Проблема подавления шума на изображениях и видео и различные подходы к ее решению. Уменьшение уровня шума через усреднение изображения

Может ухудшить степень детальности ваших цифровых или плёночных фотографий, поэтому подавление этого шума может значительно улучшить итоговое изображение или отпечаток. Проблема в том, что большинство методов шумоподавления всегда заодно размывает изображение. Некоторое сглаживание может быть приемлемо для изображений, на которых господствует вода или небо, но листва в пейзажах может пострадать даже от наиболее осторожных попыток подавления шума.

Данная статья сравнивает несколько распространённых методов шумоподавления, а также предлагает альтернативный подход: усреднение нескольких экспозиций с целью подавления шума. Усреднение изображений часто используется в высококлассной астрофотографии, но, вероятно, недоиспользуется в других типах съёмки при малом свете или ночью. Усреднение способно подавить шумы, не разрушив детальность, поскольку оно по сути увеличивает соотношение сигнал-шум (SNR) вашего изображения. Дополнительным выигрышем является то, что усреднение может заодно повысить глубину цветности вашего изображения - за грань возможностей одиночного снимка. Усреднение может также быть особенно полезно для тех, кто хочет сымитировать гладкость ISO 100, если камера позволяет минимум ISO 200 (как, например, большинство цифровых зеркальных камер Nikon).

Концепция

Усреднение изображений работает на основе предположения об абсолютно случайной природе шума в изображении. Соответственно, случайные отклонения от истинных данных в изображении будут последовательно снижаться по мере усреднения возрастающего числа изображений. Если вы сделаете два снимка нейтрально-серого образца, используя одинаковые параметры настройки камеры и при идентичных условиях (температура, освещённость и т.д.), вы сможете получить изображения, похожие на показанные слева.


Вышеприведенный график отражает флюктуации яркости в верхнем и нижнем изображениях синей и красной линиями, соответственно. Горизонтальная черта отражает среднее значение, которое соответствует идеальному виду изображения с нулевым уровнем шума. Заметьте, что колебания красной и синей линий уникальны и независимы. Если мы усредним значения пикселей в каждой из точек графика, мы получим снижение вариативности яркости, как показано ниже:


Несмотря на то, что результат усреднения двух графиков продолжает колебаться относительно идеального среднего, его максимальное отклонение значительно уменьшилось. Визуально это приводит к тому, что образец выглядит более гладко. Усреднение двух изображений обычно даёт уровень шума, соответствующий половинной чувствительности ISO, так что два изображения, снятые при ISO 400, будут сравнимы с одним, снятым при ISO 200, и так далее. В общем, уровень шума падает на квадратный корень от числа усреднённых изображений, то есть для снижения уровня шума вдвое требуется усреднить 4 изображения.

Сравнение шума и детальности

Следующий пример иллюстрирует эффективность усреднения реальных изображений. Следующий снимок был сделан при ISO 1600 на камеру Canon EOS 300D Digital Rebel и демонстрирует сильную зашумленность.

Истинный размер образцов
Оригинал 2 снимка 4 снимка

Заметьте, как усреднение и уменьшает шум, и проявляет детальность для каждого образца. Для сравнения используем лучшие из доступных программ шумоподавления, например, Neat Image :

Оригинал 2 снимка 4 снимка Neat Image Медианный фильтр

Neat Image лучше всех справилась с подавлением шума на гладком небе, но принесла в жертву детали на ветвях и кирпичной стенке. Для выделения оставшихся деталей и улучшения общего ощущения резкости можно использовать повышение резкости, но оно неспособно восстановить утраченную информацию. Медианный фильтр является примитивным методом, который присутствует в большинстве версий Фотошопа. Он подсчитывает значение в каждом пикселе как медиану от всех смежных пикселей. Он эффективен в подавлении очень малого шума, но оставляет нетронутыми более заметные отклонения и при этом исключает попиксельную детальность. В целом, Neat Image является лучшим выбором для ситуаций, когда усреднение снимков невозможно (используется съёмка с рук). В идеале разумно использовать оба подхода: сперва усреднить изображения для максимально возможного повышения SNR, а затем использовать Neat Image, чтобы подавить оставшийся шум:

Оригинал Усреднение: 4 снимка Neat Image Neat Image + усреднение

В программе Neat Image Pro Plus 4.5 использовались
стандартные параметры шумоподавления и «автоподстройка»

Обратите внимание, как комбинация шумоподавления и усреднения способна как сохранить детальность кирпичей, так и сохранить гладкий, малошумный вид. Недостатком метода усреднения является увеличение места, необходимого для хранения (несколько файлов вместо одного) и, вероятно, увеличение времени экспозиции. Усреднение не работает для изображений, которые подвержены линейчатому или структурному шуму. Заметьте, как ярко-белый пиксель в левом нижнем углу снимков не исчез в результате усреднения. Усреднение, в отличие от других снимков, требует отсутствия смещения камеры между экспозициями, а не только во время экспозиции. Таким образом, нужна повышенная осторожность и очень прочный штатив.

Усреднение изображений с использованием слоёв

Adobe Photoshop позволяет относительно быстро усреднить изображения, используя слои. Идея в том, чтобы положить каждое из изображений в отдельный слой и наложить их так, чтобы каждое изображение вносило равный вклад. Если по какой-то причине один из слоёв получает больший вес, чем прочие, эффективность усреднения понизится.

Следует сперва загрузить все усредняемые изображения в Photoshop и затем расположить их в слоях одно над другим в одном проекте. GIMP позволяет открывать изображения непосредственно как слои. После того как все усредняемые изображения оказались в слоях одного проекта, можно приступать собственно к усреднению.

При усреднении следует помнить, что плотность каждого слоя определяет, насколько будет виден слой, лежащий под ним, и то же самое справедливо для всех последующих слоёв. Это означает, что для корректного усреднения четырёх изображений недостаточно будет поставить плотность каждого слоя равной 25%. Вместо этого для нижнего (фонового) слоя нужно задать плотность 100%, для следующего над ним слоя 50%, для слоя над ним 33% и, наконец, для самого верхнего слоя 25%. Это проиллюстрировано ниже:

Когда нужно применять усреднение изображения вместо того, чтобы просто сделать более длинную выдержку при меньшей чувствительности ISO? В следующем наборе ситуаций это может оказаться полезным:

  • Чтобы исключить избыточный структурный шум на длинных выдержках
  • Для камер, у которых нет режима «bulb», предельная длина выдержки обычно составляет 15-30 секунд. В таких случаях два снимка при ISO 800 и 30 секундах дадут грубый эквивалент (как по яркости, так и по уровню шума) одной выдержки 60 секунд при ISO 400. Возможны многие другие комбинации...
  • Для ситуаций, в которых невозможно гарантировать непрерывные выдержки требуемой длины. Например, снимок делается в публичном месте, и требуется малый шум, однако длинная выдержка невозможна, поскольку кадр часто пересекают пешеходы. Можно сделать несколько коротких снимков между их появлением.
  • Чтобы избирательно заморозить движение в малодетальных, быстродвижущихся частях, сохранив при этом малое количество шума в высокодетальных, неподвижных областях. Например, в звёздную ночь с листвой на переднем плане.
  • Чтобы уменьшить шум в тенях (даже на снимках с низким ISO), из которых вы собираетесь впоследствии извлечь детали посредством пост-обработки.

Шумы могут быть случайные аналоговые, импульсные и различного рода детерминированные.

Случайные аналоговые шумы

Случайные аналоговые шумы порождаются, как правило, гранулярной структурой фотографического материала, но котором изготовлен оригинал. Шумы становятся актуальными при увеличении более чем в 8 раз.

Для устранения таких шумов применяются методы сглаживающей фильтрации.

Действие этих методов основано на цифровой фильтрации путем усреднения значения сигнала по окрестности считываемой пиксели. В программах типа PhotoShop эти сглаживающие фильтры носят название Blur, Gaussian Blur.

Blur даст прямое усреднение. Gaussian Blur вводит веса пиксель в матрицу усреднения по закону Гаусса.

Blur является устаревшим так как не позволяет регулировать степень усреднения. Степень сглаживания регулируется неоднократным применением фильтра.

Gaussian Blur более современный. В нем можно регулировать параметр усреднения, регулируя таким образом сглаживание.

Необходимо помнить, что использование таких фильтров может приводить к потери резкости изображения, так как усредняется не только шумовая структура, но и пиксели формирующие границу изображения. В некоторых случаях целесообразно после процедуры сглаживания дополнительно осуществлять процедуру нерезкого маскирования.

Случайные импульсные шумы

Под случайными импульсными шумами понимаются относительно редко расположенные единичные дефекты, типа царапин, пылинок. Применительно к ним процедура сглаживания обычно не эффективна в результате того, что размеры таких дефектов достаточно велики.

Для устранения таких дефектов применяются фильтры ранго-порядкового класса. Такие ранго-порядковые фильтры создают серии пиксель вдоль строки, упорядочивают эти серии, располагая их по порядку возрастания, откидывают минимальные и максимальные значения пиксель, которые могут быть дефектными и находят среднее значение в этой серии. Это среднее значение ставят на место анализируемой пиксели.

Таким образом можно устранить относительно мелкие дефекты как типа царапин, так и типа пыли. В принципе можно изменять длину серии и таким образом осуществлять селекцию более крупных дефектов.

Однако, для достаточно крупных дефектов, которые превышают длину серии пиксель этот метод не применим.

Именно по этому методу работает фильтр Dust and Scratches.

При более крупном импульсном шуме необходимо прибегать к полуавтоматическому ретушированию, в котором устранение дефектов изображения осуществляется путем замены дефектных пиксель на окрашенные пиксели из их ближнего окружения. Из ближнего окружения выбирается пикселя и сажается на дефектное место.


В программном обеспечении такая процедура называется штамп и требует значительных затрат времени. Прежде чем приступить к такой процедуре необходимо проанализировать изображение в масштабе увеличения при репродуцировании и устранить те дефекты, которые будут заметны при этом масштабе. В принципе, такая же процедура может быть использована и для редакционной коррекции, когда необходимо дополнить какие-то утраченные детали изображения.

Детерминированные шумы изображения

Наиболее ярким представителем детерминированных шумов изображения является растровая структура изображения, если в качестве оригинала используется полиграфический оттиск.

Считывание растрового изображения может привести к нежелательному взаимодействию растровой структуры изображения с новой растровой структурой генерируемой в процессе фотовывода.

Возможно два пути решения этой проблемы:

1. устранение растровой структуры оригинала в процессе сканирования и обработки. Для этого используются методы подобные методам аппретурной фильтрации при считывании изображения с большей апертурой, или их цифровой аналог, то есть усреднение пиксель и формирование усредненного сигнала.

Теоретически и экспериментально показали, что наилучшие результаты получаются при согласовании размера апертуры с размерами растрового элемента растровой структуры оригинала. Поэтому в процессе сканирования необходимо точно определить линиатуру растра, который использовался в оригинале и фильтр де растрирования выбирать в соответствие с этой линиатурой.

Для определения линиатуры растра в оригинале возможно использование специальных тестов. Некоторые современные программы, например LinoColor, позволяют в процессе предварительного сканирования определять линиатуру и в соответствие с ней устанавливать оптимальный фильтр дерастрирования.

Недостатки такого устранения:

1) потеря резкости изображения;

2) в следствии различных углов поворота растровых структур изображения для разных красок, полного согласования апертуры дерастрирования и растровой структуры не происходит и неизбежны остаточные флуктуации в изображении (муарообразование).

2. считывание растровой структуры с ее полным сохранением. В результате мы получим при считывании трех растровых цветоделенных изображения с сохранением растровой структуры. По сути дела мы получим изображение в системе СМУК. Далее это изображение можно перевести в Lab потеряв таким образом информацию о растровой структуре. Затем всю обработку перевести в Lab и перейти в СМУК со своей растровой структурой.

Для этого необходимо считывать с высоким разрешением. СopiDot – соответствующее программное обеспечение для перевода СМУК в Lab.

В настоящее время сложность заключается в том, что считывание цветных изображений имеет значительные трудности. Поэтому такого рода технология CopiDot, в настоящее время, используется для считывания фотоформ растрированных и цветоделенных.

Особенно интересна эта технология, которая в последнее время сильно развилась, необходимостью использования каких-то архивных фотофрм технологии C-t-P (компьютер-печатная форма).

3. перерастрирование с использованием растра нерегулярной структуры (частотно-модулированного).

Изображение может повреждаться шумами и помехами различного происхождения, например шумом видеодатчика, шумом зернистости фото материалов и ошибками в канале передатчика. Их влияние можно минимизировать пользуясь классическими методами статистической фильтрации. Другой возможный подход основан на использовании других эвристических методов пространственной обработки.

Шумы видеодатчиков или ошибки в канале передачи обычно проявляются на изображении как разрозненные изменения изолированных элементов, не обладающие пространственной корреляцией. Искаженные элементы часто весьма заметно отличаются от соседних элементов. Это наблюдение послужило основой для многих алгоритмов, обеспечивающих подавление шума.

Применение цифровой фильтрации изображений позволяет существенно улучшить качество изображения, получаемого в процессе СШП зондирования. Далее будет рассмотрено применение линейной фильтрации для сглаживания шумов на изображении (низкочастотная фильтрация), подчеркивание границ объектов с использованием высокочастотной фильтрации, а также метод медианной фильтрации устранения помех импульсного типа.

Рис. 7 поясняет простой пороговый метод подавления шума, при использовании которого последовательно измеряют яркость всех элементов изображения.

Рис. 3.7. Пороговый метод подавления шума.

Если яркость данного элемента превышает среднюю яркость группы ближайших элементов на некоторую пороговую величину, яркость элемента заменяется на среднюю яркость:

Если
]

Поскольку шум пространственно декоррелирован, в его спектре, как правило, содержатся более высокие пространственные частоты, чем в спектре обычного изображения. Следовательно, простая низкочастотная пространственная фильтрация может служить эффективным средством сглаживания шумов. Массив Q размера MM выходного изображения формируется путем дискретной свертки массива F размера NN исходного изображения со сглаживающим массивом H размера LL согласно формуле

Сглаживание шума обеспечивается низкочастотной фильтрацией с помощью массива H с положительными элементами. Ниже приведены сглаживающие массивы трех разновидностей, часто называемые шумоподавляющими масками:

Эти массивы нормированы для получения единичного коэффициента передачи, чтобы процедура подавления шума не вызывала смещение средней яркости обработанного изображения. Если требуемое подавление шума сопряжено с использованием массивов большого размера целесообразно выполнять свертку косвенным образом, применяя преобразование Фурье, так как обычно это дает выигрыш в объеме вычислений.

Подчеркивание границ .

В системах электронного сканирования изображений получаемый видео сигнал можно пропустить через электрический фильтр верхних частот. Другой способ обработки сканированных изображений заключается в использовании нерезкого маскирования. При этом изображение как бы сканируется двумя перекрывающимися апертурами, одна из которых соответствует нормальному разрешению, а другая - пониженному. В результате получают соответственно массив нормального изображения F (j, k) массив нечеткого изображения F L (j, k). Затем формируется массив маскированного изображения

F M (j, k) = c F (j, k) - (1-c) F L (j, k),

где C - коэффициент пропорциональности. Обычно значение C находится в пределах от 3/5 до 5/6, т.е. отношение составляющих нормальны и понижены четкости изменяется от 1.5 до 5.

Подчеркивание границ можно также осуществить, выполняя дискретную фильтрацию согласно соотношению (1) с использованием высокочастотного импульсного отклика H. Ниже представлены три типичные маски для выполнения высокочастотной фильтрации:




Эти маски отличаются тем, что сумма их элементов равна единице.

Еще одним способом подчеркивания границ является так называемая статистическое дифференцирование. Значение яркости каждого элемента делится на статистическую оценку среднеквадратического отклонения (j,k)

G (j,k) = F (j,k) /  (j,k).

Среднеквадратическое отклонение

вычисляется в некоторой окрестности N(j,k) элемента с координатами (j,k). Функция
- среднее значение яркости исходного изображения в точке с координатами (j,k), приближенно определяемая путем сглаживания изображения с помощью оператора низко частотной фильтрации согласно формуле (3.1). Улучшенное изображение, представленное массивом G (j,k), отличается от исходного изображения тем, что его яркость выше на границах, элементы которых непохожи на соседние элементы, и ниже на всех остальных участках. Следует отметить, что подчеркивание полезных границ сопровождается возрастанием шумовых составляющих.

Медианный фильтр.

Медианная фильтрация - метод нелинейной обработки сигналов, разработанный Тьюки . Этот метод оказывается полезным при подавлении шума на изображении. Одномерный медианный фильтр представляет собой скользящее окно, охватывающее нечетное число элементов изображения. Центральный элемент заменяется медианой всех элементов изображения в окне. Медианой дискретной последовательности

a 1 , a 2 , ..., a N для нечетного N является тот элемент, для которого существуют (N-1)/2 элементов, меньших или равных ему по величине, (N- 1)/2 больших или равных ему по величине. Пусть в окно попали элементы изображения с уровнями 80, 90, 200, 110, 120; в этом случае центральный элемент следует заменить значением 110, которое является медианой упорядоченной последовательности 80, 90, 110, 120, 200. Если в этом примере значение 200 является шумовым выбросом в монотонно возрастающей последовательности, то медианная фильтрация обеспечит существенное улучшение. Напротив, если значение 200 соответствует полезному импульсу сигнала (при использовании широкополосных датчиков), то обработка приведет к потере четкости воспроизводимого изображения. Таким образом, медианный фильтр в одних случаях обеспечивает подавление шума, в других - вызывает нежелательное подавление сигнала.

Медианный фильтр не влияет на ступенчатые или пилообразные функции, что обычно является желательным свойством. Однако этот фильтр подавляет импульсные сигналы, длительность которых составляет менее половины ширины окна. Фильтр так же вызывает уплощение вершины треугольной функции.

Возможности анализа действия медианного фильтра ограничены. Можно показать, что медиана произведения постоянной K и последовательности f (j) равна

med{ K f(j) }=K med{f (j)}.

Кроме того,

med{ K+ f(j) }=K + med{f (j)}.

Однако медиана суммы двух произвольных последовательностей f (j) и g(j) не равна сумме их медиан:

med{ g(j)+ f(j) }=med{g(j)}+ med{f (j)}.

Возможны различные стратегии применения медианного фильтра для подавления шумов. Одна из них рекомендует начинать с медианного фильтра, окно которого охватывает три элемента изображения. Если ослабление сигнала незначительно, окно фильтра расширяют до пяти элементов. Так поступают до тех пор пока медианная фильтрация начинает приносить больше вреда, чем пользы. Другая возможность состоит в осуществлении каскадной медианной фильтрации сигнала с использованием фиксированной или изменяемой ширины окна. В общем случае те области, которые остаются без изменения после однократной обработки фильтром, не меняются и после повторной обработки. Области, в которых длительность импульсных сигналов составляет менее половины ширины окна, будут подвергаться изменениям после каждого цикла обработки.

Концепцию медианного фильтра легко обобщить на два измерения, применяя двумерное окно желаемой формы, например прямоугольное или близкое к круговому. Очевидно, что двумерный медианный фильтр с окном размера LL обеспечивает более эффективное подавление шума, чем последовательно примененные горизонтальный и вертикальный одномерные медианные фильтры с окном размера L1; двумерная обработка, однако, приводит к более существенному ослаблению сигналов.

Медианный фильтр более эффективно подавляет разрозненные импульсные помехи, чем гладкие шумы. Медианную фильтрацию изображений в целях подавления шумов следует считать эвристическим методом. Ее нельзя применять в слепую. Напротив, следует проверять получаемые результаты, чтобы убедиться в целесообразности медианной фильтрации.

Шум изображения может ухудшить уровень детализации в цифровых или аналоговых фотографиях, и, соответственно, уменьшение шума может значительно улучшить ваше изображение при выводе на экран или печать. Проблема состоит в том, что большинство методов уменьшения или устранения шума всегда в конечном итоге приводят к смягчению изображения.

Некоторое смягчение может быть приемлемо для снимков, на которых по большей части изображена гладкая поверхность воды или небо, но, к примеру, листва деревьев на пейзажах может существенно пострадать даже от минимальных попыток понизить уровень шума.

В этой статье мы сравним несколько общих методов снижения уровня шума, а также опишем альтернативную технику: усреднение нескольких снимков с разной выдержкой, чтобы снизить уровень шума. Усреднение изображения часто применяется для снимков звездного неба, но, возможно, не так хорошо подходит для других типов съемки при малой освещенности и ночью.

При усреднении мы можем уменьшить уровень шума без ущерба для детализации, потому что при этом фактически увеличивается соотношение сигнал-шум (SNR ) вашего изображения. Дополнительным бонусом является то, что усреднение может также увеличить битовую глубину.

Усреднение может также быть полезно для тех, кто хочет имитировать гладкость ISO 100 , но чья камера поддерживает только ISO 200 (как большинство моделей цифровых зеркальных камер Nikon ).

Общая концепция

Усреднение изображений работает, отталкиваясь от того предположения, что шум в вашем изображении является на самом деле случайным. Таким образом, случайные флуктуации выше и ниже фактических данных изображения постепенно убираются, создавая одно среднее изображение из нескольких.

Если бы вы сделали два снимка гладкого серого пятна, используя те же настройки камеры и при одинаковых условиях (температура, освещение и т.д .), то вы бы получили изображения, аналогичные тем, что показаны на графике ниже:

Приведенный выше участок графика представляет в виде синих и красных полос колебания яркости пикселей верхнего и нижнего изображений соответственно. Пунктирная горизонтальная линия представляет собой среднее значение, или то, как бы выглядел этот участок, если бы уровень шума был равен нулю.

Обратите внимание, что и красная, и синяя линии пересекают нулевую отметку вверх и вниз. Если мы возьмем значение пикселя в каждой точке вдоль этой линии, и выведем среднее значение для верхнего и нижнего изображения в этой точке, то изменение яркости будет выглядеть следующим образом:


Даже с учетом того, что график усредненных значений все равно пересекает нулевую отметку, амплитуда максимального отклонения от нее значительно уменьшилась. Визуально, это проявляется в виде сглаживания изображения. Два усредненных изображения, как правило, имеют шум сопоставимый с половиной чувствительности для установок ISO . Поэтому два усредненных изображения, снятых в ISO 400 сопоставимы с одним изображением, снятым с ISO 200 , и так далее.

В общем, величина шума флуктуации уменьшается на величину, равную корню квадратному из количества усредненных изображений. Таким образом, чтобы получить снижение шума в два раза, вам нужно иметь 4 усредненных изображения.

Шум и детализация: сравнение

Следующая ситуация на реальном примере иллюстрирует эффективность усреднения изображений. Данная фотография была сделана при ISO 1600 с помощью Canon EOS 300D Digital Rebel , и на ней наблюдается слишком высокий уровень шума:


Обратите внимание, как усреднение снижает уровень шума и в то же время повышает детализацию для каждой области. Лучше всего использовать для таких задач программы для снижения уровня шума, такие как Neat Image . В следующем сравнении мы привели также результаты, полученные с ее помощью:


Neat Image лучше других приложений подходит для снижения шума на фото неба, но в то же время приводит к потере некоторых мелких деталей в ветвях деревьев или на снимках открытой кирпичной кладки. Для восстановления детализации можно использовать увеличение резкости.

Это улучшит вид изображения, однако увеличение резкости не может восстановить потерянную информацию. Фильтр Медиана — это очень простой метод, доступный в большинстве версий Photoshop . Он рассчитывает значение каждого пикселя, принимая среднее значение всех соседних пикселей.

Этот метод эффективен при удалении незначительного шума, однако он не справляется с большим шумом и устраняет детализацию на уровне пикселей. В целом, Neat Image — это лучший вариант для тех случаев, когда вы не можете использовать усреднение изображения (при ручной съемке ).

В идеале можно использовать комбинацию двух методов: усреднить изображения, чтобы увеличить отношение сигнал-шум, насколько это возможно, а затем применить Neat Image для удаления оставшегося шума:


Снижение шума с помощью Neat Image Pro Plus 4.5 при настройках по умолчанию и «автоматической тонкой настройкой»

Обратите внимание, как после применения обоих методов, нам удалось сохранить четкость вертикальных швов между кирпичами и в то же время добиться низкого уровня шума. К недостаткам метода усреднения относят требования к объему хранимой информации (несколько файлов изображений для одной фотографии ) и, возможно, более длительное время обработки.

Усреднение не срабатывает для изображений, которые имеют шумовую полосатость или шум с фиксированным узором. Обратите внимание, что на приведенном изображении ярко-белые «горячие пиксели » в левом нижнем и верхнем углах так и не исчезли после применения усреднения.

Для усреднения, в отличие от других методов, требуется нулевое смещение. Поэтому следует быть особенно осторожным при применении этой техники, и использовать ее только для снимков, сделанных с жестко закрепленного штатива.

Усреднение изображений в Photoshop с помощью слоев

Выполнение усреднения изображений с помощью слоев выполняется в Adobe Photoshop относительно быстро. Идея состоит в том, чтобы поместить каждое изображение на отдельном слое и смешать их так, чтобы каждый слой включался в финальное изображение равномерно. Если в силу определенных причин один из слоев влияет на финальное изображение больше, чем другие, смешивание изображений не будет столь эффективным.

Для выполнения этой техники сначала нужно загрузить все изображения, которые должны быть усреднены, в Photoshop , а затем скопировать и вставить каждое поверх друг друга так, чтобы они находились в том же самом окне проекта. После того, как это будет сделано, можно начинать усреднение.

Ключевой момент здесь — помнить, что в Photoshop непрозрачность каждого слоя определяет, насколько он «пропускает » нижележащий слой, и то же самое относится к каждому следующему изображению внизу. Это означает, что, например, для правильного усреднения четырех изображений не следует устанавливать непрозрачность каждого слоя на 25%.

Вместо этого непрозрачность нижнего (фонового ) слоя нужно установить на 100%, для слоя поверх него — 50%, следующего — 33%, и, наконец, верхнего слоя — 25%.

Для усреднения любого количества изображений, процент непрозрачности каждого слоя рассчитывается следующим образом:


Когда нужно выполнять усреднение изображений, а не просто установить большую выдержку при низкой скорости ISO ? Ниже приведен перечень случаев, когда более эффективной может оказаться описанная выше процедура:

  • Чтобы убрать слишком сильный шум с фиксированным узором из-за длинной выдержки;
  • Для камер, которые не имеют режима лампы, вы можете ограничить выдержку до 15-30 секунд. Для таких случаев необходимо учитывать следующее: нужно делать два снимка при ISO 800 и выдержке 30 секунд, чтобы они были приблизительно эквивалентны (как по яркости, так и по уровню шума ), и еще один при выдержке 60 секунд и ISO 400 . Возможны и другие комбинации;
  • В ситуациях, когда вы не можете гарантировать прерывание за определенный момент времени без воздействия на аппаратуру захвата или сцену. В качестве примера, можно привести фото, снимаемые в общественном месте, когда вам нужно обеспечить низкий уровень шума, но вы не можете установить достаточно длительную выдержку, потому что напротив объекта съемки постоянно проходят пешеходы. В таком случае вы можете сделать несколько коротких снимков в интервалах между проходами пешеходов;
  • Чтобы выборочно заморозить движущийся объект с низкой детализацией и при этом сохранить низкий уровень шума и высокую детализацию для объектов на фоне, которые движутся медленнее или являются неподвижными. Примером этого является звездная ночь с листвой на переднем плане;
  • Чтобы уменьшить шум в тенях (даже для снимков с низким ISO ), для которых вы хотите позже увеличить детализацию через процесс пост-обработки.

Перевод статьи «NOISE REDUCTION BY IMAGE AVERAGING » был подготовлен дружной командой проекта

Подавление шумов на изображениях

Довольно часто при формировании визуальных данных результирующие изображения получаются зашумленными. Это объясняется несовершенством аппаратуры, влиянием внешних факторов и т.п. В конечном результате это приводит к ухудшению качества визуального восприятия и снижению достоверности решений, которые будут приниматься на основе анализа таких изображений. Поэтому актуальной является задача устранения или снижения уровня шумов на изображениях. Решению задачи фильтрации шумов посвящено очень много работ, существуют различные методы и алгоритмы. В этой работе рассмотрим только некоторые подходы и возможности их реализации в системе Matlab.

Шаг 1: Считывание исходного изображения.

Шаг 2: Формирование зашумленных изображений.

Шаг 3: Использование медианного фильтра для устранения импульсного шума.

Шаг 4: Подавление шумовой составляющей с использованием операции сглаживания.

Шаг 5: Пороговый метод подавления шумов.

Шаг 6: Низкочастотная фильтрация с использованием шумоподавляющих масок.

Шаг 1: Считывание исходного изображения.

Считаем изображение из файла в рабочее пространство Matlab и отобразим его на экране монитора.

L=imread("kinder.bmp");

figure, imshow(L);

Рис.1 Исходное изображение.

Шаг 2: Формирование зашумленных изображений.

В системе Matlab (Image Processing Toolbox) существует возможность формирования и наложения на изображение трех типов шумов. Для этого используется встроенная функция imnoise, которая предназначена, в основном, для создания тестовых изображений, используемых при выборе и исследовании методов фильтрации шума. Рассмотрим несколько примеров наложения шума на изображения.

1) Добавление к изображению импульсного шума (по умолчанию плотность шума равна доле искаженных пикселей):

L2=imnoise(L,"salt&pepper", 0.05);

figure, imshow(L2);

Рис.2. Зашумленное изображение (импульсный шум).

2) Добавление к изображению гауссовского белого шума (по умолчанию математическое ожидание равно 0, а дисперсия - 0,01):

L1=imnoise(L,"gaussian");

figure, imshow(L1);

Рис.3. Зашумленное изображение (гауссовский шум).

3) Добавление к изображению мультипликативного шума (по умолчанию математическое ожидание равно 0, а дисперсия 0,04):

L3=imnoise(L,"speckle",0.04);

figure, imshow(L3);

Рис.4. Зашумленное изображение (мультипликативный шум).

Шаг 3: Использование медианного фильтра для устранения импульсного шума.

Одним из эффективных путей устранения импульсных шумов на изображении является применение медианного фильтра. Наиболее эффективным вариантом является реализация в виде скользящей апертуры.

For i=1+n1:N+n1; disp(i) for j=1+m1:M+m1; if j==1+m1; D=0; for a=-n1:n1; for b=-m1:m1; D(n1+1+a,m1+1+b)=Lr(i+a,j+b); end; end; end; if j>1+m1; for a=-n1:n1; D(n1+1+a,m+1)=Lr(i+a,j+m1); end; D=D(1:n,2:m+1); end; Lvyh(i,j)=median(D(:)); end; end; Lvyh=Lvyh(n1+1:N+n1, m1+1:M+m1); figure, imshow(Lvyh);

Для наглядного сравнения приведем три изображения вместе: исходное, зашумленное и восстановленное.

Рис. 5. Восстановление изображения, искаженного импульсным шумом, с применением метода медианной фильтрации.

Восстановленное изображение лишь незначительно отличается от исходного изображения и значительно лучше, с точки зрения визуального восприятия, зашумленного изображения.

Шаг 4: Подавление шумовой составляющей с использованием операции сглаживания.

Существует класс изображений, для которых подавление шумовой составляющей возможно реализовать с помощью операции сглаживания (метод низкочастотной пространственной фильтрации). Этот подход может применяться к обработке изображений, содержащих области большой площади с одинаковым уровнем яркости. Отметим, что уровень шумовой составляющей должен быть относительно небольшим.

F=ones(n,m); % n и m размерность скользящей апертуры

Lser=filter2(F,Lroshyrena,"same")/(n*m);

Рис. 6. Восстановление изображения, искаженного импульсным шумом с применением операции сглаживания.

Недостаток этого метода, в отличие от метода медианной фильтрации, состоит в том, что он приводит к размыванию границ объектов изображения.

Шаг 5: Пороговый метод подавления шумов.

Элементы изображения, которые были искажены шумом, заметно отличаются от соседних элементов. Это свойство легло в основу многих методов подавления шума, наиболее простой из которых, так называемый пороговый метод. При использовании этого метода последовательно проверяют яркости всех элементов изображения. Если яркость данного элемента превышает среднюю яркость локальной окрестности, тогда яркость данного элемента заменяется на среднюю яркость окрестности.

For i=1+n1:N+n1; disp(i) for j=1+m1:M+m1; if j==1+m1; D=0; for a=-n1:n1; for b=-m1:m1; D(n1+1+a,m1+1+b)=Lr(i+a,j+b); end; end; end; if j>1+m1; for a=-n1:n1; D(n1+1+a,m+1)=Lr(i+a,j+m1); end; D=D(1:n,2:m+1); end; LS=mean(mean(D)); if abs(Lr(i,j)-LS)>10/255; % Установка порога Lvyh(i,j)=LS; else Lvyh(i,j)=Lr(i,j); end; end; end; Lvyh=Lvyh(n1+1:N+n1,m1+1:M+m1,:); figure, imshow(Lvyh);

Рис. 7. Восстановление изображения, искаженного импульсным шумом, с применением порогового метода подавления шумов.

Шаг 6: Низкочастотная фильтрация с использованием шумоподавляющих масок.

В Шаге 4 было рассмотрено применение операции сглаживания для устранения шума. Рассмотрим примеры низкочастотной фильтрации с использованием других шумоподавляющих масок. Это могут быть следующие маски:

Маска 1: Маска 2: .

Маски для подавления шума представлены в виде нормированного массива для получения единичного коэффициента передачи, чтобы при подавлении шума не было искажений средней яркости. На рисунках представлено результат обработки зашумленного изображения маской 1 и маской 2 .

F=(1/10)*;

figure, imshow(Lvyh);

Рис. 8. Результат восстановления зашумленного импульсным шумом изображения с применением маски 1 .

F=(1/16)*;

Lvyh=filter2(F,L,"same")/(3*3);

figure, imshow(Lvyh);

Рис. 9. Результат восстановления зашумленного импульсным шумом изображения с применением маски 2 .

Это были примеры подавления импульсных шумов. Рассмотрим аналогичные примеры подавления гауссовского и мультипликативного шумов.

Рис. 10. Результат восстановления зашумленного гауссовским шумом изображения с применением маски 1 и маски 2 .

Рис. 11. Результат восстановления зашумленного мультипликативным шумом изображения с применением маски 1 и маски 2 .

Отметим, что универсальных методов нет и к обработке каждого изображения следует подходить индивидуально. Если речь идет о медианной и низкочастотной фильтрации, то качество обработки во многом зависит от удачного выбора размеров локальной апертуры.

Рассмотренные методы после некоторой модификации можно применять для обработки цветных изображений. Приведем пример подавления импульсного шума на цветном изображении.

Возьмем некоторое исходное изображение (рис. 12):

L=imread("lily.bmp");

figure, imshow(L);

Рис. 12. Исходное цветное изображение.

Наложим на него импульсный шум с некоторыми характеристиками:

L=imnoise(L,"salt&pepper",0.05);

figure, imshow(L);

Рис. 13. Зашумленное изображение.

For k=1:s; % обработка отдельно по каждой составляющей L=Lin(:,:,k); for i=1+n1:N+n1; disp(i) for j=1+m1:M+m1; if j==1+m1; D=0; for a=-n1:n1; for b=-m1:m1; D(n1+1+a,m1+1+b)=L(i+a,j+b); end; end; end; if j>1+m1; for a=-n1:n1; D(n1+1+a,m+1)=L(i+a,j+m1); end; D=D(1:n,2:m+1); end; Lres(i,j)=median(D(:)); end; end; end;

Рис. 14. Восстановленное изображение с применением метода медианной фильтрации.

Представленные выше методы являются довольно эффективными алгоритмами восстановления изображений, которые были искажены импульсным, гауссовским или мультипликативным шумом. Эти методы служат основой для построения других более сложных методов решения задач по устранению шумовой составляющей на изображениях.