежье. В России остались три мелких месторождения в Читинской области и на Кавказе. Они нерентабельны - их разработка затратна. Поэтому в любой развитой капиталистической стране никто из предпринимателей и не взялся бы за их освоение. Да и в нашей стране с переходом к рыночной экономике эти месторождения не разрабатываются совсем. Так что сырьевая рениевая база России сейчас на нуле.

Итак, разрабатывать бедные месторождения просто невыгодно. Америка решает проблему добычи рения, инвестируя разработки богатых месторождений в странах третьего мира. Для нас этот путь пока невозможен - нет денег.

Можно договариваться с бывшими соотечественниками из Узбекистана и Казахстана и получать рений в порядке обмена на другие товары. Конечно, можно и просто купить импортное рениевое сырье. Но все же, если мы хотим сохранить нашу страну как великую державу, хотим отстоять свою экономическую независимость, стратегические виды сырья неплохо бы было иметь у себя дома. Тогда никто не сможет диктовать нам ни политические, ни экономические условия. А рений на сегодняшний день металл, имеющий стратегическое значение. И получать рений нам надо бы у нас в стране и желательно без привлечения иностранного капитала. МЕСТОРОЖДЕНИЕ В КРАТЕРЕ

К началу 90-х годов сырьевые ресурсы рения в России были практически исчерпаны. Положение сложилось практически безвыходное, но нашей стране удивительно повезло. Именно в 1992 году удача улыбнулась геологам - они нашли рений на территории России и не в виде примесей в других минералах, а уникальное единственное известное в мире скопление минерала рения!

Рений в виде минерала обнаружен нашими учеными почти случайно. На Сахалине в городе Южно-Сахалинске есть Институт вулканологии и геодинамики Российской академии естественных наук. Директор его - Генрих Семенович Штейнберг уже много лет организует научные геологические экспедиции с участием ученых из Новосибирска, Москвы, Иркутска и других городов. И вот во время такой экспедиции в 1992 году сотрудники Института экспериментальной минералогии (он находится в городе Черноголовка, под Москвой) и Института геологии рудных месторождений (Москва) вели режимное наблюдение на вулканах Южнокурильской гряды и на вершине вулкана Кудрявый на острове Итуруп в местах выхода вулканического газа нашли новый минерал - рениит. Внешне он напоминал обычный молибденит, а оказался сульфидом рения. Содержание рения в нем достигает 80%. Это было почти чудо - заявка на возможность промышленного использования рениита для получения рения.

Вулкан Кудрявый высотой 986 метров - вулкан так называемого гавайского типа. В отличие от взрывающихся газовых вулканов он тихо тлеет. И в темную ночь, заглянув в кратер, вы можете увидеть в глубине раскаленную ярко-красную лаву. Иногда лава прорывается на поверхность и растекается по склонам. Правда, Кудрявый последние сто лет ведет себя спокойно - видимо, хорошо продувается газами, поэтому лава не выплескивается наружу. Поверхность кратера вулкана Кудрявый имеет размеры 200х400 метров. На кратере Кудрявого находятся шесть фумарольных полей - площадок размером 30х40 метров с большим количеством мест выхода газа. Над ними всегда курится желтоватый дымок.

Ученые задумались, откуда мог взяться сульфид рения на вершине вулкана, и пришли к выводу, что он кристаллизуется в виде иголочек прямо из вулканического газа. Из шести имеющихся фумарольных полей четыре - высокотемпературные. Вулканические газы в них имеют температуру от 500 до 940 градусов по Цельсию. И только на таких "горячих" полях и образуется новый минерал рения. Там, где холоднее, рениита намного меньше, а при температуре ниже 200 градусов он практически отсутствует. В этом и заключается уникальность вулкана Кудрявый: ведь вулканические газы, выходящие на поверхность на фумарольных полях других вулканов, гораздо менее горячие.

Исключение составляет единственный вулкан Килауэа, который находится на Гаваях. Его газы тоже имеют высокую температуру, но, правда, содержание рения в них в два раза ниже, чем в газовых выбросах вулкана Кудрявый. Да и уловить газы на Килауэа практически невозможно - гавайский вулкан постоянно извергает потоки раскаленной лавы. Так что Россия обладает уникальным вулканом, и не воспользоваться этим обстоятельством просто грешно.

Штейнберг и его сотрудники подсчитали, сколько сульфида рения накопилось на вулкане за сто лет "работы" в стационарном режиме. Оказалось, что не так уж и много. Запасы рения в виде рениита на острове Итуруп оцениваются в 10-15 тонн, в виде вулканических газов - до 20 тонн в год

Ученые также обнаружили, что в вулканических газах содержится не только рений, а еще по меньшей мере десяток редких сопутствующих элементов: германий, висмут, индий, молибден, золото, серебро и другие металлы. РЕНИЙ МОЖНО ДОБЫВАТЬ ПРЯМО ИЗ ВУЛКАНИЧЕСКОГО ГАЗА

Итак, за последние сто лет Кудрявый выбросил с высокотемпературными вулканическими газами в земную атмосферу сотни тонн рения. Его кратер - своего рода печная труба завода по переработке молибденита. Но на таких заводах рений и другие рассеянные редкие металлы "в трубу" не вылетают, их улавливают специальными фильтрующими устройствами, концентрируют и получают компоненты высокотехнологичных сплавов.

Применение:

Важнейшие свойства рения, определяющие его применение, - это очень высокая температура плавления, устойчивость к химическим реагентам, каталитическая активность (в этом он близок к платиноидам). Тем не менее рений является дорогим и редким металлом, поэтому его использование ограничено теми случаями, когда оно даёт исключительные преимущества перед использованием других металлов.

До открытия платинорениевых катализаторов риформинга основной областью применения рения были жаропрочные сплавы. Сплавы рения с молибденом, вольфрамом и другими металлами используются при создании деталей ракетной техники и сверхзвуковой авиации. Сплавы никеля и рения используются для изготовления камер сгорания, лопаток турбин, и выхлопных сопел реактивных двигателей, эти сплавы содержат до 6 % рения, что делает строительство реактивных двигателей крупнейшим потребителем рения. В частности, монокристаллические никелевые ренийсодержащие сплавы, обладающие повышенной жаропрочностью, используются для изготовления лопаток газотурбинных двигателей. Рений имеет критическое военно-стратегическое значение, ввиду его использования при изготовлении высокопроизводительных военных реактивных и ракетных двигателей.

Вольфрам-рениевые термопары позволяют измерять температуры до 2200 °C. Как легирующую присадку рений вводят в сплавы на основе никеля, хрома и титана. Промотирование рением платиновых металлов увеличивает износоустойчивость последних. Из подобных сплавов делают наконечники перьев автоматических ручек, а также фильеры для искусственного волокна. Также, рений используют в сплавах для изготовления деталей точных приборов, например, пружин. Рений применяют для изготовления нитей накала в масс-спектрометрах и ионных манометрах, а также катодов. В этих случаях также используют вольфрам, покрытый рением. Рений химически стоек, поэтому его применяют для покрытий, предохраняющих металлы от действия кислот, щелочей, морской воды и сернистых соединений.

С момента открытия платинорениевых катализаторов риформинга рений начали активно использовать для промышленного производства таких катализаторов. Это позволило повысить эффективность производства высокооктановых компонентов бензина, используемых для получения товарного бензина, не требующего добавки тетраэтилсвинца. Использование рения в нефтепереработке в разы повысило мировой спрос на него.

Кроме того, из рения делают самоочищающиеся электрические контакты. При замыкании и разрыве цепи всегда происходит электрический разряд, в результате чего металл контакта окисляется. Точно так же окисляется и рений, но его оксид Re2O7 летуч при относительно низких температурах (температура кипения - всего +362,4 °C), и при разрядах он испаряется с поверхности контакта. Поэтому рениевые контакты служат очень долго.