Серый и белый чугун. Хим. состав, структура, маркировка и область применения. Виды чугуна

Серый чугун имеет низкие хар-ки механич. св-в при испытаниях на растяжение. Включения графита играют роль концентраторов напряжений. Твёрдость и прочность при испытаниях на сжатие, зависящие от свойств металлической основы, у чугуна достаточно высоки. Серый чугун с пластинчатой формой графита имеет ряд преимуществ. Он позволяет получать дешёвое литьё, т.к. при низкой стоимости обладает хорошей жидкотекучестью и малой усадкой. Мех. св-ва серых чугунов зависят от метал­лической основы, а также формы и размеров включений графита. Наиболее прочными являются серые чугуны на пер­литной основе, а наиболее плас­тичными - серые чугуны на ферритной основе. Серый чугун получают при добавлении в расплавленный металл веществ, способствующих распаду цементита и выделению углерода в виде графита. Для серого чугуна графитизатором является кремний. При введе­нии в сплав кремния около 5% цементит серого чугуна практически пол­ностью распадается и образуется структура из пластичной ферритной основы и включений графита. С уменьшением содержания кремния цементит, входящий в состав перлита, частично распадается и образуется ферритно-перлитная струк­тура с включениями графита. При дальнейшем уменьше­нии содержания кремния формируется структура серо­го чугуна на перлитной осно­ве с включениями графита.

Включения графита делают стружку ломкой, след-но, чугун хорошо обрабатывается резанием. Благодаря смазывающему действию графита чугун обладает хорошими антифрикционными свойствами. Чугун имеет высокие демпфирующие св-ва, хорошо гасит вибрации и резонансные колебания. Маркируется серый чугун буквами СЧ и цифрами, характеризующими величину временного сопротивления при испытаниях на растяжение. Н-р, СЧ10 содержит (3,5…3,7)% С, (2,2…2,6)% Si, (0,5…0,8)% Mn, P<0,3% и S<0,15%, d В =100МПа, твёрдость <190НВ. СЧ35 d В =350МПа, твёрдость <275НВ.

Серые чугуны - это литейный чугун. Серый чугун поступает в произ­водство в виде отливок. Серый чугун является дешевым конструкцион­ным материалом. Он обладает хорошими литейными свойствами, хоро­шо обрабатывается резанием, сопротивляется износу, обладает способ­ностью рассеивать колебания при вибрационных и переменных на­грузках. Свойство гасить вибрации называется демпфирующей способ­ностью. Демпфирующая сп-ть чугуна в 2-4 раза выше, чем у ста­ли. Высокая демпфирующая сп-ть и износостойкость обуслови­ли применение чугуна для изготовления станин различного оборудова­ния, коленчатых и распределительных валов тракторных и автомо­бильных двигателей и др. Выпускают следующие марки серых чугунов (в скобках указаны числовые значения твердости НВ): СЧ 10(143-29), СЧ 15(163-229), СЧ 20(170-241), СЧ 25(180-250), СЧ 30(181-255), СЧ 35(197-269), СЧ 40(207-285), СЧ 45(229-289).

По физико-механическим характеристикам серые чугуны условно можно разделить на четыре группы: малой прочности, повышенной проч­ности, высокой прочности и со специальными свойствами.

Легированный серый чугун имеет мелкозернистую структуру и лучшее строение графита за счет присадки небольших кол-в никеля и хрома, молибдена и иногда титана или меди.

Модифицированный серый чугун имеет однородное строение по сечению отливки и более мелкую завихренную форму графита. Модификаторы - ферросили­ций, силикоалюминий, силикокальций и др. - добавляют в количестве 0,1 -0,3% от массы чугуна непосредственно в ковш во время его заполне­ния.

Серый и белый чугуны резко различаются по свойствам. Белые чугуны очень твердые и хрупкие, плохо обрабатыва­ются режущим инструментом, идут на переплавку в сталь и называются передельными чугунами. Часть белого чугуна идет на получение ков­кого чугуна.

Белые чугуны используются как износостойкие конструкционные материалы. В таких чугунах весь углерод находится в связанном состоянии с карбидообразующими элементами (хром, марганец, бор, титан). При введении 5-8% Cr образуется карбид цементитного типа (Fe,Cr) 3 C, а при содержании более 10% Cr образуются сложные и твердые карбиды (Fe,Cr) 7 C 3 и (Fe,Cr) 23 C 6 . Для придания чугуну большей вязкости, жаро- или коррозионной стойкости в его состав вводят никель.

В числе самых распространенных видов чугуна - серый и белый. Что представляет собой каждый из них?

Что представляет собой серый чугун?

Соответствующий тип чугуна относится к самым распространенным в сфере машиностроения. Данный металл характеризуется наличием в шлифе графита пластинчатой формы. Его содержание в сером чугуне может быть разным. Чем оно больше, тем более темным становится металл на изломе, а также тем мягче чугун. Отливки из рассматриваемого типа металла могут выпускаться любой толщины.

Основные особенности серого чугуна:

  1. минимальное относительное удлинение - как правило, не превышающее 0,5 %;
  2. невысокая ударная вязкость;
  3. низкая пластичность.

В сером чугуне имеется небольшой процент связанного углерода - не более 0,5 %. Оставшаяся часть углерода представлена в виде графита - то есть в свободном состоянии. Серый чугун может выпускаться на перлитной, ферритной, а также смешанной - феррито-перлитной - основе. В рассматриваемом металле, как правило, присутствует значительный процент кремния.

Серый чугун достаточно легко поддается обработке посредством режущих инструментов. Данный металл используется при отливе изделий, которые оптимальны с точки зрения сопротивления сжатию. Например, различных опорных элементов, батарей, водопроводных труб. Распространено применение серого чугуна и в машиностроении - чаще всего при изготовлении деталей, для которых не характерны ударные нагрузки. Например, корпусов для станков.

Что представляет собой белый чугун?

Данный тип чугуна характеризуется наличием углерода, который практически полностью представлен в структуре металла в связанном состоянии. Рассматриваемый металл - твердый и в то же время достаточно хрупкий. Он устойчив к коррозии, износу, температурному воздействию. Белый чугун довольно трудно поддается обработке посредством ручных инструментов. На изломе этот металл имеет светлый оттенок, лучистую структуру.

Основная сфера применения белого чугуна - последующая переработка. Как правило, он переделывается в сталь, во многих случаях - как раз таки в серый чугун. В промышленности его применение не слишком распространено по причине хрупкости и трудности обработки.

Процента кремния в белом чугуне существенно меньше, чем в сером. В рассматриваемом металле также может быть более высокая концентрация марганца и фосфора (отметим, что во многом их наличие предопределяется химическим составом руды, из которой выплавляется чугун). Собственно, увеличение количества кремния в металле сопровождается сокращением объема связанного углерода в его структуре.

Сравнение

Основное отличие серого чугуна от белого в том, что в первом имеется небольшой процент связанного углерода, во втором - наоборот, присутствует главным образом связанный углерод. Данная особенность предопределяет разницу между рассматриваемыми металлами в аспекте:

  • твердости;
  • цвета на изломе;
  • устойчивости к износу;
  • хрупкости;
  • обрабатываемости ручным инструментом;
  • сферы применения;
  • процента связанного и свободного углерода;
  • процента кремния, марганца, фосфора.

Более наглядно изучить то, в чем разница между серым и белым чугуном заключается в указанных аспектах, нам поможет небольшая таблица.

Таблица

Серый чугун Белый чугун
Менее твердый Более твердый
Более темный на изломе Более светлый на изломе
Менее устойчив к износу Более устойчив к износу
Менее хрупок Более хрупок
Хорошо поддается обработке ручным инструментом Не слишком хорошо поддается обработке ручным инструментом
Активно применяется в различных сферах промышленности Используется главным образом в целях изготовления стали, серого чугуна
Имеет большой процент свободного углерода - в виде графита Включает в основном связанный углерод
Характеризуется большим процентом кремния, меньшим - марганца, фосфора Характеризуется меньшим процентом кремния, большим - марганца, фосфора

Белый чугун — это разновидность чугуна, которая в своём составе содержит углеродные соединения. В этом сплаве они называются цементитами. Своё название подобный металл получил благодаря характерному белому цвету и блеску, который хорошо виден на изломе. Этот блеск проявляется благодаря тому, что в составе подобного чугуна отсутствуют большие включения графита. В процентном отношении, он составляет не более 0,3%. Поэтому обнаружить его можно только спектральным или химическим анализом.

Состав и виды белого чугуна

Белый чугун состоит из так называемой цементитной эвтектики. В связи с этим его делят на три категории:

  • Доэвтектические. Это такие сплавы, в которых углерод не превышает 4,3% от общего состава. Он получается после полного остывания. В итоге приобретает характерную структуру таких элементов как перлит, вторичный цементит и ледебурит.
  • Эвтектические. У них содержание углерода равняется 4,3%.
  • Заэвтектический белый чугун. Содержание превышает 4,35% и может достигать 6,67%.

Кроме приведенной классификации его разделяют на обыкновенный, отбеленный и легированный.

Внутренняя структура белого чугуна представляет собой сплав двух элементов: железа и углерода. Несмотря на высокотемпературное производство в нём сохраняется структура с мелкой зернистостью. Поэтому если надломить деталь из такого металла будет наблюдаться характерный белый цвет. Кроме этого, в структуре доэвтектического сплава, например, твёрдых марок, кроме перлита и вторичного цементита всегда присутствует цементит. Его процентное содержание может приближаться к 100%. Это характерно для эвтектического металла. Для третьего вида структура представляет собой состав из эвтектики (Л п) и первичного цементита.

Одной из разновидностей подобных сплавов является так называемый отбелённый чугун. Его основу, то есть сердцевину, составляет серый или высокопрочный чугун. Поверхностный слой содержит высокий процент таких элементов, как ледебурит и перлит. Эффекта отбеливания глубиной до 30 мм добиваются, используя метод быстрого охлаждения. В результате поверхностный слой получается из белого цвета, а далее отливка состоит из обыкновенного серого сплава.

В зависимости от процентного содержания легированных добавок, различают следующие виды металла:

  • низколегированные (в них содержится легирующих элементов не более 2,5%);
  • среднелегированные (процент подобных элементов достигает 10%);
  • высоколегированные (в них количество легирующих добавок превышает 10%).

В качестве легирующих добавок применяют достаточно распространённые элементы. Полученный таким образом легированный белый чугун приобретает новые, заранее заданные свойства.

Свойства белого чугуна

Любой чугунный сплав, с одной стороны, очень прочный, но в то же время обладает достаточной хрупкостью. Поэтому в качестве основных положительных свойств белого чугуна можно выделить:

  • Высокую твёрдость. Это значительно затрудняет обработку деталей, в частности, резанием.
  • Очень высокое удельное сопротивление.
  • Отличную износостойкость.
  • Хорошую стойкость к повышенному тепловому воздействию.
  • Достаточную коррозийную стойкость, в том числе, к различным кислотам.

Белые чугуны, с пониженным процентом углерода, обладают большей устойчивостью к высоким температурам. Это свойство используется для снижения количества трещин в отливках.

К недостаткам следует отнести:

  • Низкие литейные свойства. Он имеет плохое заполнение отливочных форм. Во время заливки могут образовываться внутренние трещины.
  • Повышенная хрупкость.
  • Плохая обрабатываемость самих отливок и деталей из белого чугуна.
  • Большая усадка, которая может достигать 2%.
  • Низкая стойкость к ударным воздействиям.

Ещё одним недостатком является плохая свариваемость. Проблемы в сварке деталей из подобного материала вызваны тем, что в момент сварки происходит образование трещин, как при нагреве, так и при охлаждении.

Маркировка белого чугуна

Для маркировки белого чугуна применяют буквы русского алфавита и цифры. Если в нём имеются примеси, то маркировка начинается с буквы «Ч». Состав имеющихся легирующих добавок можно определить по последующим буквам П, ПЛ, ПФ, ПВК. Они свидетельствую о наличии кремния. Если полученный металл обладает повышенной износостойкостью, то его маркировка будет начинаться с буквы «И», например ИЧХ, ИЧ. Например, наличие в маркировке обозначения «Ш», означает, что в структуре сплава имеется графит шаровидной формы.

Цифры указывают на количество дополнительных веществ, присутствующих в белом чугуне.

Марка ЧН20Д2ХШ расшифровывается следующим образом. Это жаропрочный высоколегированный металл. Он содержит следующие элементы: никеля — 20%, меди — 2%, хрома — 1%. Остальные элементы — это железо, углерод, графит шаровидной формы.

Область применения

Этот сплав используют в следующих отраслях: машиностроение, станкостроение, судостроение. Из него производят некоторые элементы бытовых изделий. В машиностроении из него изготавливают: детали грузовых и легковых автомобилей, тракторов, комбайнов и другой сельскохозяйственной техники. Применение легирующих добавок позволяет получать специально заданные свойства. Например, используют при изготовлении плит с различной формой поверхности.

Отбелённый чугун имеет достаточно ограниченную область применения. Из него производят детали несложной конфигурации. Например: шары для мельниц, колеса различного назначения, детали для прокатных станов.

Широкое применение он получил при производстве деталей таких крупных агрегатов, как гидравлические и формовочные машины, другие промышленные механизмы этого направления. Специфическая особенность их работы заключается в том, что они постоянно подвергаются воздействию абразивного материала.

Серые, высокопрочные и ковкие чугуны относятся к материалам, в которых весь углерод или его часть находится в виде графита. Излом этих чугунов – серый, матовый. В их структуре различают: структуру металлической основы и выделения графита. Отличаются они друг от друга только формой выделений графита.

В серых чугунах графит выделяется в виде пластинок (прожилок, чешуек); в высокопрочных – в виде шариков; в ковких – в виде хлопьев (рис. 4.2).

Пластинчатый графит. В обычном сером чугуне графит образуется в виде лепестков; такой графит называется пластинчатым. На рис. 4.2, а показана структура обычного ферритного чугуна с прожилками графита; пространственный вид таких графитных включений показан на рис. 4.3, а (видно пересечение пластинчатых включений плоскостью шлифа).

Шаровидный графит . В современных так называемых высокопрочных чугунах, выплавленных с присадкой небольшого количества магния (или церия), графит приобретает форму шара. На рис. 4.2, б показана микроструктура серого чугуна с шаровидным графитом, а на рис. 4.3, б – фотография шаровидного графитного включения в электронном микроскопе.

Хлопьевидный графит. Если при отливке получить белый чугун, а затем, используя неустойчивость цементита, с помощью отжига разложить его, то образующийся графит приобретает компактную, почти равноосную, но не округлую форму. Такой графит называется хлопьевидным, или углеродом отжига. Микроструктура чугуна с хлопьевидным графитом показана на рис. 4.2, в . На практике чугун с хлопьевидным графитом называют ковким чугуном.

а б в г

Рис. 4.2. Форма графита в чугунах:

а – пластинчатая (обычный серый чугун), × 100; б – шаровидная (высокопрочный чугун), × 200; в – хлопьевидная (ковкий чугун), × 100; г – вермикулярная, × 100

Рис. 4.3. Графитные включения в чугуне (× 2000):

а – пластинчатые; б – шаровидные

Вермикулярный графит – в виде глистообразных прожилок (рис. 4.2, г ).

Таким образом, чугуны называют:

– с пластинчатым графитом обычным серым чугуном;

– с червеобразным графитом – серым вермикулярным чугуном;

– чугун с шаровидным графитом – высокопрочным чугуном;

– чугун с хлопьевидным графитом – ковким чугуном.

По структуре металлической основы все чугуны классифицируются:

1) на ферритные – со структурой феррита и графита (количество связанного углерода С связ = 0,025%);

2) феррито-перлитные ‑ со структурой феррита, перлита и графита (количество С связ = от 0,025 до 0,8%);

3) перлитные ‑ со структурой перлита и графита (количество С связ = 0,8%).

Отсюда можно сделать заключение, что металлическая основа в этой группе чугунов похожа на структуру эвтектоидной и доэвтектоидной стали и железа и отличается только наличием графитных включений (углерода в свободном состоянии), предопределяющих специфические свойства чугунов.

а б в

Рис. 4.4. Микроструктура серого чугуна:

а – перлитного, × 200; б – феррито-перлитного, × 100; в – ферритного, × 100

Структура перлитного чугуна состоит из перлита с включениями графита (рис. 4.4, а - графит в виде прожилок; типично для серого чугуна). Перлит содержит 0,8% С, следовательно, это количество углерода в сером перлитном чугуне находится в связанном состоянии (т. е. в виде Fe 3 C), остальное количество находится в свободном виде, т. е. в форме графита.

Феррито-перлитный чугун (рис. 4.4, б ) состоит из феррита и перлита + включения веретенообразного графита. В этом чугуне количество связанного углерода меньше 0,8% С.

В ферритном чугуне (рис. 4.4, в ) металлической основой является феррит, и весь углерод, имеющийся в сплаве, присутствует в форме графита (на фотографии в виде веретенообразного графита).

На схемах структур (табл. 4.1) обобщается описанная выше классификация чугуна по строению металлической основы и форме графита.

Серые чугуны. Серые чугуны, как и белые, получаются непосредственно при отливке (при кристаллизации из жидкого расплава). Поскольку образование графита из жидкости – медленный процесс (работа образования зародыша велика: требуется значительная диффузия атомов углерода и отвод атомов железа от фронта кристаллизации графита), то он возможен только в узком интервале температур. Следовательно, охлаждение серого чугуна ведется медленно, и цементит, выделяющийся из жидкого или твердого раствора, будучи неустойчивым химическим соединением, в особенности при высоких температурах, распадается с образованием графита:

Fe 3 C ® Fe γ (С) + C гр при температуре выше 727°С

Fe 3 С ® Fe α (С) + С гр при температуре ниже 727°С (ниже линии PSK).

С ускорением охлаждения чугуна вероятность образования в нем графита уменьшается и при определенной скорости охлаждения часть сплава может закристаллизоваться в соответствии со стабильной, а часть, например поверхностный слой, ‑ с метастабильной диаграммами. Чугунные отливки, у которых поверхностные слои имеют структуру белого чугуна, а сердцевина – серого, называют отбеленными. Отбел их на некоторую глубину – следствие более быстрого охлаждения поверхности. Следовательно, обязательным условием для получения серого чугуна является очень малая скорость охлаждения расплава.

Графит в сером чугуне выделяется в виде пластин. Пластинчатые включения графита в серых чугунах можно рассматривать как трещины, надрезы, создающие большие концентрации напряжений в металлической основе. Поэтому свойства этих чугунов сильно отличаются от свойств стали.

Для определения наличия графита и формы его включений исследуют нетравленый микрошлиф с помощью металлографического микроскопа. Графит выглядит темной фазой на светлом фоне полированной металлической основы, затем микрошлиф травят (3–5%-ным раствором HNO 3 в спирте) и устанавливают структуру металлической основы.

По степени графитизации различают несколько видов серых чугунов: перлитный, перлито-ферритный и ферритный чугун. Если количество связанного углерода будет составлять больше 1%, такой чугун называется половинчатым. Его структура состоит из ледебурита, перлита и графита.

Таблица 4.1

Схемы структур чугуна

Однако кроме скорости охлаждения, существенное влияние на процесс графитизации оказывает количество присутствующих примесей, легирующих элементов и центров кристаллизации (модификаторов).

Все элементы, вводимые в чугун, делятся:

1) на элементы, препятствующие графитизации (Mn, Cr, W, Мо, S, О 2 и т.д.), которые способствуют получению углерода в связном состоянии в виде легированного цементита и других карбидов и препятствуют распаду его при повышенных температурах;

2) элементы графитообразующие (Si, C, Al, Ni, Cu и др.), которые способствуют получению углерода в свободном состоянии в виде графита.

Примеси Mn, Si, S, Р, присутствующие в чугуне, главным образом и влияют на процесс графитизации, а следовательно, на структуру и свойства чугуна.

Чтобы определить, какую структуру следует ожидать в зависимости от суммарного содержания углерода и кремния, а также в зависимости от скорости охлаждения (толщины стенки отливки), пользуются структурной диаграммой (рис. 4.5).

Рис. 4.5. Влияние скорости охлаждения и суммарного содержания кремния

и углерода в чугуне на его структуру:

I – белые чугуны; II – серые перлитные чугуны; III – серые ферритные чугуны

Следовательно, чтобы избежать отбела чугуна, детали тонкого сечения отливают из чугуна с повышенным содержанием графитообразующих элементов (Si, Ni, С). Для отливки деталей крупного сечения можно применить чугун с меньшим содержанием этих элементов.

Величина и форма выделившихся графитных включений зависит также от наличия в жидком чугуне центров кристаллизации.

Центрами кристаллизации могут быть мельчайшие частички окислов Al 2 O 3 , CaО, SiO 2 , MgO и др. Воздействие на процесс графитизации с помощью образования дополнительных центров кристаллизации называется модифицированием, а сами элементы называются модификаторами. Модификаторы вводят в жидкий чугун перед его разливкой.

Серый чугун имеет низкие механические свойства, т. к. пластинки графита надрезают металлическую основу.

В зависимости от прочности металлической основы и количества графита серые чугуны могут иметь предел прочности при растяжении примерно от 100 до 400 МПа при практически нулевом значении относительного удлинения. На сжатие серые чугуны работают много лучше, чем на растяжение, т. к. при сжимающих нагрузках надрезающее действие пластинок графита оказывается незначительным.

Согласно ГОСТ 1412-70, различают 11 марок серого чугуна: СЧ00 (не испытывается); СЧ12-28; СЧ15-52; СЧ18-36; CЧ21-40; СЧ24-44; СЧ28-48; СЧ32-52; СЧЗ6-56; СЧ40-60; СЧ-44-64.

Первая цифра показывает предел прочности при растяжении, а вторая – предел прочности при изгибе в кГ/мм 2 .

Марка чугуна СЧ12-28 характеризуется ферритной металлической основой.

Марки чугуна СЧ15-52, СЧ18-36 – феррито-перлитной металлической основой.

Чугуны этих марок применяются для малоответственных деталей с небольшими нагрузками (строительные колонны, фундаментные плиты, кронштейны, маховики, зубчатые колеса).

Остальные марки имеют перлитную металлическую основу с пониженным содержанием углерода и кремния. Чугуны с перлитной основой применяют для ответственных деталей, работающих на износ при больших давлениях (станины станков, поршни, цилиндры, детали компрессорного, турбинного и металлургического оборудования). Серый чугун указанных марок обязательно модифицируется силикокальцием или ферросилицием, который содержит около 2% кальция, или другими присадками с целью предотвращения первичной кристаллизации по метастабильной диаграмме.

Высокопрочный чугун. Высокопрочный чугун получают путем модифицирования жидкого расплава магнием или церием. Магний и церий вводят в сравнительно небольших количествах: 0,1 – 0,2% к весу жидкого чугуна, подвергающегося модифицированию. Магний и церий способствуют образованию включений графита шаровидной формы (рис. 4.2, б , 4.3, б ).

Шаровидный графит может образовываться в процессе первичной кристаллизации, а также в процессе отжига белого модифицированного чугуна. Безусловно, наиболее желательно образование шаровидного графита непосредственно при первичной кристаллизации, так как в этом случае не требуется высокотемпературного отжига. Кроме того, образование графита в структуре при первичной кристаллизации резко уменьшает усадку сплава. А это в свою очередь существенно упрощает технологию литья.

Маркируются высокопрочные чугуны буквами ВЧ и последующими цифрами.

Первые две цифры марки показывают среднее значение предела прочности при растяжении в кг/мм 2 , вторые – относительное удлинение в процентах. Например, чугун марки ВЧ60-2 имеет предел прочности на растяжение σ = 600МПа; относительное удлинение δ = 2%.

По ГОСТ 7293-70 предусмотрено 9 марок высокопрочного чугуна.

Отливки этих чугунов используют в авто- и дизелестроении для коленвалов, крышек цилиндров; в тяжелом машиностроении – для деталей прокатных станов; в кузнечно-прессовом оборудовании – для траверс прессов, прокатных валков; в химической и нефтяной промышленности – для корпусов насосов, вентилей и т. д. Также их применяют и для деталей, работающих в подшипниках и других узлах трения при повышенных и высоких давлениях (до 1200 МПа).

Ковкий чугун. Ковкие чугуны получаются путем специального графитизирующего отжига (томление) белых доэвтектических чугунов, содержащих от 2,27 до 3,2% С.

Существенный недостаток процесса получения ковкого чугуна – длительность отжига, составляющая 70 – 80 ч. Для его ускорения применяют различные меры (модифицирование алюминием (реже бором, висмутом), повышение температуры первой стадии (но не выше 1080°С)).

В настоящее время разработан метод ускоренного отжига ковкого чугуна, заключающийся в том, что отливки из белого чугуна перед графитизирующим отжигом предварительно закаливаются, что способствует снижению длительности отжига до 30 – 60 ч.

График получения ковкого чугуна показан на рис. 4.6.

Рис. 4.6. Графики получения ковких чугунов

Для получения ковкого чугуна необходимо:

– отливки из малоуглеродистого белого чугуна, содержащего не более 2,8% углерода, медленно нагревать в течение 20 – 25 часов в нейтральной среде до температуры 950 – 1000°С и при этой температуре длительно (10 – 15 ч.) выдерживать (первая стадия графитизации);

– затем медленно охлаждать до температуры немного ниже эвтектоидного превращения (700 – 740°С в зависимости от состава чугуна и длительное время (30 часов) выдерживать при этой температуре (вторая стадия графитизации);

– вести охлаждение на воздухе.

При первой стадии графитизации цементит ледебурита и вторичный цементит распадаются с образованием аустенита и хлопьевидного графита по реакции:

Fe 3 C ® Fe γ (С) + С

Цементит = аустенит + графит

При охлаждении от первой до второй стадии графитизации скорость охлаждения должна обеспечивать выделение вторичного цементита из аустенита и его распад на аустенит и графит по вышеприведенной формуле.

При второй стадии графитизации цементит перлита распадается на феррит и графит по реакции:

Fe 3 C ® Fe α (С) + С

Цементит = феррит + графит

Структура после окончательной обработки будет состоять из феррита и хлопьевидного графита.

Продолжительность всей термической обработки составляет 70 – 80 часов.

Если при второй стадии графитизации выдержка для полного распада цементита перлита на феррит и графит будет недостаточной, то в этом случае получают феррито-перлитный ковкий чугун; если выдержки не будет совсем, получают перлитный ковкий чугун со структурой перлит и хлопьевидный графит.

Желательно, чтобы содержание углерода в ковком чугуне было низким, т. к. с увеличением содержания углерода увеличивается количество свободного графита после отжига чугуна и ухудшаются его свойства. Однако уменьшение содержания углерода повышает температуру плавления, создает трудности при отливке, повышает стоимость отливки и т. д.

Для получения перлитного ковкого чугуна иногда применяют ваграночный белый чугун с содержанием до 3,2% углерода. Отжиг при этом производят в обезуглероживающей (окислительной) среде с последующим охлаждением на воздухе. Такой отжиг обеспечивает значительное выгорание углерода.

Ковкие чугуны маркируются буквами КЧ с цифрами. Первые две цифры указывают предел прочности при растяжении в кг/мм 2 , вторые цифры – относительное удлинение в процентах.

По ГОСТ 1215-59 ковкие чугуны имеет следующие марки:

– ферритный чугун: КЧ37-12, КЧ35-10, КЧ33-8, КЧ30-6;

– феррито-перлитный и перлитный ковкий чугуны: КЧ45-6, КЧ50-4, КЧ56-4, КЧ60-3, КЧ63-2.

Отливки из ковкого чугуна хорошо сопротивляются ударам и вибрационным нагрузкам, хорошо обрабатываются резанием, обладают достаточной вязкостью.

Ковкий чугун используется в автомобильной, тракторной промышленности, сельскохозяйственном машиностроении, вагоно-, станкостроении для деталей высокой прочности, воспринимающих знакопеременные и ударные нагрузки, работающих в условиях повышенного износа. Широкое его применение обусловлено, прежде всего, хорошими литейными свойствами исходного белого чугуна, что позволяет получать тонкостенные отливки сложной формы. Ферритные ковкие чугуны идут на изготовление деталей, эксплуатируемых при высоких динамических и статических нагрузках (кратеры редукторов, ступицы, крюки, скобы) и для менее ответственных (гайки, глушители, фланцы, муфты). Из перлитного ковкого чугуна изготавливают звенья и ролики цепей конвейера, тормозные колодки и др.

Порядок выполнения работы

1. Изучите классификацию чугунов, их строение, маркировку и способы получения.

2. Исследуйте под микроскопом шлифы и указать, к какому виду чугунов относится каждый образец.

3. Определите условия получения изучаемой структуры.

4. Установите влияние каждой структурной составляющей на свойства чугуна.

5. Протравите шлифы и изучите микроструктуру под микроскопом, зарисовать, укажите структурные и фазовые составляющие.

6. Установите различие в свойствах рассмотренных структур.

7. Составьте сводную таблицу рассмотренных структур, полученные данные занесите в табл. 4.2.

8. Составьте отчет о проделанной работе.

При составлении отчета необходимо:

1) привести краткую классификацию чугунов;

2) дать определение белым, серым, высокопрочным и ковким чугунам;

3) начертить часть диаграммы Fe – Fe 3 C, которая относится к области чугунов;

4) зарисовать все просмотренные структуры чугунов до и после травления с указанием названий структурных составляющих и класса чугунов;

5) указать химический состав белых чугунов и их положение на диаграмме;

6) описать способы получения, свойства и область применения каждого вида чугунов; указать маркировку.

Данные по проделанной работе свести в табл. 4.2.

Таблица 4.2

Контрольные вопросы

1. Какие преимущества чугунов перед сталью?

2. Как классифицируются чугуны?

3. Чем характеризуются структура и свойства чугуна?

4. Как влияет форма графита на свойства чугунов?

5. Сколько углерода содержит чугун?

6. В каких видах может находиться углерод в чугунах?

7. В каких чугунах весь углерод находится в химически связанном состоянии?

8. В каких чугунах весь углерод или его часть находится в виде графита?

9. Способы получения, свойства и применение белых чугунов.

10. Как получают белый чугун?

11. Сколько графита в белом чугуне?

12. Какие элементы способствуют отбелу?

13. Какие элементы способствуют графитизации?

14. Какая структура доэвтектического белого чугуна?

15. Какая структура эвтектического белого чугуна?

16. Какова структура заэвтектического белого чугуна?

17. Что такое ледебурит?

18. Что определяет прочность серого чугуна?

19. Как получают серый чугун?

20. Какова структура металлической основы серых чугунов?

21. Хорошо ли куется ковкий чугун?

22. Как получают ковкий чугун?

23. Какие процессы идут на первой стадии графитизации (получение ковких чугунов)?

24. Какие процессы идут на второй стадии графитизации (получение ковких чугунов)?

25. Какова форма графита в ковких чугунах?

26. Структура ковкого чугуна:

27. Как получают высокопрочный чугун?

28. Структура высокопрочного чугуна:

29. Какова форма графита в высокопрочных чугунах?

30. Что такое модифицирование и с какой целью его применяют?

31. Какова форма графита в серых чугунах?

32. Структура серого чугуна

33. Маркировка серых, высокопрочных и ковких чугунов.

34. Что обозначают цифра в марке чугуна СЧ15?

35. Что обозначает цифра в марке чугуна ВЧ60?

36. Что обозначает цифра 30 в марке чугуна КЧ 30-6?

37. Что обозначает цифра 6 в марке чугуна КЧ 30-6?


Буква А в середине марочного обозначения указывает на наличие азота, спе­циально введенного в сталь.

Буква А в начале марочного обозначения указывает на то, что это Автоматная сталь, предназначенная для изготовления деталей массового производства на станках-автоматах (AI2, А30, А40Г – сернистые; ACI4, АС40, АС35Г2 – свинецсодержащие; А35Е, А40ХВ – сернистоселенистые; АЦ20, АЦ40Г – кальцийсодержащие). Цифрами, указывается среднее содержание углерода в сотых долях процента.

Не следует путать с закаливаемостью, которая характеризуется максимальным значением твердости, приобретенной сталью в результате закалки. Закаливаемость зависит главным образом от содержания углерода (см. рис. 6 лабораторной работы № 8).


Похожая информация.


Углерод в чугуне может содержаться в виде цементита (Fe3C) или графита. Цементит имеет светлый цвет, обладает большой твердостью и трудно поддается механической обработке. Графит, наоборот, темного цвета и достаточно мягок. В зависимости от того, какая форма углерода преобладает в структуре, различают: белый, серый, ковкий и высокопрочные чугуны. Чугуны содержат постоянные примеси (Si, Mn, S, P), а в некоторых случаях также легирующие элементы (Cr, Ni, V, Al и др.).

Белый чугун - вид чугуна, в котором углерод в связанном состоянии находится в виде цементита, в изломе имеет белый цвет и металлический блеск. В структуре такого чугуна отсутствуют видимые включения графита и лишь незначительная его часть (0,03-0,30 %) обнаруживается тонкими методами химического анализа или визуально при больших увеличениях. Отливки белого чугуна обладают износостойкостью, относительной жаростойкостью и коррозионной стойкостью. Прочность белого чугуна снижается, а твердость увеличивается с увеличением содержания в нём углерода.

Белый чугун очень тверд, почти не поддается механической обработке и поэтому не применяется для изготовления деталей, а используется для переделки в сталь и для изготовления деталей из ковкого чугуна. Такой чугун называется также передельным.

Серый чугун – сплав железа, кремния (от 1,2- 3,5 %) и углерода, содержащий также постоянные примеси Mn, P, S. В структуре таких чугунов большая часть или весь углерод находится в виде графита пластинчатой формы. Излом такого чугуна из-за наличия графита имеет серый цвет. Отдельной разновидностью (группой марок) серого чугуна является высокопрочный чугун с графитом глобулярной (шаровидной) формы, что достигается путем его модифицирования магнием (Mg), церием (Ce) или другими элементами.

Серый чугун характеризуется высокими литейными свойствами (низкая температура кристаллизации, текучесть в жидком состоянии, малая усадка) и служит основным материалом для литья. Он широко применяется в машиностроении для отливки станин станков и механизмов, поршней, цилиндров.

Высокая хрупкость, свойственная серым чугунам вследствие наличие в их структуре графита, делает невозможным их применение для деталей, работающих в основном «на растяжение» или «на изгиб»; чугуны используются лишь при работе «на сжатие».

Серый чугун маркируется буквами СЧ, после которых указывают гарантированное значение предела прочности в кг/мм², например СЧ30. Высокопрочные чугуны маркируются буквам ВЧ, после которых указывают прочность и, через тире, относительное удлинение в процентах, например ВЧ60-2.

Ковкий чугун –условное название мягкого и вязкого чугуна, получаемого из белого чугуна отливкой и дальнейшей термической обработкой. Используется длительный отжиг, в результате которого происходит распад цементита с образованием графита, то есть процесс графитизации, и поэтому такой отжиг называют графитизирующим.

Ковкий чугун, как и серый, состоит из сталистой основы и содержит углерод в виде графита, однако графитовые включения в ковком чугуне иные, чем в обычном сером чугуне. Разница в том, что включения графита в ковком чугуне расположены в форме хлопьев, которые получаются при отжиге, и изолированны друг от друга, в результате чего металлическая основа менее разобщена, и чугун обладает некоторой вязкостью и пластичностью. Из-за своей хлопьевидной формы и способа получения (отжиг) графит в ковком чугуне часто называют углеродом отжига. Ковкий чугун получил свое название из-за повышенной пластичности и вязкости (хотя обработке давлением не подвергается).

Ковкий чугун обладает повышенной прочностью при растяжении и высоким сопротивлением удару. Из ковкого чугуна изготовляют детали сложной формы: картеры заднего моста автомобилей, тормозные колодки, тройники, угольники и т. д.

Маркируется ковкий чугун двумя буквами и двумя числами, например КЧ 370-12. Буквы КЧ означают ковкий чугун, первое число-предел прочности (в МПа) на разрыв, второе число - относительное удлинение (в процентах), характеризующее пластичность чугуна.

Высокопрочный чугун – чугун, имеющий графитные включения сфероидальной формы. Графит сфероидальной формы имеет меньшее отношение его поверхности к объему, что определяет наибольшую сплошность металлической основы, а следовательно, и прочность чугуна.

Высокопрочный чугун наиболее часто применяется для изготовления изделий ответственного назначения в машиностроении, а также для производства высокопрочных труб (водоснабжение, водоотведение, газо-, нефте-проводы). Изделия и трубы из Высокопрочного чугуна отличаются высокой прочностью, долговечностью, высокими эксплуатационными свойствами.