Разведение морских губок

Аквакультура – это разведение и выращивание водных организмов под контролем человека в пресной или морской воде. Морское направление называют морской аквакультурой или марикультурой , она объединяет разведение и выращивание рыб, моллюсков, ракообразных, водорослей и других гидробионтов в морях, лиманах и других водоемах с соленой водой.

Марикультура бывает экстенсивной и интенсивной.

Пример экстенсивной марикультуры – широко применяемые в России технологии выращивания мидии и морского гребешка, когда на специальные вывешенные коллекторы собирается оседающая из планктона молодь диких гидробионтов и доращивается до взрослых размеров без искусственных подкормок. Для этих же целей конструируют подводные ландшафты, например, искусственные рифы, в которых находят убежища подвижные животные, и специальные неровные поверхности для расселения животных- обрастателей. Также практикуется пересадка гидробионтов в места, более благоприятные для их питания и роста. Такое направление марикультуры имеет многовековую историю.

Интенсивная марикультура – активное искусственное воздействие на один, несколько или на все этапы жизненного цикла объекта разведения. Жизнестойкая молодь воспроизводится при таком способе искусственно и затем подращивается до нужных размеров на специальных заводах или участках акватории. На морские плантации вносятся дополнительные корма и удобрения, выполняется селекционная работа для выведения гидробионтов с заданными качествами.

На практике чаще встречается смешанный тип ведения морского хозяйства.

От древности к современности

Разведение водных обитателей, прежде всего рыб, началось очень давно, не менее 4 тысяч лет тому назад, в Китае. Это были пруды для разведения пресноводной рыбы. 500 лет назад в Поднебесной выращивали не только рыбу, но и устриц, и других моллюсков.

Жители средиземноморских побережий Римской империи разводили кефаль в лагунах.

В XV веке на Гавайских островах существовали бассейны для выращивания морских рыб, которые отгораживались от моря длинными валами и плотинами. К началу прошлого века еще сохранилось более 150 таких древних сооружений.

В Японии уже в XVII веке начали успешно разводить устриц и получать с подводных плантаций по нескольку десятков тысяч тонн водорослей и двустворчатых моллюсков (устриц, гребешков и др.)

В России карповые хозяйства появились в XII–XIII вв., сначала при монастырях, а позже и в помещичьих хозяйствах, и на государственных землях.

В настоящее время ведущие рыболовные страны мира активно развивают отрасль аквакультуры. В чем причина такого внимания к отрасли?

  • После установления исключительных двухсотмильных экономических зон большинство ведущих рыболовных держав ощутили ограничение возможностей для развития промышленного рыболовства. Промысловая нагрузка на традиционные объекты лова стала слишком велика, что привело к снижению естественных запасов водных биоресурсов.
  • Были разработаны экономически выгодные промышленные технологии культивирования ценных объектов лова. Себестоимость искусственного производства одной тонны рыбной продукции в пересчете на единицу белка меньше себестоимости мяса крупного рогатого скота и свиней примерно в 2,5 раза, птицы – в 1,5 раза. Продуктивность аквакультурных хозяйств, как правило, значительно выше, чем у «сухопутных» сельскохозяйственных земель.
  • Население Земли продолжает расти быстрыми темпами, это обостряет проблему обеспечения продовольствием.
  • Аквакультурные хозяйства дают много дополнительных рабочих мест, что особенно важно для стран с высокой плотностью и низкой занятостью населения – Китая, Индии, Индонезии, Вьетнама, Японии, Бангладеш, Таиланда, именно они сегодня в группе мировых лидеров развития аквакультуры. В этих азиатских странах используется преимущественно ручной труд.

В рыбных хозяйствах развитых европейских стран – Норвегии, Великобритании, Дании, Нидерландов, Финляндии, все производственные процессы автоматизированы.

В настоящее время непосредственно на производстве рыбной продукции занято около 10 млн. человек, больше 90% из них – в странах Азии. По статистике, одно рабочее место в секторе аквакультуры обеспечивает в среднем по четыре рабочих места в смежных производствах (переработка, перевозки, производство кормов, оборудования и комплектующих материалов, маркетинговые услуги и т.д.). В итоге, число созданных благодаря аквакультуре рабочих мест приближается к 200 миллионам.

Самый высокопродуктивный вид растений, искусственно разводимых на Земле – морская капуста . Ее урожай достигает 200-300 тонн сырой массы с гектара, что соответствует 50-65 тоннам сухой массы. По данным Всемирной пищевой организации ежегодный урожай промышленно культивируемой ламинарии в мире свыше 4,5 миллиона тонн в год.

Марикультура в России

У нашей страны самая протяженная линия морского побережья – около 60 тыс. км, общая площадь мелководий прилегающих морей, пригодная для использования в целях марикультуры, составляет 0,38 млн. км 2 . Все это дает громадные возможности для развития отрасли. Однако, несмотря на имеющиеся потенциальные возможности, аквакультура в России пока развита слабо.

Только потенциал юга Дальнего Востока по выращиванию гидробионтов и моллюсков в морской воде составляет более 3,5 млн тонн. Продуктивность акватории у побережья для развития марикультуры составляет более 1,9 млн тонн, Приморского края – свыше 600 тыс. тонн, Хабаровского края – 700 тыс. тонн.

Все морские акватории российского побережья и юга находятся в благоприятных климатических условиях для культивирования и воспроизводства самых дорогостоящих промысловых гидробионтов. Наиболее перспективными видами для культивирования в Приморье являются , морской гребешок, серый морской еж, тихоокеанские мидии и устрицы, ламинария.

Дальний Восток России считается «Родиной» современной отечественной марикультуры. В Хасанском районе Приморского края в 1972 году было создано первое хозяйство по выращиванию моллюсков, перед которым ставилась задача разработки биотехнологий культивирования приморского гребешка, мидии, тихоокеанской устрицы и ламинарии с учетом опыта Японии и Кореи. Были разработаны и успешно внедрены в производство технологии выращивания этих гидробионтов. Однако в то время не удалось добиться рентабельной работы созданных марикультурных хозяйств. Сейчас эта отрасль постепенно возрождается. К сожалению, пока суммарная продукция всех хозяйств Приморья всего 1000 тонн в год.

Может быть, имеет смысл постепенно сокращать объемы рыболовства и переходить на искусственное разведение рыбы и других гидробионтов? Можно, не рискуя жизнью рыбаков, не отправляя суда на многие месяцы в море, получать ту же самую продукцию. Проблема в том, что дикая и выращенная человеком рыба и моллюски пока совсем не равны по качеству. Почему, расскажем в .

Марикультура (морская аквакультура) - выращивание полезных водорослей, моллюсков, рыб и других организмов в морях, лагунах, лиманах, эстуариях или в искусственных условиях

Продуктивность этого вида деятель­ности может быть очень высокой. Например, с одного гектара морских плантаций можно собрать до 300 т мидии, до 120 т морской капусты или вырастить до 3 т креветок. Если в 1985 году по данным ФАО мировая продукция марикультуры достигала 12.1 млн. т, то в 1996 году только в одном Китае было выращено на морских фермах 6.3 млн. т животных и водорослей.

Многовековая практика марикультуры основана на использовании естественной биопродуктивности морских экосистем для культивирования нужных животных и водорослей. Такая марикультура называется экстенсивной. Это широко применяемые у нас в стране технологии выращивания мидии и гребешка: на вывешенные коллекто­ра собирается оседающая из планктона молодь от диких производителей и подращивается до товарных разме­ров без искусственных подкормок на подвесных устройствах или в естественных условиях на дне. Сюда же относится проведение мелиоративных мероприятий - конструирование подводных ландшафтов, таких, напри­мер, как искусственные рифы, образующих систему убежищ для подвижных животных и разноуровенные повер­хности для поселения обрастателей. Здесь естественным путем образуется богатейшее сообщество по био­массе в десятки раз большее, чем в окружающем ландшафте. И, наконец, трансплантация (пересадки) гидробионтов в места более благоприятные для питания и роста.

Современное развитие марикультуры и увеличение ее доли на мировом рынке рыбной продукции обуслов­лено новым, более высоким уровнем ее развития - интенсификацией этой отрасли хозяйства.

Интенсивная марикультура - это активное искусственное воздействие на одну или на все стадии жизненного цикла объекта культивирования. Это искусственное воспроизводство жизнестойкой молоди и ее дальнейшее подращивание до товарных размеров на специальных заводах. Это внесения на морские плантации дополни­тельных кормов или удобрений. Это селекционная работа и выведения гидробионтов с заданными высокими товарными качествами. В практической деятельности чаще встречается смешанный тип ведения морского хозяй­ства, когда для получения в больших количествах жизнестойкой молоди животных или рассады водорослей применяется интенсивная заводская технология, а выращивание до товарных размеров происходит в естествен­ных условиях в море. Целями марикультуры может быть восстановление и увеличение численности и биомассы объектов водных биоресурсов или выращивание животных и водорослей в коммерческих целях. Но у этого вида хозяйственной деятельности может быть еще одна специализация - это санитарная или санитарно-товарная марикультура.

Санитарная марикультура - культивирование гидробионтов для биологической очистки прибрежных вод. Ис­пользуется многократно усиленная средствами марикультуры способность морских экосистем изменять каче­ственные характеристики водных масс, основанная на свойствах ряда организмов накапливать, связывать, либо использовать для своего развития те или иные вещества, изымаемые из окружающей среды. Так, например, на 1 квадратном метре мидиевой банки моллюсками за сутки может быть профильтровано от 50 до 90 м3 воды, причем количество патогенных бактерий содержащихся в воде за один прогон уменьшается в 2 раза.

Биологическое очищение моря происходит за счет биоседиментации и осветления воды животными-фильтраторами, минерализации органического вещества животными детритофагами, фотосинтетической аэрации воды зарослями водорослей и трав и обогащения ее биологически активными метаболитами, инкорпорации поллютантов и билогической детоксикации химических соединений.

В санитарно-товарной марикультуре после специальной очистки многие животные и растения могут быть использованы в пищу или переработаны на технические нужды.

Санитарная марикультура - дело перспективное и необходимое, особенно для побережий с крупными при­морскими городами и большим объемом промышленных и бытовых стоков. Однако, существует опасность обра­зования застойных зон и возникновения вторичного загрязнения, ведь животные и растения концентрируют и накапливают в себе вредные вещества. Поэтому для разработки и реализации каждого проекта санитарной марикультуры требуется проведение индивидуального комплекса исследований состава загрязнений, гидроло­гических условий акватории, возможностей утилизации и очистки выращенной продукции.

Промышленная марикультура на Дальнем Востоке ведет отсчет с конца 70-х годов. На первом этапе стави­лась задача разработки биотехнологий культивирования приморского гребешка, мидии, тихоокеанской устрицы и ламинарии с учетом применяемых методов марикультуры в Японии и Корее. Методическая задача была реше­на - разработаны и успешно внедрены в производство технологии выращивания этих гидробионтов. Однако, в то время в условиях затратной экономики не удалось добиться рентабельного функционирования созданных марикультурных хозяйств и они все пришли в упадок. Исключение составляют лишь несколько ферм, держащих­ся все эти годы на энтузиазме владельцев. В новых социально-экономических условиях начинается возрожде­ние марикультуры и по целому ряду обстоятельств в ближайшее время ожидается ее бурный рост.

Культивирование мидии

Искусственное выращивание мидии освоено с давних времен. В настоя­щее время свыше 80% мидий добывается культивированием. В мировой прак­тике известны три основных способа марикультуры мидий - выращивание на грунте, выращивание на грунте на донных устройствах, выращивание в толще воды на подвесных устройствах.

Выращивание на грунте основано на перемещении мидий с естествен­ных банок на заранее подготовленные участки морского дна. Этот метод имеет существенные недостатки - моллюски доступны хищникам и парази­там, а после добычи требуется очистка мидий от донного ила и содержащих­ся в них мелких минеральных частиц.

Выращивание в толще воды основано на прикреплении планктонных личинок к свободной поверхности - коллектору. После прикрепления личинки начинают расти до товарных размеров. В качестве коллекторов можно ис­пользовать устройства, устанавливаемые непосредственно на дне или же плавающие на поверхности или в толще воды.

При выращивании в толще воды на донных устройствах, особенно рас­пространенном во Франции (метод «бушо»), в качестве коллекторов исполь­зуют колья или сваи, которые параллельными рядами вбивают в грунт. Для увеличения свободной поверхности и предотвращения опадания моллюсков под собственным весом на поверхность кольев наносят дополнительные суб­страты: ветки, веревки, сетчатые мешки. Этот метод применяется в местах с высокими приливо-отливными колебаниями уровня моря. К этому же типу культивирования относится использование портовых свай, между которыми укладывают перекладины с подвешенными коллекторами.

В настоящее время наибольшее распространение получило культивиро­вание мидий на плавучих устройствах. Производственный процесс выращи­вания мидий этим способом включает в себя три этапа: сбор спата, его вы­ращивание на коллекторах до товарных размеров, сбор урожая. Весь период культивирования составляет около 2 лет.

Для сбора спата важно правильно выбрать место для размещения кол­лекторов, выбор которого делается по результатам планктонных съемок.

Коллекторы размещаются на плотовых или ярусных установках. Плоты могут быть разных размеров и конструкций и для них вовсе не требуются дорогостоящие материалы. Плотовые конструкции используют в хорошо защищенных от волн и ветра бухтах. Ярусные установки - это гидробиотехни­ческие установки (ГБТС), аналогичные для культивирования гребешка, лами­нарии и устрицы, собранные из капроновых канатов, плавучестей и якорей, В качестве коллекторов обычно используют канаты, веревки, скрученные сети. Чтобы мидии не «оползали» вниз, на веревках завязывают узлы, делают вставки из дерева, резины, пенопласта или расплетенных обрезков каната. Коллекто­ры нужно выставляет в начале июня задолго до начала нереста, чтобы обрасли микроводорослевой и бактериальной пленками и гидроидами, иначе осе­дания личинок мидии может не произойти.

В сентябре-октрябре, когда спат мидий достигает в среднем 6-15 мм и плотности 6-10 тыс экз. на коллектор, их заключают в сетные рукава, чтобы защитить моллюсков от опадания. В этом состоянии они находятся до дости­жения товарных размеров. Большей эффективности можно достичь, когда мидий годовиков с 1 га ГБТС рассаживает на 3 га выростных ГБТС в таких же, сетных рукавах. При такой технологии можно вырастить урожай до 150 т сыр­ца с 1 га. Средняя же урожайность сырца при двухгодичном цикле принима­ется 50 т/га.

Стоимость 4 га ГБТС (1 га для сбора спата и подращивания до года и 3 га для товарного выращивания) для выращивания мидий составляет 1760 тыс. рублей, текущие затраты на 1 производственный цикл (2 года) - 1470 тыс. руб. в ценах 2000 года, а урожай с одного цикла не менее 150 т сырца.

Культивирование ламинарии японской

Ламинария японская - основной объект промысла и переработки бурых водорослей на Дальнем Востоке России. Ее огромные запасы распределены на больших площадях зачастую у малонаселенных и удаленных побережий Японского и Охотского морей. Создание плантаций с устойчивым урожаем приближает сырье к базам переработки и стабилизирует его поступление. Только в водах Приморья на плантациях площадью 5 млн. га возможно выращивание 150-350 тыс. т морской капусты ежегодно. Для наших условий наиболее отрабо­таны технологии подвесного выращивания в двухгодичном цикле и одногодичном с выращиванием рассады в цехах.

Плантации для двухгодичного выращивания ламинарии лучше располагать в полузакрытых бухтах, обеспе­ченных хорошим водообменом с открытым морем. Водорослевая плантация состоит из последовательно уста­новленных П-образных элементов параллельными рядами с интервалом 8 м. Длина горизонтальных канатов около 40-50 м.

Биотехнологическая схема выращивания ламинарии японской в 2-х годичном цикле состоит из пяти этапов: получение спор и оспоривание ими субстратов, выращивание рассады на посадочно-выростных субстратах в море, прореживание и пересадка спорофитов на новые выростные поводцы, контроль за выращиванием ламина­рии до товарных размеров, сбор урожая.

Аквакультура - это разведение и выращивание водных организмов (гидробионтов). В настоящее время происходит бурное развитие аквакультуры. Многие специалисты считают ее индустрией будущего. В промышленных масштабах культивируют рыбу (более 100 видов), речных раков, креветок, моллюсков, морские водоросли.[ ...]

Аквакультура означает разведение и выращивание различных гидробионтов - водорослей, беспозвоночных, рыб в искусственных водоемах или в специально сконструированных емкостях. Различают пресноводную аквакультуру, включающую в основном рыбоводство в пресных водоемах, и марикультуру, которая занимается выращиванием различных морских объектов: водорослей, беспозвоночных (мидий, морских гребешков) и некоторых видов рыб (камбал, лососевых и др.).[ ...]

Среди высших организмов наибольшие успехи в разведении достигнуты в области аквакультур. Значение промышленного разведения водных организмов очень важно и имеет серьезные перспективы. В настоящее время около 25 % всех животных белков добывается из водной среды. В 80-е годы общая мировая добыча рыб, водных позвоночных и водорослей превысила 70 млн. т, однако это составляет всего лишь 1 % потребляемой человеком пищевой продукции, а 99 % приходится на сельское хозяйство. Надо отметить, что пока используется главным образом простая эксплуатация морских ресурсов - рыболовство, добывание моллюсков и ракообразных; задачей же становится активное разведение гидробионтов, т. е. аквакультура. В середине 80-х годов на долю этой деятельности приходилось 10 млн. т, т. е. около 12,5 % общей добычи морской продукции.[ ...]

МАРККУ ЛЪТУРА - искусственное выращивание и разведение морских промысловых организмов (устриц, моллюсков, водорослей и др.), в частности в морях, лагунах, лиманах, речных эстуариях и т.д. (морская аквакультура). А в естественных и искусственных континентальных водоемах - главным образом рыборазведение. В последние годы чрезмерный вылов рыбы и других морепродуктов в Мировом океана сильно истощил биологические ресурсы, причем многие места получения морепродуктов в Атлантическом и Тихом океанах были доведены почти до полного истощения. В связи с этим и получила широкое развитие марикультурд, корки которой уходят в глубокую древность: еще за 2000 лет до н.э. в Японии на приливных участках побережий занимались выращиванием устриц. В настоящее время марикультура дает около 9 млн т продукции или 1/7 всех морепродуктов, причем главными производителями являются Китай, Япония, Индия и др. (табл. 36).[ ...]

Что касается патогенной бактериальной флоры сточных ьод, то она выживает в морской воде довольно долго. Фитонциды, выделяемые морскими водорослями, не подавляют жизнедеятельности патогенных микробов (Congrès de Bordeaux, 1954) t поскольку они обладают в ней (как отмечает Бёттьо-Buttiaux, 1953) ничтожным литическим действием. Как указывает этот же исследователь, концентрация бактериофагов в сточных водах в 20 раз превышает концентрацию соответствующих патогенных микробов. Поэтому при значительном разведении морской водой сточных вод обнаружить присутствие патогенных микробов легче всего по их бактериофагам.[ ...]

Из табл. 1.3 хорошо видно, что максимально продуктивны экосистемы суши. Хотя площадь суши вдвое меньше, чем площадь, занимаемая океанами, ее экосистемы имеют годовую первичную продукцию углерода, более чем вдвое превышающую таковую Мирового Океана (52,8 млрд. тонн и 24,8 млрд. тонн соответственно) при относительной продуктивности наземных экосистем, в 7 раз превышающей продуктивность экосистем океана. Из этого, в частности, следует, что надежды на то, что полное освоение биологических ресурсов океана позволит человечеству решить продовольственную проблему, не очень обоснованны. По-видимому, возможности в этой области невелики - уже сейчас уровень эксплуатации многих популяций рыб, китообразных, ластоногих близок к критическому, для многих промысловых беспозвоночных - моллюсков, ракообразных и других, в связи со значительным падением их численности в природных популяциях стало экономически выгодным разведение их на специализированных морских фермах, развитие марикультуры. Примерно таково же и положение со съедобными водорослями, такими как ламинария (морская капуста) и фукус, а также водорослями, используемыми в промышленности для получения агар-агара и многих других ценнейших веществ.

Водоросли богаты микроэлеметами, йодом, витаминами, содержат антибактериальные вещества и аникоагулянты. Они содержат сахара, которые не накапливаются в крови и не способствуют развитию диабета.

Из водорослей получают кормовую крупку, которую добавляют в комбикорма. Их используют в качестве удобрений.

Из красных водорослей получают агар, агароид, карриганан, широко использующиеся в медицине, парфюмерии, пищевой промышленности. Из бурых водорослей альгинаты (соли альговой кислоты), обладающие стабилизирующими свойствами и маннит.

В нашей стране агар получают из анфелиции, произрастающей на Дальнем Востоке и в Белом море, а также из фурцеллярии Балтийского моря и филлофоры Черного моря. Из ламинариевых и фукусовых водорослей Белого моря получают альгинат, манит, кормовую крупку. Ламинарию японскую (морскую капусту) используют в пищу.

В настоящее время 80 % добываемых водорослей выращивают искусственно.

Основные объекты выращивания: бурые водоросли – ламинария, ундария, костария, макроцистис; красные водоросли – порфира, эухема, грацилярия, хипнея; зеленые водоросли – энтероморфа и ульва.

Методы выращивания: использование в качестве субстрата камней и скал на дне моря, на искусственно созданных рифах, на искусственном субстрате в толще воды, на мягком грунте лагун, прудов и других закрытых водоемах, в специальных искусственных бассейнах, емкостях с регулируемыми условиями. Наиболее широко распространено выращивание водорослей на искусственном субстрате в толще воды (бурые, красные, зеленые водоросли).

На мягком грунте лагун и в закрытых водоемах выращивают багрянки и неприкрепленные формы грацилярии. В искусственных емкостях с регулируемыми условиями выращивают агароносы: эухему, грацилярию, хипнею, в монокультуре так ив поликультуре. Этот способ требует наибольших затрат.

Большое значение имеет способ выращивания на искусственно созданных рифах.

Преимущества марикультуры водорослей:

Выращивание в удобных для эксплуатации и выгодных с экономической точки зрения районах;

Урожай выше, чем в естественных зарослях;

Возможность селекционно-генетической работы, применение ростовых веществ;

Возможность выращивать водоросли за пределами их естественного ареала.

Бурые водоросли. Растут в морях умеренных широт, образуют плотные заросли от литорали до глубины 30 – 50 м. Высота от нескольких см до 60 м. Биомасса в естественных зарослях от 2 – 10 кг/м 2 до100 кг/м 2 . Размножаются бесполым и половым способом, реже – вегетативно. Питание происходит всей поверхностью слоевища.

Процесс выращивания ламинариевых водорослей состоит из нескольких этапов:

Подбор места для размещения хозяйства;

Установка каркаса конструкции плантации;

Подготовка посадочно-выростных субстратов;

Заготовка маточных слоевищ;

Стимулирование единовременного массового выхода зооспор из маточных слоевищ подсушиванием;

Посев спор на посадочно-выростные субстраты (оспоривание);

Перенос субстратов с осевшими эмбриоспорами в море или в специальные емкости с регулируемыми условиями;

Выращивание микроскопических стадий в регулируемых условиях (температура, освещенность, аэрация, питание);

Выращивание водорослей на всех стадиях развития в море.

При этом необходимо проводить работы по сохранению конструкции в рабочем состоянии, удалению обрастаний, прореживание, пересадку рассады. В завершении – снятие урожая, хранение и доставка сырья потребителю.

Район размещения хозяйства должен иметь благоприятный гидрологический и гидрохимический режимы, быть защищен от ветров и волнения, в воде должны отсутствовать загрязнения, должен быть хороший водообмен; вода должна быть прозрачной, соленой. Необходимо учитывать наличие значительных акваторий моря с глубинами 10 – 50 м, мест для размещения береговой базы и стоянки судов, песчаных грунтов с небольшим количеством камней.

Для выращивания ламинариевых водорослей применяют штормоустойчивые конструкции. Каркас носителя, на который крепят субстраты, состоит из горизонтально натянутого основного несущего каната длиной 50 – 120 м и диаметром 60 мм. Натяжение обеспечивается оттяжками, которые крепят к якорям из бетона массой 1,5 – 2 т. Горизонтальный канат поддерживается наплавами.

В качестве субстратов используются капроновые веревки длиной 5 м и т. д. Перед использованием субстраты вымачивают в морской воде 10 – 14 суток для удаления вредных веществ. Затем субстраты высушивают для удаления спор и личинок морских организмов, осевших при вымачивании. К нижнему концу привязывают груз 0,3 – 0,5 кг. Общее число выростных субстратов на 1 га – 1 – 3 тыс. Размещают выростные субстраты на горизонтальном канате на расстоянии 0,5 – 2 м друг от друга.

Маточные слоевища лучшего качества (цельные, крупные, без повреждений) обмывают морской водой и подсушивают. Субстраты оспоривают в специальных бассейнах. Существует 3 способа оспоривания:

Первый. Подсушенные в течение 6 – 12 часов (развешенные под навесом) слоевища и посадочно-выростные субстраты слоями укладывают в емкости, заливают фильтрованной морской водой и оставляют на сутки.

Второй. Подсушенные слоевища помещают в емкости, заливают фильтрованной, стерилизованной нагреванием до 70 0 С и охлажденной морской водой на 4 – 5 часов. Затем слоевища вынимают, суспензию спор фильтруют через двойной слой марли или мелкий мельничный газ. Посадочно-выростные субстраты погружают в суспензию зооспор и разбавлением стерильной морской водой доводят их концентрацию до 5 – 10 шт. в поле зрения микроскопа при увеличении в 100 раз.

Третий. Подсушенные в течение 1 – 4 часов слоевища, переложенные бумагой, свернутые в рулон и оставленные на сутки, погружают в стерильную морскую воду на 30 – 60 минут. Полученную суспензию зооспор фильтруют через двойной слой марли или мелкий мельничный газ. Затем ее перемешивают, разводят до концентрации 5 – 10 шт. в поле зрения микроскопа при увеличении в 100 раз. Потом в суспензию погружают субстраты.

Оседание зооспор, превращение их в эмбриоспоры, закрепление на субстрате длятся 1 – 1,5 суток, после чего субстраты переносят в море.

Сапрофитов длиной 30 – 70 см с развитыми ризоидами (органы прикрепления) пересаживают на капроновый сеточник – веревку диаметром 1 – 12 мм. 1 га рассадного участка обеспечивает 4 – 5 га плантации. Пучки рассады вставляют между прядями веревки через каждые 10 см. Рассаду выращивают не только в море, но и в специальных помещениях. В баки вместимостью 100 л заливают стерильную морскую воду, помещают субстраты с осевшими зооспорами (рамки с нитями). Баки устанавливают в бассейнах с циркулирующей водой заданной температуры. Для уменьшения испарения воды баки сверху закрывают прозрачной пленкой.

Необходимо контролировать развитие микроводорослей и бактерий, при необходимости менять воду в баках. Воду интенсивно аэрируют, в баки подают питательный раствор солей азота, фосфора, микроэлементы.

После появления на нитях видимой глазом рассады (1 - 3 мм), ее адаптируют к условиям моря – снижают концентрацию питательных веществ и приближают температуру воды в баках к температуре морской воды. Рамки с рассадой переносят в море. После адаптации проводят пересадку (утром, вечером, в пасмурные дни).

Товарную продукцию ламинарии получают на первом – втором году выращивания. Сбор – в середине лета. Потом водоросли сушат и укладывают в тюки.

На ламинариевых водорослях развиваются обрастания. Они сильно обрастают гидроидами. Большой вред наносит брюхоногий моллюск эферия. Зарегистрированы заболевания, вызванные микроорганизмами и грибом. Профилактика – своевременное прореживание посадок и регулирование глубины выращивания.

Физиологические заболевания. Позеленение листовых пластин – при высоком содержании органики, плохом водообмене. Растения надо поднять к поверхности и очистить от ила. Побледнение листовых пластин – сильное освещение и недостаток питательных веществ. Необходимо опустить растения на глубину и удалить пораженные части. Гниение с образованием белых пятен у верхних слоевищ. Растения переносят в открытое море с лучшим водообменом.

Ламинария японская. Выращивают на плантациях в Японском море. Продолжительность жизни – 2 года. Выращивают в двухгодичном или одногодичном цикле. При одногодичном цикле способные к раннему спорообразованию растения выращивают в специальном режиме с освещением и подкормкой солями азота и фосфора. При одногодичном цикле производительность хозяйства значительно возрастает.

Ламинария сахаристая произрастает в Белом и Баренцевом морях. Быстро растет, достигает 2 – 3 м длины, имеет короткий жизненный цикл. Соленость 24 – 35 промилле. Растет от нижней литорали до 10 – 15 м, в бухтах и заливах, защищенных от волн, что облегчает работу и снижает затраты на создание штормоустойчивых установок. Биомасса 1 – 15 кг/м 2 . Необходим хороший водообмен. Выращивают в течение 2 лет тем же способом, что и ламинарию японскую.

Костария ребристая – перспективный вид аквакультуры на дальнем Востоке. Растет на твердых грунтах, раковинах, других водорослях на глубине 0,2 – 20 м. На плантациях, где выращивают ламинарию японскую, костария рассматривается как сорняк. Это однолетнее растение, активно растет с января по апрель, достигая максимальных размеров в середине лета. Средняя масса слоевищ 240 г, длина – 150 – 160 см. Костарию выращивают по той же схеме, что и ламинарию. Урожайность 60 – 70 т/га.

Ундария перисто-надрезанная – относительно холодолюбивая водоросль, у южного побережья острова Хонсю ее выращивают зимой при температуре ниже 22 0 С. Культивируют на камнях и специальных блоках, на веревках. В первом случае, там, где есть естественные заросли ундарии, к камням и специальным бетонным блокам, опущенным на дно, прикрепляются зооспоры. Обросшие ундарией блоки переносят на новые места для создания дополнительных зарослей. Метод выращивания на веревках сходен с методом выращивания ламинарии. Урожай собирают ранней весной.

Макроцистис перифера произрастает в Северном полушарии от южного побережья Аляски до Калифорнии. Растет на скалистых и каменистых грунтах на глубине 20 – 30 м. Наиболее крупное растение среди морских водорослей – длина 60 м, темп роста – 0,6 м в сутки. Растение многолетнее, но ветви с листовидными пластинами однолетние. При культивировании рассаду укрепляют на сетке из искусственных волокон и погружают на глубину 12 – 24 м. Для обогащения поверхностных вод биогенными элементами и ускорения роста желательно поднимать глубинные, обогащенные питательными веществами воды в верхние горизонты. Урожайность 300 – 500 т в год.

Красные водоросли (багрянки). Широко распространены во всех морях от зоны прилива и отлива до глубины 50 – 100 м. Размеры от нескольких см до 2 м. размножаются вегетативно, половым и бесполым способами.

Порфира. Занимает одно из первых мест среди красных водорослей по объему выращивания. Содержит 40 % белка, витамины, микроэлементы. В Японии выращивают на субстрате – синтетические сети, натянутые на бамбуковые рамы. Рамы крепят на вбитые в дно шесты, так чтобы в прилив они затоплялись, а в отлив обсыхали, или сооружают плавающие или полуплавающие установки.

Для сбора посадочного материала в естественных зарослях устанавливаются коллекторы (раковины моллюсков, виниловые пленки, покрытые кальциевыми гранулами). На коллекторы оседают карпоспоры (январь – апрель).

Коллекторы переносят в бассейны с фильтрованной стерилизованной морской водой. Для ускорения роста добавляют соли азота, фосфора, микроэлементы. В бассейнах выращивают с зимы до сентября. В сентябре коллекторы переносят в море или в специальные бассейны при температуре 21 – 22 0 С. Вырастает так называемый конхоцелис. Продуцируются конхоспоры.

В море или в бассейны помещают сети, вымоченные в морской воде. На них оседают конхоспоры. После закрепления конхоспор растения выращивают в море до товарной массы. Слоевища товарной порфиры растут при температуре 17 – 20 0 С, пониженной солености и высоком содержании питательных веществ, т. е. в устьях рек. Первый урожай снимают через 50 – 60 суток. За период с ноября по март собирают 2 – 4 урожая.

Сети с проростками можно упаковать в поэтиленовый мешки, заморозить при температуре -20 - -25 0 С и выставлять в море по мере необходимости.

Урожай собирают с помощью стригущих механизмов или вакуумного насоса.

Болезни. Красная гниль – грибковое заболевание, передается через споры при температуре 24 – 28 0 С, пониженной солености и густых посадках. Поражает товарные слоевища. На листовых пластинах образуются пятна со светло-желтой серединой. Лечение – слоевища обрабатывают аминокислотами (гистидин, метионин, тирозин) в течение 12 – 23 часов.

«Желтая пятнистость» поражает конхоцелис. Заболевание вызывается высоким содержанием органики, выделяемой слоевищем порфиры, прогрессирует в щелочной среде.

Ведутся работы по селекции, изучению болезней, по выращиванию в искусственных условиях в течение круглого года.

Грациллярия используется для получения агара. Известно 5 видов. В нашей стране промысловых скоплений не образует. Жизненный цикл 4 – 5 месяцев. Обладает высоким темпом роста, эвригалинна (5 – 35 промилле), эвритермна (8 – 30 0 С), произрастает на глубинах 0,5 – 4 м даже в загрязненных водах. Способна образовывать полиплоиды, что ценно для селекционной работы.

Две формы грациллярии: прикрепленная (Японское море) и неприкрепленная (Черное море). Неприкрепленная форма обычно стерильна и размножается вегетативно. Неприкрепленную форму грациллярии культивируют 3 способами: на дне мелководных, хорошо прогреваемых лагун и искусственных прудов; на сетях и веревках в толще воды; в специальных емкостях при регулируемых условиях.

В прудах и лагунах соленость 25 промилле, температура воды 20 – 25 0 С. В прудах воду необходимо менять. Для борьбы с обрастаниями можно использовать некоторые виды рыб. Грациллярию можно выращивать в монокультуре или в поликультуре с крабами и креветками. Урожайность 3 – 10 т/га.

При выращивании в емкостях при регулируемых условиях урожайность до 24 т/га в год.

В Черном море на веревочных субстратах грациллярия растет круглогодично. В Японском море сложно получить посадочный материал, так как естественные заросли малочисленны.

Анфельция – многолетняя водоросль, живет 7 – 10 лет. Длина слоевища 7 – 25 см. В России встречаются прикрепленная (Белое море) и неприкрепленная формы (Дальний Восток).

Неприкрепленная форма образует пласт на песчано-илистых грунтах в заливе Петра Великого (Японское море), в районе острова Сахалин и Южно-Курильских островов на глубине 2 – 38 м. Размножение вегетативное.

Прикрепленная форма прикрепляется к твердым грунтам на глубине 1 – 5 м с помощью подошвы. Размножение вегетативное и моноспорами.

При выращивании в море неприкрепленной формы анфельции ее подсеивают на участки пласта, истощенного промыслом или создают новый пласт.

Эухема – культивируется на Филиппинах. Ферма располагают среди рифов, на мелководьях, защищенных от штормов, но с хорошим водообменом. Эухему выращивают на нейлоновых сетях, на 1 га – 800 сетей, 100 тыс. пучков растений. В процессе ухода удаляют обрастания и вредителей – морского ежа. Сбор урожая – через 2 месяца. Собирают 4 урожая в год общей массой 13 т/га.

Другой вид эухемы в США выращивают в бассейнах.

В Балтийском море ведутся работы по разведению агароносной водоросли фурцеллярии на искусственных рифах и твердых субстратах. В Японии разводят водоросли глейоплетис.

Зеленые водоросли. Содержат в хлоропластах только хлорофилл. Широко распространены во всех морях и океанах до глубины 20 – 30 м. Размеры от нескольких см до 1 м и более. Размножение вегететативное, бесполое и половое.

Разводят преимущественно в странах Юго-Восточной Азии и используют в пищу как источник белка. Используют также в качестве удобрений и для очистки сточных вод, в том числе и от тяжелых металлов. Объекты культивирования – монострома, ульва, энтероморфа, каулерпа, кладофора и др.

При культивировании используют сети, устанавливаемые в литоральной зоне и на мелководных участках морей.

Зеленые водоросли выращивают самостоятельно или совместно с порфирой. В год снимают 3 урожая.

Товарное выращивание кефалей (Шекк П.В., Бондарь В.П. и Малаховский В.А. ОдоАзчерНИРО, рыболовецкий колхоз им. Шмидта П.П.) (УДК 639.371.8)

На Черном и Азовском морях лагунно-лиманное кефалеводство имеет многовековую историю. Кефалевовыростные хозяйства использовали естественную популяцию кефалей, богатую кормовую базу водоемов. Их рыбопродукция, находясь в зависимости от урожайности поколений кефали в море и погодных условий, редко бывала высокой. Начиная с шестидесятых годов совокупность неблагоприятных антропогенных и природных факторов привела к тому, что запасы черноморских кефалей снизились. Из-за отсутствия мальков - посадочного материала кефалеводство в отдельных хозяйствах стало нерентабельным. Они приходили в упадок и ликвидировались. Выходом из сложившейся ситуации может стать искусственное разведение кефалей.

Однако традиционные методы пастбищного кефалеводства не позволяют контролировать процесс выращивания, не обеспечивают достаточно полное изъятие товарной рыбы из водоема. Значительная часть кефали остается в лиманах и гибнет в зимний период. В результате промвозврат в лучшие годы редко превышает 30-50 %.

Такое положение недопустимо при за- рыблении лиманов дорогостоящей молодью кефали, полученной в искусственных условиях. Поэтому представляется важным разработать методы контролируемого товарного выращивания ее в водоемах разного типа. Перспективным в этом отношении может стать выращивание кефали в садках, прудах либо изолированных участках лагун.

Опыты по контролируемому товарному выращиванию кефалей проводились в 1986-1987 гг. на лиманах северо-западной части Черного моря - Хаджибейском и Будакском (Шаболатском).

Хаджибейский лиман имеет площадь 7,2 тыс. га. Непосредственной связи с морем нет. Максимальная глубина составляет 13, средняя - 4 м. Соленость воды в районе установки садков 6-7‰ (северо-западная часть у с. Мариновка), средняя температура воды в период выращивания 22 °С (от 12 до 27 °С).

Шаболатский лиман - мелководный водоем глубиной до 2 м площадью 2,5 тыс. га. Связь с морем осуществляется периодически по каналам. Соленость в районе проведения работ 14-15‰ (юго-западная часть водоема), средняя температура воды 23 °С (от 20 до 32 °С).

В качестве рыбопосадочного материала использовали молодь трех видов черноморских кефалей. Цикл выращивания лобана и остроноса включал два этапа: зимовку сеголетков в зимовальном комплексе Экспериментального кефалевого завода (ЭКЗ) и последующее их товарное выращивание, сингиля - только товарное выращивание. Годовиков кефали этого вида ловили весной в прилегающих к лиманам акваториях Черного моря.

Опыты по зимовке лобана выполнены на двух группах сеголетков из естественной популяции и на мальках, полученных в искусственных условиях на экспериментальной базе АзчерНИРО (Керченский пролив) и доставленных на ЭКЗ. Рассматривали возможные варианты зимнего содержания лобана в специальных зимовалах и в бассейнах, выполненных из бетона, где установлена проточность воды.

Сеголетков остроноса вылавливали в прибрежной зоне моря, а их зимовку проводили в условиях проточности термальной артезианской воды в садке, выполненном из бетона.

Летнее выращивание кефали осуществляли в сетчатых садках и садках из железобетона с хорошим водообменом, а также отгороженном участке лагуны. Садки из капроновой дели имели прямоугольную форму. Крышка к садку пришивалась наглухо. Кормление рыбы в садке осуществлялось с помощью специальных рукавов.

Бетонные садки для летнего выращивания имели прямоугольную форму (25Х4Х1,2 м) при уровне воды 1 м. Водоснабжение из лагуны производилось с помощью электронасоса, что обеспечивало двукратную смену воды в сутки.

Участок лагуны площадью 0,4 га и средней глубиной 0,6 м изолировался при помощи сетного полотна в Шаболатском лимане.

Зимующих сеголетков кефали лобана и остроноса подкармливали сушеным гаммарусом, дафнией, гранулированным кормом рецепта РК-С. Суточный рацион составлял 11 -15% массы рыб.

Было установлено, что годовики лобана предпочитают более высокую температуру зимовки, чем остроноса. При одинаковых плотности посадки, режиме кормления выживаемость мальков лобана в зимовале при средней температуре 9,7 °С составляла 26,6-59,0 %, а в бассейне при средней температуре 10,5 °С была выше - 74,0-75,6 %. Выживаемость годовиков остроноса как более холодостойкого вида при тех же условиях составила 86,0 и 88,0 %.

Фактором, определяющим успешность зимовки, является соленость воды. На основании имеющихся данных можно предположить, что более высокая соленость предпочтительна и способствует лучшему физиологическому состоянию рыб. Оказалось, что крупные размеры и высокое содержание жира в тканях являются основным критерием успешной зимовки годовиков лобана. Так, с декабря по апрель при самых суровых условиях погибло 73,5 % годовиков из естественной популяции и только 41 % полученных в искусственных условиях. Первая группа была в 2,1 раза мельче и имела содержание жира в 1,4 раза ниже.

Сравнительно небольшие размеры перезимовавших годовиков кефали не позволяют сразу после зимовки помещать их на выращивание в делевые садки и изолированные участки лимана. Поэтому в мае мальков подращивали в пластиковых бассейнах объемом 1,5 м 3 с хорошим водообменом. Плотность посадки сингиля составляла 120-200 экз/м 3 , лобана - 200-250, остроноса - 200- 300 экз/м 3 . Рыб кормили 3-4 раза в день артемией, гранулированными кормами рецептов PK-C, Ст-4Аз, РГМ-8м, а также пастообразным кормом на основе фарша из шпрота или хамсы (50 %) с добавлением пшеничной муки (10%), комбикорма (20 %) и детрита либо водорослей (20 %). Суточный рацион сингиля и остроноса составлял 20-25, лобана - 25-30 % массы тела. Поедаемость зависела от вида корма, температуры и прозрачности воды. Мальки предпочитали живую артемию, гомогенизированный пастообразный корм и гранулированный корм Ст-4Аз. В температурном диапазоне 20-26 °С поедаемость корма обычно была полной, однако снижалась в пасмурные либо штормовые дни, когда подаваемая в бассейны вода была мутной. Наряду с задаваемым искусственным кормом молодь кефали охотно поедала планктонных ракообразных, попадавших в бассейн с водой, а также обрастания.

Высокая температура и обильное питание способствовали высокому темпу роста мальков (см. таблицу). Исключение составляла молодь лобана, заметно отстававшая в темпе роста от рыб из лагуны. Вероятно, это связано с неадекватностью применявшихся кормов. Такое предположение подтвердилось в ходе дальнейшего товарного выращивания, которое осуществлялось в садках, установленных в Хаджибейском и Шаболатском лиманах. В первом варианте садки подвешивали на штормоустойчивом носителе оригинальной конструкции, представлявшем собой гибкую плавающую раму, выполненную из каната "геркулес" с прикрепленными поплавками. Во втором применяли обычный гундерный носитель, т. е. укрепление с помощью шестов. Подросшую молодь кефали помещали в садки размером 2X2X2 м, выполненные из безузловой дели с ячеей 3,5 мм. По мере роста увеличивали размер садков (4Х10X2 м) с ячеей дели 6,5 мм. По мере обрастания садков через каждые 1,5- 2 мес рыб пересаживали в другие очищенные садки.

В 1986 г. в условиях Шаболатского лимана кефаль кормили пастообразным кормом на основе рыбного фарша. Суточный рацион составлял 5-15 % массы в зависимости от температуры и возраста рыб. Корм вносили 3-5 раз в день на специальные придонные кормушки, который съедался за 20-30 мин. В пасмурные и штормовые дни рационы и частота кормлений снижались. В условиях Хаджибейского лимана кефаль кормили один раз в трое суток молотым комбикормом марки К-111/3 с добавлением пшеничной муки до образования комка. Анализ питания рыб показал, что в этом случае они питались преимущественно естественным кормом - зоопланктоном, гаммарусами и обрастаниями. Доля используемых мягких фракций комбикорма не превышала 10-15 %. Грубые зерновые компоненты не поедались, оставаясь на кормушке.

При плотностях посадки в Шаболате 20 экз/м 3 и 30 экз/м 3 в Хаджибее рост двухлетков сингиля был выше в условиях Хаджибейского лимана, что объяснялось более высокой долей естественных живых кормов. Темп роста лобана, выращиваемого в садках в Шаболатском лимане, был чрезвычайно низок. Лишь около 10 % рыб к концу опыта имели массу, близкую к 100 г. В Хаджибейском же лимане несколько экземпляров лобана, выращиваемых совместно с сингилем, за тот же период достигли массы 250-335 г.

Средняя масса сингиля, выращенного в Шаболатском лимане в 1986 г., была равна 52, в Хаджибейском - 60 г. Очевидно, что рыба не использовала в полной мере потенции роста. Масса лобана из Шаболатского лимана на свободном нагуле в 1986 г. составила 250-360 г, а сингиля - 110-125 г.

В 1987 г. эксперимент в Шаболатской лагуне был повторен, наряду с пастообразным кормом применяли гранулированный для лососевых рыб, а также смесь комбикорма и гранулированного карпового корма. В этом случае средняя масса лобана к концу эксперимента превышала 100, а остроноса - 80 г. Выживаемость рыб в ходе садкового выращивания в 1986-1987 гг. составляла 96-94 %, кормовой коэффициент - 1,8-3,2.

Параллельно на базе ЭКЗ проводили эксперименты по товарному выращиванию кефали в прудах и отгороженных участках лимана. В прудах содержали двухлетков лобана и сингиля. Плотность посадки 25-30 экз/м 3 . Использовались экраны из полиэтилена, где появлялись обрастания, что увеличивало кормовую базу пруда. Кроме того, рыб кормили 3 раза в день пастообразным кормом. Рацион составлял 10-20 % массы рыб. Необходимо отметить, что в прудах встречались гаммариды, полихеты и другие беспозвоночные, но они плохо использовались кефалью, равно как и обрастания с экранов (до 10-15 % рациона). Очевидно, этим в значительной степени объясняется низкий темп роста рыб при высоком кормовом коэффициенте (3,5- 4,2). Выживаемость сингиля в прудах составила 90, лобана - 80 %.

Наиболее обнадеживающие результаты были получены в 1987 г. при товарном выращивании остроноса в изолированном участке Шаболата. Во второй половине июля залив лимана был отгорожен барьером из капроновой дели с ячеей 5 мм, укрепленным на 40 стойках и прижатым ко дну водоема по всей длине якорной цепью. Сюда было помещено 300 экз. остроноса средней массой 43 г. Рыб не подкармливали, однако обильная естественная кормовая база обеспечивала высокий темп роста. За 60 сут выращивания средняя масса рыб достигла 96 г, а у более 15 % особей - 110- 115г. Одновозрастная кефаль в лимане в этот период имела среднюю массу 98,7, а в море - 65 г. Гибель кефали в изолированном участке не наблюдалась, однако около 20 % рыб погибли при облове. Изоляция участка лиманов оказалась достаточно штормоустойчивой, обеспечивала хороший водообмен и полную сохранность нагуливающихся рыб.

Проведенные эксперименты показали перспективность товарного выращивания кефали в садках и изолированных участках. Применяемый способ является экономически целесообразным, так как позволяет повысить выживаемость рыбы по сравнению с пастбищным выращиванием в 2-3 раза.

Использование человеком природных экологических систем, в том числе и систем океана, можно осуществлять разными способами. Крупнейший эколог Ю. Одум пишет: "...стратегия "наибольшей защиты", т. е. стремление достигнуть максимальной поддержки сложной структуры биомассы, ...часто вступает в противоречие со стремлением получить наивысший возможный урожай" . Сейчас определились два основных направления: многоцелевое использование и стратегия "расчленения", при которой на одних участках искусственно поддерживается высокопродуктивный тип, а на других - охраняемый. При использовании экологических систем суши давно выявились преимущества тактики "расчленения", тогда как при использовании морских экосистем она только начинает развиваться в виде управляемых морских хозяйств и других форм марикультуры.

Под термином марикультура (морская аквакультура) подразумевается разведение и выращивание растений, беспозвоночных животных и рыб в морских и солоноватых водах под контролем человека. Сейчас наметились три главных направления марикультуры: товарное выращивание, получение в искусственных условиях и выпуск в водоемы молоди и мелиорация районов естественного воспроизводства промысловых и других ценных животных и растений. В направлении товарного выращивания можно выделить морские хозяйства пищевого, кормового, технического, фармакологического и других типов. В последние годы все отчетливее проявляется тенденция к организации хозяйств комплексного многоцелевого использования.

Марикультура может осуществляться экстенсивными и интенсивными методами (рис. 4.9). Экстенсивное культивирование, основанное на применении естественных водоемов и естественных пищевых организмов, характеризуется низким уровнем контроля, начальных затрат и технологии, а следовательно, и низкой эффективностью, обусловленной помимо указанных факторов зависимостью от местного климата и качества воды. Для интенсивного культивирования, использующего как естественные, так и искусственные системы, характерны высокий уровень контроля, начальных затрат, технологии . Наиболее распространенной формой марикультуры являются подводные хозяйства, которые можно подразделить на фермы для выращивания беспозвоночных и рыб и плантации для культивирования водорослей.

Выделим самые общие технологические операции, характерные для марикультуры.

Подбор и оценка участков. Участки для искусственного выращивания морских организмов должны отвечать ряду требований, зачастую противоречивых. Важнейшее из них - обеспечение оптимальных условий выращивания. Размеры акваторий, на которых возможно создание тех или иных плантаций, и площади дна с благоприятными условиями для расселения и последующего роста и развития молоди культивируемых объектов определяют потенциальную мощность морских хозяйств . Возможны два принципиально различных подхода к оценке участков. При одном стремятся подобрать среду обитания (биотоп) и донные сообщества, максимально приближающиеся к природным, в которых наиболее высока численность и биомасса интересующих человека видов. При втором подходе как бы абстрагируются от естественного окружения культивируемых организмов и заботятся преимущественно об удовлетворении их биологических потребностей и удобстве проведения технологических операций. Первый подход характерен для хозяйств экстенсивного типа, второй - интенсивного.

Для осуществления отдельных стадий технологического процесса выращивания требуются разные типы участков. Например, при культивировании гребешка необходимо иметь три типа участков: для сбора молоди с помощью искусственных субстратов (коллекторов), временного подращивания или выращивания молоди до товарного размера и товарного выращивания гребешка на дне. На первом участке должна быть обеспечена высокая численность спата (осевшей молоди гребешка) на коллекторах; на втором - соответствующие гидрологические условия в толще воды и на третьем - необходимые глубина, топография и характер грунта. Важное значение имеют и экономические критерии. Так, при выращивании ламинарии глубина в местах размещения установок в принципе не ограничивается, но для экономичного расходования материалов оптимальными следует считать глубины 15-25 м .

Предварительное инженерное обследование участков позволяет провести расчет общего количества выращиваемых организмов на основании учета ряда факторов, из которых важнейшими являются обеспечение животных кислородом и пищей. При этом для разных организмов лимитирующие факторы также различны. Например, для животных-фильтраторов (гребешок, мидии, устрицы) важно, чтобы в воде было достаточное количество взвешенных питательных веществ. В этом случае они могут располагаться почти вплотную друг к другу. При выращивании же дальневосточного трепанга необходима определенная минимальная площадь грунта, при недостатке которой трепанг не будет нормально питаться даже при больших запасах пищи.

В расчетах необходимо учитывать, что сами культивируемые организмы в значительной степени трансформируют среду своего обитания. Так, огромные массы фекалий на дне приводят к уменьшению содержания кислорода и выделению сероводорода, который, растворяясь в воде, повреждает раковины моллюсков.

Подготовка акватории. В зависимости от предполагаемого использования участков степень подготовки дна может варьироваться от весьма незначительной до сложной технической и биологической мелиорации. Наибольший объем мероприятий осуществляется на участках донного выращивания, где удаляются препятствия, мешающие обслуживанию установок и сбору "урожая", производится планирование дна с помощью землечерпательных снарядов и подводных бульдозеров. С этой же целью удаляются макрофиты. В некоторых случаях применяется вспашка дна для полного уничтожения врагов и конкурентов культивируемых организмов. При вспашке вредные организмы погибают под слоем песка и ила толщиной 6 см за 5-50 дней. В необходимых случаях возводятся искусственные сооружения, служащие для общего улучшения гидрологической обстановки - волноломы, плавающие гасители волн, сооружения, регулирующие приливные течения, насосы для откачки донных вод.

Установка технологических сооружений. К технологическим установкам относятся устройства для осаждения личинок (коллекторы), выращивания и содержания взрослых организмов. Конкретные требования к таким устройствам определяются избранной технологией и условиями акватории, но все технологические сооружения должны отвечать таким требованиям, как удобство обслуживания, волно-, ветро- и льдоустойчивость, прочность, долговечность, ремонтоспособность и др. На выполнение этих требований большое влияние оказывают гидрологические условия в месте размещения установок. В связи с этим в несущих конструкциях устройств, предназначенных для культивирования разных организмов, но работающих в сходных гидрологических условиях, могут применяться сходные конструктивные решения .

В качестве примера можно привести установки для выращивания ламинарии и размещения коллекторов и садков для выращивания гребешка (рис. 4.10). Основная структурная единица этих установок - несущий канат с прикрепленной к нему серией поплавков (кухтылей). Концы канатов присоединяются к бетонным якорям или к периферийной раме. Канаты образуют гибкую систему, противостоящую волновому воздействию, поэтому такие установки можно размещать в открытых местах.

Детали конструкции рабочих частей технологических установок и материал, из которого они изготавливаются, в значительной степени определяют успех применения подобных установок.

Уход за установками и контроль процессов выращивания. Технологические операции, осуществляемые в процессе выращивания, чрезвычайно разнообразны и полностью определяются видом культивируемых объектов. При использовании личинок, развивающихся в море, определяющее значение имеют сроки выставления сооружений. При поздней установке коллекторов не произойдет полного оседания личинок, при слишком ранней - на коллекторы осядут личинки конкурирующих непромысловых видов.

Детальный обзор технологических операций культивирования выходит за пределы задач настоящей книги, поэтому здесь лишь отметим, что при эксплуатации технологических установок подводных хозяйств ярко проявляется общая тенденция производственной деятельности человека на малых глубинах - стремление максимально ограничить применение собственно подводной техники и проводить технологические операции с поверхности. Водолазный труд, как труд высококвалифицированный и дорогой, используется только в совершенно необходимых случаях. К таковым относятся осмотр и ремонт подводных установок, периодические наблюдения за развитием культивируемых организмов, операции по борьбе с хищниками и конкурентными организмами. Для борьбы с вредными организмами донные участки обрабатывают различными химическими веществами, для борьбы с морскими звездами используют сети, формалин, электрорешетки и воздушно-пузырьковые завесы. Недавно японские ученые предложили прокладывать по дну микроперфорированные, виниловые трубки, наполненные минерально-гелевой смесью, содержащей 40 % сульфата меди. Морские звезды, переползающие через эти трубки, погибают в течение нескольких суток.

Большой вред при искусственном выращивании водорослей наносят растительноядные организмы. Для предотвращения выедания предлагаются такие меры, как сбор или уничтожение хищников; внесение дополнительной пищи, отвлекающей хищников от культивируемых водорослей; защита искусственных субстратов сетчатыми оградами. В Японии разработана конструкция закрытого сетчатого садка для водорослей, в стенке которого имеется отверстие для водолазов, снабженное застежкой "молния".

Сбор. Сбор товарной продукции производится преимущественно с надводных плавсредств, эстакад и подобных сооружений.

Важнейшим вопросом марикультуры является регулирование поступления питательных веществ. Так, увеличение количества сточных вод вызывает "цветение" фитопланктона, снижает содержание растворенного кислорода и увеличивает концентрацию бактерий. Усиливается также обрастание технологических установок марикультуры. Обрастатели конкурируют за субстрат, корм и кислород с выращиваемыми организмами, понижают их кондицию, забивают сетки садков. С другой стороны, приходится бороться с недостатком питательных веществ. Известны опыты выращивания лангустов и камбалы в садках, вода в которые подавалась насосами с глубины 40 м. На глубине водозабора устанавливались сетчатые контейнеры с органическими остатками (отбросами), способствующими развитию фито- и зоопланктона. Но наибольший интерес представляет использование неисчерпаемых запасов биогенных элементов в глубинах океана. Уже сейчас имеются примеры создания искусственного апвеллинга * и доказывается принципиальная возможность его использования.

* (Апвеллинг - подъем глубинных вод, обогащенных биогенными элементами. )

При традиционных методах марикультуры садки для содержания организмов и другие технологические установки располагают в приповерхностном слое воды в прибрежной зоне. Наряду с достоинством такого размещения - удобством обслуживания - следует отметить и его недостатки: легкую повреждаемость штормами и льдами, забивание стенок садков водорослями и мусором, уязвимость к воздействию загрязнений. Сетки садков, сильно повреждаемые при соприкосновении с дном, приходится менять каждые шесть месяцев. И, тем не менее, в странах, где марикультура развивается особенно интенсивно (например, в Японии), большинство удобных участков мелководья уже заняты и остро встает вопрос о расширении районов культивирования.

Поэтому все активнее разрабатывается технология культивирования организмов на больших глубинах Мирового океана. Несмотря на техническую сложность и высокую стоимость таких устройств, их разработка и опытная эксплуатация уже началась. Установки представляют собой комплекс садков или открытых платформ, автоматических кормораздатчиков и устройств, обеспечивающих регулирование глубины постановки всей системы. Это могут быть либо емкости, продуваемые воздухом (заполняемые водой) по акустическому или радиосигналу, либо специальные лебедки, заглубляющие систему во время шторма и в других необходимых случаях.

Помимо марикультуры, которая, как правило, предполагает изъятие (прямое или косвенное) организмов, полученных в процессе культивирования, в настоящее время все более заметную роль начинает играть технология воспроизводства морских животных и растений, оказывающих полезное воздействие на окружающую среду самим процессом своей жизнедеятельности. Так очень велико значение многих организмов в гидродинамической защите береговой полосы и искусственных сооружений (каналов, морей, водохранилищ).

Сейчас, при катастрофическом росте загрязнения и эвтрофикации водоемов, самое серьезное внимание уделяется изучению деятельности прибрежных организмов-фильтраторов. Во многих районах из-за недостаточного биологического самоочищения складывается напряженная санитарно-гидробиологическая обстановка, заставляющая проводить гидробиологическую мелиорацию. И здесь помимо подводных сооружений целесообразно создавать специальные поверхности на гидротехнических сооружениях (бунах, траверсах, волноломах), способствующие усилению пояса биофильтраторов.

Из способов мелиорации подводных участков с целью воспроизводства морских организмов наиболее широкое распространение получило сооружение искусственных рифов. В странах, имеющих развитое рыболовство, строительство рифов приобретает огромные масштабы. В Японии они протянулись уже на тысячи километров, и это позволило японцам существенно стабилизировать уловы ряда рыб и беспозвоночных животных. Человек уже давно заметил, что затопленные конструкции привлекают к себе рыб и других животных. Существует мнение, что искусственные рифы не увеличивают общую численность рыб в районе их установки, а лишь перераспределяют, концентрируют их. По-видимому, это справедливо только для небольшого отрезка времени после установки рифа: через некоторое время численность рыб, нашедших на рифах надежное убежище, возрастает как из-за увеличения срока жизни взрослых особей, так и благодаря лучшему выживанию молоди.

Конструкции искусственных рифов чрезвычайно разнообразны. Широко распространены рифы из изношенных автомобильных покрышек. Последние либо просто стягивают тросами в группы, либо соединяют шпильками в длинные цилиндры, разрезают пополам и заливают в бетонные плиты, монтируя в сложные пространственные фигуры. Достоинство рифов из покрышек - удобство монтажа и дешевизна. Однако только рифы, сооруженные из специально сконструированных элементов, позволяют удовлетворить сложные и часто противоречивые требования, предъявляемые к таким сооружениям. Основное из них - эффективность привлечения рыб. Подводные наблюдения на искусственных рифах, проведенные японскими учеными, показали, что рыбы разных видов ведут себя здесь неодинаково, одни проникают внутрь рифа, другие скапливаются непосредственно возле него, третьи - над рифом. Такие различия можно объяснить условиями добывания корма и формой рифа, в частности влиянием тени от него. Поэтому форма и конструкция рифов должны быть строго продуманы. За рубежом уже разработаны рифы, конфигурацию которых можно менять применительно к виду рыб и характеру течений. Они сооружаются из панелей в виде равносторонних треугольников семи различных типов со стороной от 2,5 до 10 м, позволяющих создавать объемы до 210 м 3 .

Очень важно, чтобы рифы не мешали другим видам деятельности человека в море, в частности рыболовству. В этом смысле удобна конструкция, выполненная в виде сферы (или полусферы) с проемами. Такое устройство, разработанное японскими специалистами, устойчиво к волнению, не засоряется и не рвет тралы.

Создание искусственных рифов - относительно недорогое и в то же время действенное мероприятие, и масштаб этих работ непрерывно расширяется. Однако магистральный путь освоения морских биологических ресурсов как естественных, так и воспроизведенных при участии человека - это комплексный подход к их использованию. Любой вид биологических ресурсов многосторонен, и, включая его лишь в одноцелевые технологические цепи, общество несет огромные материальные потери.

Комплексное использование биологических ресурсов - технически чрезвычайно сложная задача, здесь пока нет технологических традиций и устоявшихся приемов. Пионерами на этом пути станут, несомненно, хозяйства марикультуры. Именно в таких хозяйствах, где все основные технологические операции контролируются человеком, комплексная технология использования сырья наиболее эффективна .

Последовательное применение принципа комплексности подводной технологии позволит направленно изменять потоки вещества и энергии в отдельных блоках экосистемы Мирового океана для обеспечения максимально полного использования ресурсов биосферы.