Основы теории резания металлов.Выбор режимов резания. Главные движения: скорость резания и подача при токарной обработке Подача резца

Понятие о припуске на обработку. Детали машин, обрабатываемые на металлорежущих станках, изготавливаются из отливок, поковок, кусков прокатанного металла и других заготовок. Деталь получает требуемые форму и размеры после того, как с заготовки будут срезаны все излишки материала или, как говорят припуски, получившиеся при ее изготовлении.

Припуском (общим) называется слой металла, который необходимо удалить с заготовки для получения детали с окончательно отработанном виде.

Некоторые детали обрабатываются последовательно на нескольких станках, на каждом из которых снимается только часть общего припуска. Так, например, детали, диаметральные размеры которых должны быть очень точными, а поверхности иметь весьма малую шероховатость, обрабатывают предварительно на токарных, а окончательно на шлифовальных станках.

Слой металла, снимаемый на токарном станке, называется припуском на токарную обработку . При обработке цилиндрических деталей различают - припуск на сторону и припуск на диаметр. Припуск на диаметр равен удвоенной величине припуска на сторону. Он может определяться как разность диаметров в одном и том же сечении до и после обработки.

Часть металла, снятая (срезанная) с заготовки в процессе ее обработки, называется стружкой .

Клин как основа любого режущего инструмента. Режущие инструменты, применяемые при обработке деталей на станках, в частности токарных, очень разнообразны, но сущность работы их одинакова. Каждый из этих инструментов является клином, устройство и работа которого общеизвестны.

Нож посредством которого мы затачиваем карандаш, в поперечном сечении имеет форму клина. Столярная стамеска также представляет собой клин с острым углом между его боковыми сторонами.

Наиболее употребительный инструмент при обработки детали на токарном станке - это резец. Сечение рабочей части резца также имеет форму клина.

Рис. №1 Клин как основа любого режущего инструмента

Движения резания при точении. На рис.2 схематически показано обтачивание детали 1 резцом 2. Деталь при этом вращается по стрелке υ , а резец перемещается по стрелке s и снимает с детали стружку. Первое из этих движений является главным . Оно характеризуется скоростью резания. Второе движение - движение подачи .

Рис. №2 Движения и элементы резания при точении

Скорость резания. Каждая точка обрабатываемой по поверхности детали (рис.2), например точка А, проходит в единицу времени, например в одну минуту, некоторый путь. Длина этого пути может быть больше или меньше в зависимости от числа оборотов в минуту детали и от ее диаметра и определяет собой скорость резания.

Скорость резания называется длина пути, который проходит в одну минуту точка обрабатываемой поверхности детали относительно режущей кромки резца. Скорость резания измеряется в метрах в минуту и обозначается буквой υ . Для краткости вместо слов "метров в минуту" принять писать м / мин.

Скорость резания при точении находится по формуле

υ = πDn / 1000

где υ - искомая скорость резания в м / мин; π - отношение длины окружности к ее диаметру, равное 3,14; D - диаметр обрабатываемой поверхности детали в мм.; n - число оборотов детали в минуту. Произведение πDn в формуле должно быть разделено на1000, чтобы найденная скорость резания была выражена в метрах. Формула эта читается так: скорость резания равна произведению длины окружности обрабатываемой детали на число оборотов ее в минуту, разделенному на1000.
Подача. Перемещение резца при резании в зависимости от условий работы может происходить быстрее или медленнее и характеризуется, как это отмечено выше, подачей.
Подачей называется величина перемещения резца за один оборот обрабатываемой детали. Подача измеряется в миллиметрах на один оборот детали и обозначается буквой s (мм/об).
Подача называется продольной , если перемещение резца происходит параллельно оси обрабатываемой детали, и поперечной , когда резец перемещается перпендикулярно к этой оси.
Глубина резания. При перемещении резец снимает с детали слой материала, толщина которого характеризуется глубиной резания.
Глубиной резания
называется толщина снимаемого слоя материала, измеренная по перпендикуляру к обработанной поверхности детали. Глубина резания измеряется с миллиметрах и обозначается буквой t . Глубиной резания при наружном обтачивании является половина разности диаметров обрабатываемой детали до и после прохода резца. Таким образом, если диаметр детали до обтачивания был 100мм., а после одного прохода резца стал равен 90мм., то это значит что глубина резания была 5мм.
Срез, его толщина, ширина и площадь. В следствии остаточной деформации стружки, происходящей в процессе ее образования, ширена и особенно толщина ее получаются больше размеров b и a на рис. 2. Длина стружки оказывается меньше соответственного размера обрабатываемого участка поверхности детали. Поэтому площадь ƒ, заштрихованная на рис. 2 и называемая срезом, не отражает поперечного сечения стружки, снимаемой в этом случае.
Срезом называется поперечное сечение слоя металла, снимаемого при данной глубине резания и подаче. Размеры среза характеризуются его толщиной и шириной.
Толщиной среза называется расстояние между крайними точками работающей части режущей кромки резца. Ширина среза измеряется в миллиметрах (мм) и обозначается буквой b . Четырехугольник, заштрихованный на рис. 2, изображает площадь среза.
Площадь среза равна произведению подачи на глубину резания. Площадь среза измеряется в мм² , обозначается буквой ƒ и определяется по формуле ƒ= s t , где ƒ - глубина резания в мм.
Поверхности и плоскости в процессе резания. На обрабатываемой детали при снятии с нее стружки резцом различают поверхности: обрабатываемую, обработанную и поверхность резания (рис. 3).

Рис. 3. Поверхность и плоскость в процессе резания

Обрабатываемой поверхностью называется та поверхность, с которой снимается стружка.
Обработанной поверхностью называется поверхность детали, полученная после снятия стружки.

Поверхностью резания называется поверхность, образуемая на обрабатываемой детали непосредственно режущей кромкой резца.

Для определения углов резца установлены понятия: плоскость резания и основная плоскость.

Плоскость резания называется плоскость, касательная к поверхности резания и проходящая через режущую кромку резца.

Основной поверхностью называется плоскость, параллельная продольной и поперечной подачам. Она совпадает с опорной поверхностью резца.

Части резца и элементы его головки. Резец (рис. 4) состоит из головки, т.е. рабочей части, и тела, служащего для закрепления резца.

Рис. 4. Части резца и элементы его головки.

Поверхностям и другим элементам головки резца присвоены следующие названия.
Передней поверхностью резца называется та поверхность, по которой сходит стружка.
Задними поверхностями резца называются поверхности, обращенные к обрабатываемой детали, причем одна из них называется главной, а другая вспомогательной.
Режущими кромками резца называются линии, образованные пересечением передней и задних поверхностей его. Режущая кромка, выполняющая основную работу резания, называется главной. Другая режущая кромка резца называется вспомогательной.
Из рис. 4 видно, что главной задней поверхностью резца является поверхность, примыкающая к его главной режущей кромке, а вспомогательной - примыкающая к вспомогательной режущей кромке.
Вершиной резца называется место сопряжения главной и вспомогательной кромкой. Вершина резца может быть острой, плоскосрезанной или закругленной.
Углы резца. Главными углами резца являются главный задний угол, передний угол, угол заострения и угол резания. Эти углы измеряются в главной секущей плоскости (рис. 5).
Главная секущая плоскость есть плоскость, перпендикулярная к главной режущей кромке и основной плоскости.
Главным задним углом называется угол между главной задней поверхностью резца и плоскостью резания. Этот угол обозначается греческой буквой α (альфа). Угол заострения называется угол между передней и главной задней поверхностями резца. Этот угол обозначатся греческой буквой β (бета).
Передним углом называется угол между передней поверхностью резца и плоскостью, проведенной через главную режущую кромку перпендикулярно к плоскости резания. Этот угол обозначается буквой γ (гамма).
Угол резания называется между передней поверхностью резца и плоскостью резания. Этот угол обозначается греческой буквой δ(дельта)>

.

Рис. 5. Углы токарного резца.

Кроме перечисленных, различают следующие углы резца: вспомогательный задний угол, главный угол в плане, вспомогательный угол в плане, угол при вершине резца и угол наклона главной режущей кромки.
Вспомогательным задним углом называется угол между вспомогательной задней поверхностью и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно к основной плоскости. Этот угол измеряется во вспомогательной секущей плоскости, перпендикулярной к вспомогательной режущей кромке, и основной плоскости и обозначается α¹ .
Главным углом в плане называется угол между главной режущей кромкой и направлением подачи. Этот угол обозначается буквой φ (фи).
Вспомогательным углом в плане называется угол между вспомогательной режущей кромкой и направлением подачи. Этот угол обозначается φ ¹ .
Углом при вершине называется угол, образованный пересечением главной и вспомогательной режущих кромок. Этот угол обозначается греческой буквой ε (ипсилон).
Упрощенное изображение углов резца, принятое на практике, указано на рис. 6, а и б (линия АА - плоскость резания). На рис. 6, в показаны углы резца в плане.
Главная режущая кромка резца может составлять различные углы наклона с линией, проведенной через вершину резца параллельно основной плоскости (рис. 7).

Рис. 6. Упрощенное изображение углов токарного резца.

Угол наклона измеряется в плоскости, проходящей через главную режущую кромку перпендикулярно к основной плоскости, и обозначается греческой буквой λ (лямбда). Угол этот считается положительным (рис. 7, а), когда вершина резца является самой низкой точкой режущей кромки; равным нулю (рис. 7, б) - при главной режущей кромке, параллельной основной плоскости, и отрицательным (рис. 7, в) - когда вершина резца является наивысшей точкой режущей кромки.

Рис. 7. Углы наклона главной режущей кромки: положительный (а), равный нулю (б) и отрицательный (в)

Значение углов резца и общие соображения при их выборе. Все перечисленные углы имеют важное значение для процесса резания и к выбору величины их следует подходить очень осторожно.
Чем больше передний угол γ резца, тем легче происходит снятие стружки. Но с увеличением этого угла (рис. 6, а) уменьшается угол заострения резца, а поэтому и прочность его.
Передний угол резца может быть вследствие этого сравнительно большим при обработке мягких материалов и, наоборот, должен быть уменьшен, если обрабатываемый материал тверд. Передний угол может быть и отрицательным (рис. 6, б), что способствует повышению прочности резца.
Из рис. 6, а ясно, что с уменьшением переднего угла резца увеличивается угол резания. Сопоставляя это со сказанным выше о зависимости переднего угла от твердости обрабатываемого материала, можно сказать, что чем тверже обрабатываемый материал, тем больше должен быть угол резания, и наоборот.
Чтобы определить величину угла резания δ, когда известен передний угол резца, достаточно, как это видно из рис. 6, а, вычесть из 90º данную величину переднего угла. Например, если передний угол резца равен 25º , угол резания его составляет 90º - 25º = 65º ; если передний угол составляет - 5º , то угол резания будет равен 90º - (-5º ) = 95º .
Задний угол резца α необходим для того, чтобы между задней поверхностью резца и поверхностью резания обрабатываемой детали не было трения. При слишком малом заднем угле это трение получается настолько значительным, что резец сильно нагревается и становится негодным для дальнейшей работы. При слишком большом заднем угле угол заострения оказывается настолько малым, что резец становится непрочным.
Величина угла заострения β определяется сама собой после того, как выбраны задний и передний углы резца. В самом деле, из рис. 6, а очевидно, что для определения угла заострения данного резца достаточно вычесть из 90º сумму заднего и переднего его углов. Так, например, если резец имеет задний угол равным 8º , а передний 25º , то угол заострения его равен 90º - (8º +25º ) = 90º -33º =57º . Это правило следует помнить, так как им иногда приходится пользоваться при измерении углов резца.
Значение главного угла в плане φ вытекает из сопоставления рис. 8, а и б, на которых схематически показаны условия работы резцов при одинаковых подачах s и глубине резания t , но при разных значениях главного угла в плане.


Рис. 8. Влияние главного угла в плане на процесс резания.

При главном угле в плане, равном 60º , сила P , возникающая в процессе резания, вызывает меньший прогиб обрабатываемой детали, чем аналогичная сила Q при угле в плане 30º . Поэтому резец с углом φ=60º более пригоден для обработки нежестких деталей (относительно небольшого диаметра при большой длине) в сравнении с резцом, имеющим угол φ=30º . С другой стороны, при угле φ=30º длина режущей кромки резца, непосредственно участвующая в его работе, больше соответственной длины при φ=60º . Поэтому резец, изображенный на рис. 8, б, лучше поглощает теплоту, возникающую при образовании стружки и дольше работает от одной заточки до другой.
Значение ушла наклона λ заключается в том, что выбирая положительное или отрицательное значение его, мы можем направлять отходящую стружку в ту или другую сторону, что в некоторых случаях бывает очень полезно. Если угол наклона главной режущей кромки резца положителен, то завивающаяся стружка отходит вправо (рис. 9, а); при угле наклона, равном нулю, стружка отходит в направлении, перпендикулярном главной режущей кромке (рис. 9, б); при отрицательном угле наклона стружка отходит влево (рис. 9, в).

Рис. 9. Направление схода стружки при положительном (а), равном нулю (б) и отрицательном (в) угле наклона главной режущей кромки.

В понятие «режимы резания» входят глубина резания t, подача S и скорость резания V.

Токарная обработка должна вестись на таких режимах, при которых наиболее полно используются мощность станка и стойкость инструмента, обеспечивается высокое качество обработки при минимальной ее себестоимости и создаются безопасные условия работы.

При назначении режимов резания сначала устанавливают глубину резания, затем выбирают подачу и в зависимости от них определяют скорость резания.

Глубина резания определяется величиной припуска на обработку. Глубина резания оказывает большое влияние на силы резания, поэтому иногда возникает необходимость разделить припуск на несколько проходов.

Суммарный припуск разделяется следующим образом: 60%—на черновую обработку, 20—30 % — на получистовую и 10—20 % —на чистовую. При чистовой обработке глубина резания назначается в зависимости от необходимой степени точности и качества поверхности.

Величина подачи ограничивается силами, действующими в процессе резания: эти силы могут привести к поломке режущего инструмента, деформации и искажению формы заготовки, поломке станка. Подача выбирается максимально возможной, так как она непосредственно влияет на производительность обработки.

Обычно подача назначается из таблиц справочников по режимам резания, составленным на основе специальных исследований и изучения опыта работы машиностроительных заводов. Выбранная подача согласуется с кинематикой станка. При этом выбирается ближайшая меньшая из имеющихся на станке. Выбрать величину подачи можно из табл. 16—19.

Скорость резания зависит от материала режущей части резца, обрабатываемого материала, глубины резания, подачи и других факторов. Чем большую скорость резания позволяет достичь инструмент при одной и той же стойкости, тем выше его режущие свойства, тем более он производителен.

Стойкость резцов из быстрорежущих сталей уменьшается с увеличением скорости резания. Рациональная скорость резания для этих резцов — от 20 до 50 м/мин.

Стойкость резцов, оснащенных пластинками твердых сплавов, находится в более сложной зависимости от скорости резания. Рациональная скорость резания для этих резцов находится в пределах V=80—140 м/мин при стойкости T=30—60 мин. Скорость резания уменьшается с увеличением сопротивления резанию, которое приводит к возникновению больших сил, высокой температуры, интенсивному износу режущего инструмента.

С большей скоростью резания обрабатываются автоматные стали, цветные и легкие сплавы. Алюминий обрабатывается со скоростью в 5—6 раз большей, чем скорость обработки углеродистой конструкционной стали.

Подача и глубина резания определяют нагрузку на резец и температуру резания. С увеличением подачи и глубины резания интенсивнее износ резца, что ограничивает скорость резания. Для достижения большей производительности выгоднее работать с большими сечениями среза за счет уменьшения скорости резания. Например, при увеличении подачи в 2 раза (с 0,3 до 0,6 мм/об) скорость резания необходимо уменьшить на 20—25 %. При удвоении глубины резания скорость резания должна быть уменьшена на 10—15 %. На практике скорость резания увеличивают после того, как достигнуты предельные величины по глубине резания и подаче.

Таблица 16 Подачи при черновом обтачивании стали твердосплавными резцами без дополнительной режущей кромки

Примечания:

1. Меньшие значения подач соответствуют меньшим размерам державки резца и более прочным обрабатываемым материалам.

2. При обработке прерывистых поверхностей, т. е. при работе с ударными нагрузками, табличные значения подач следует умножать на коэффициент 0,75—0,85.

3. При обработке жаропрочных сталей и сплавов подачи свыше 1 мм/об не применять.

4. При обработке с глубиной резания до 8 мм быстрорежущими резцами табличные значения подач можно увеличить в 1,1—1,3 раза.

При черновом точении сталей быстрорежущими резцами обильное охлаждение смазочно-охлаждающими жидкостями (8— 12 л/мин) повышает скорость резания на 20—30 %. При чистовом точении интенсивность охлаждения 4—6 л/мин обеспечивает повышение скорости резания на 8-10%.

Для твердосплавного инструмента особенно необходимо постоянное охлаждение, так как в случае прерывистого охлаждения могут образоваться трещины на пластинке и резец выйдет из строя.

Таблица 17 Подачи при чистовом обтачивании твердосплавными и быстрорежущими резцами



Примечания:

1. Значения подач даны для резцов со вспомогательным углом в плане =10—15°, при уменьшении последнего до 5° значения подач могут быть повышены на 20 %.

2. При чистовой обработке стали в зависимости от скорости резания величина подачи вычисляется умножением на поправочный коэффициент: при скорости резания до 50 м/мин принимать коэффициент =0,85, при скорости резания от 50 до 100 м/мин — 1,0, при скорости выше 100 м/мин — 1,2.

В зависимости от прочности стали величину подачи находят умножением на поправочный коэффициент:

при σ b до 50 кгс/мм 2 (0,49*10 5 Па) коэффициент 0,7;

при σ b от 50 до 70 кгс/мм 2 (0,49*10 5 Па -0,68*10 5 Па.)-0,75;

при σ b от 70 до 90 кгс/мм 2 (0,68*10 5 Па - 0,88*10 5 Па) -1,0;

при σ b от 90 до 110 кгс/мм 2 (0,88*10 5 Па - 1,07* 10 5 Па.) - 1,25.

Допустимая величина износа резцов определяет выбор скорости резания.

При выборе скорости резания пользуются нормативными данными, приведенными в табл. 20—24. При этом необходимо учитывать конкретные условия работы.

Таблица 18 Подачи при черновом обтачивании стали и чугуна минералокерамичёскими резцами


Примечание: * 75 кгс/мм 2 = 0,73*10 5 Па.

Принятые режимы резания проверяются по мощности электродвигателя станка. При этом определяется мощность, необходимая для работы с выбранными режимами, и сравнивается с фактической мощностью электродвигателя. Если мощность электродвигателя оказывается недостаточной, необходимо понизить скорость резания.

Пример определения режимов резания с помощью справочных таблиц

Исходные данные:

обрабатываемая заготовка — валик D = 80 мм,

материал — сталь 45, σ b = 85 кгс/мм 2 (σ b =0,8*10 5 Па.) ,

резец —прямой проходной, оснащенный пластинкой из твердого сплава Т5К10, параметры φ=60°, φ 1 =30°, r= 1,0 мм, сечение 16X25, заданная стойкость 60 мин,

припуск на обработку 3 мм, шероховатость поверхности Rz = 20.

Станок 16К20 (N = 10 кВт, n=0,8).

Таблица 19 Подачи при чистовом обтачивании стали и чугуна минералокерамическими резцами


Примечание. В зависимости от прочности обрабатываемого материала величину подачи находят умножением на поправочный коэффициент:

при σ b до 50 кгс/мм 2 (0,49*10 5 Па) коэффициент 0,70;

при σ b от 50 до 70 кгс/мм 2 (0,49*10 5 Па-0,68*10 5 Па) - коэффициент 0,75;

при σ b от 70 до 90 кгс/мм 2 (0,68*10 5 Па-0,88*10 5 Па) - коэффициент 1,00;

при σ b от 90 до 110 кгс/мм 2 (0,88*10 5 Па-1,07*10 5 Па)- коэффициент 1,25.

Последовательность определения режимов резания:

1. Назначаем глубину резания. Учитывая, что требования к шероховатости поверхности невысокие, снимаем припуск за один проход: t = 3 мм.

2. Из справочной табл. 17 выписываем значение подачи, обеспечивающей заданную величину шероховатости поверхности: S = 0,3— —0,45 мм/об. Принимаем имеющееся в паспорте станка значение 5 = 0,4 мм/об.

3. По табл. 20 находим значение скорости резания. При глубине резания t = 3 мм и подаче 0,3 мм/об V табл. = 198 м/мин, а при подаче 0,5 мм/об V табл.= 166 м/мин. Принимаем среднее значение для подачи 0,4 мм/об V табл.=182 М/МИН.

По табл. 22 находим поправочный коэффициент для σ b = 85 кгс/мм 2: K2 = 0,88.

Оптимальная скорость резания определяется из произведения V = V табл.* К2= 182*0,88= 160 м/мин

4. Определяем частоту вращения шпинделя:

Уточняем по паспортным данным станка n = 630 об/мин.

Таблица 20 Скорость резания при черновом обтачивании углеродистой, кремнистой, хромоникелевой сталей и стального литья резцами с пластинками из твердого сплава


Примечание. Значения скоростей резания V даны для следующих условий обработки:

стойкость резца T—60 мин;

резец без дополнительной режущей кромки φ 1 >0;

обрабатываемый материал — сталь с пределом прочности 70—80 кгс/мм 2 (0,68*10 5 Па - 0,78*10 5 Па.)

материал резца — твердый сплав Т15К6;

главный угол в плане φ —45°.

Для измененных условий работы см. поправочные коэффициенты в табл. 22.

Таблица 21 Скорость резания при чистовом обтачивании углеродистой, хромистой, хромоникелевой сталей и стального литья твердосплавными резцами без дополнительной режущей кромки


Таблица 22 Поправочные коэффициенты скорости резания твердосплавными резцами с углом φ>0

Таблица 23 Скорость резания при черновом обтачивании серого чугуна твердосплавными резцами без дополнительной режущей кромки


Примечание. Поправочные коэффициенты см. в табл. 22.

Таблица 24 Скорость резания при чистовом обтачивании серого чугуна твердосплавными резцами без дополнительной режущей кромки


Примечание. Поправочные коэффициенты см. в табл. 22.

Для того чтобы обрабатывать заготовку резанием и получать в результате этого обработанные поверхности той или иной детали, заготовка и применяемый режущий инструмент должны совершать определенные движения. Эти движения разделяются на основные (служащие для осуществления процесса резания) и вспомогательные (служащие для подготовки к процессу резания и для завершения операции). Основных движений два:

  • движение резания (или главное движение);
  • движение подачи.

При обработке на токарном станке движение резания - вращательное - совершает заготовка, тем или иным способом скрепленная со шпинделем станка, а движение подачи - поступательное - получает режущий инструмент (резец), жестко закрепленный в резцедержателе. Движение позволяет осуществлять процесс резания (образования стружки) , движение же подачи дает возможность вести этот процесс (обработку) по всей длине заготовки (рис. ч.16).

Глубина резания (t) -величина срезаемого слоя за один проход, измеренная в направлении, перпендикулярном обработанной поверхности. Глубина резания всегда перпендикулярна направлению движения подачи (см. также рис. 11 -14). При наружном продольном точении (рис. 16) она представляет собой полуразность между диаметром заготовки и диаметром обработанной поверхности, полученной после одного прохода:

Скорость резания υ - величина перемещения точки режущей кромки относительно поверхности в единицу времени в процессе осуществления движения резания*.

При токарной обработке, когда обрабатываемая заготовка вращается с частотой n об/мин, скорости резания в точках МК режущей кромки будет величиной переменной. Максимальная скорость:

где D - наибольший диаметр поверхности в мм.

* Скорость резания является функцией частоты вращения заготовки и скорости перемещения резца (подачи).

Если скорость будет известна, то легко определить частоту вращения:

При продольном точении скорость резания имеет постоянную величину на протяжении всего времени резания (если диаметр заготовки вдоль всей ее длины одинаков, а частота вращения неизменна). При подрезке торца, когда резец перемещается от периферии заготовки к центру, скорость резания при постоянной частоте вращения переменна. Она имеет наибольшее значение у периферии и равна нулю в центре (рис. 17). Переменной вдоль обработанной поверхности скорость резания будет и при отрезке (см. рис. 14). Однако в этих случаях учитывают максимальную скорость резания.

Подача s (точнее, скорость подачи) - величина перемещения режущей кромки относительно обработанной поверхности в единицу времени в направлении движения подачи. При токарной обработке может быть продольная подача , когда резец перемещается в направлении, параллельном оси заготовки (см. рис. 16); поперечная подача , когда резец перемещается в направлении, перпендикулярном оси заготовки (см. рис. 17), и наклонная подача - под углом к оси заготовки (например, при точении конической поверхности).

Различают подачу за один оборот заготовки, т. е. величину относительного перемещения резца за время одного оборота заготовки (из положения I резец переместился в положение II, рис. 16), и минутную подачу , т. е. величину относительного перемещения резца за 1 мин. Минутная подача обозначается S м (мм/мин), а подача за одни оборот - s (мм/об). Между ними существует следующая зависимость.

И снова здравствуйте! Сегодня тема моего поста главные движения при токарной обработке такие как скорость резания и подача. Эти две составляющие режимов резания являются основополагающие при токарной обработке металла и других материалов.

Главное движение или скорость резания.

Если мы посмотрим на рисунок который приведен выше то увидим, что главное движение при станке совершает именно заготовка. Она может вращаться как по часовой стрелке так и против. В основном как видим вращение направленно на резец, так как это обеспечивает срезание поверхностного слоя с заготовки и образования стружки.

Вращение заготовке придает шпиндель токарного станка и диапазон оборотов шпинделя (n) достаточно большой и может регулироваться в зависимости от диаметра детали ее материала и применяемого режущего инструмента. При точении в основном это

Скорость резания при токарной обработке рассчитывается по формуле:

V — это само главное движение именуемое скорость резани.

П — это постоянная константа которая равняется 3,14

D — диаметр обрабатываемой детали (заготовки).

n — число оборотов шпинделя станка и зажатой в нем детали.

Движение подачи при токарной обработке.

Про движение подачи вы наверное уже поняли. ДА это перемещение режущего инструмента который закреплен в резцедержателе (для данного эскиза). Крепление резцов может быть и другим, но об этом позже 🙂 . Для осуществления подачи на токарном станке используется специальная кинематическая схема шестерен. Если это простое точение то тут не важна синхронизация вращения обрабатываемой заготовки и режущего инструмента, но если вы решите нарезать резьбу то тут все будет по другому. Об этом поговорим в следующих статьях. Если не хотите пропустить их то подписывайтесь на обновления моего блога .

Формулы для расчета движения подачи на токарном станке выглядит по разному,ведь это может быть как подача на оборот так и минутная подача.

Подача на оборот — это расстояние которое проходит режущий инструмент в нашем случае резец за один оборот обрабатываемой детали. В зависимости от вида обработки определение может быть другим. Например — это расстояние на которое перемещается заготовка относительно фрезы за один ее оборот.

Минутная подача — это расстояние которое проходит резец за одну минуту (что и логично из названия).

Скорость резания и подача. Заключение.

И так можно подвести итог. Сегодня мы с вами узнали про главные движения при токарной обработке такие как скорость резания и подача. Я не ставлю своей целью загрузить вас массой формул и тягомотных определений их вы можете найти в различных книгах про машиностроение и резание металлов, я хочу вам разъяснить основные понятия человеческим и понятным языком. Думаю у нас все получится 🙂 .

На сегодня все. До скорой встречи друзья!

С вами был Андрей!

5. Приемы нарезания резьбы резцами. Винтовую канаеку прорезают за несколько черновых и чистовых проходов. В конце каждою прохода поперечным движением па себн резец быстро выводят из канавки и обратным ходом станка возвращают суппорт в исходное положение.

Подачу резца па глубину резания можно выполнять различными способами.

При черновых проходах, когда срезается относительно толстая и жесткая стружка, канавку следует прорезать так, чтобы резец резал только одной режущей кромкой, В против но м случае стружки, срезаемые обеими кромками, сталкиваются, тормозят друг друга и резание затрудняется.

Дли того чтобы резец резал одной режущей кромкой, его подают в начале каждого прохода поперечно на глубину резания и продольно. Отношение продольной подачи, выполняемой по лимбу верх них салазок, к поперечной примерно составляет: для метрических резьб"- 0,6, для дюймовых - 0,5.

Тот же результат можно получить при подаче резца параллельно одной из сторон профиля резьбы верхними салазками. Для этого их разворачивают под углом 60° к оси центров станка (для метрических резьб) или 62°30" (для дюймовых резьб). Лучше для этой цели применить односторонний резец. У которого можно заточить положительный передний угол у и тем значительно облегчить процесс резания.

При чистовых проходах, когда срезаются топкие струйки и профилю резьбы придается требуемая форма и чистота, резец углубляют в канавку только поперечной подачей, как показано на 210, г.

Возвращение суппорта в исходное положение после каждого прохода н большинстве случаев выполняется обратным ходом станка. Для сокращения потерь времени на холостые движения обратное вращение шпинделя совершается быстрее прямого. Однако при па резании длинных резьб в некоторых случаях маточную гайку можно выключать и отводить суппорт в исходное положение ручной или ускоренной механической подачей. Так можно поступать только при нарезании четных резьб, когда uiar ходового винта 5к делится без остатка на шаг нарезаемой резьбы Sv. Например, при 5Л=12 мм четными будут резьбы с шагом Sp = 0,25; 0,5; 1,5; 2; 3; 4; b; 12. В этом случае при включении маточной ганки в любом исходном положении суппорта обеспечивается попадание резца в предварительно прорезанную винтовую канавку.

Левые резьбы в отличие от правых нарезаются при движении резца от передней бабки к задней.

Вопроса н задания для повторения

I. Когда применяется нарезание ре.льб резиаш?

а. Изобразите геометрию резьбовых резцов.

3, Укажите особенности ч применение резьбовых гребенок.

4, Как выполняется установка резьбовых резцов на станке?

5, Как подготавливают поверхности заготовок под резьбу?

б. Как выполняют настройку станка на шаг при нарезании стандартных н специальных резьб?

7. Подберите сменные колеса гитары для нарезания резьб с шагом 13 мм. 21 мм, 9п на I", если шаг ходового винта мм,

8. Укажите способы прорезания винтовых канавок.

9. Когда можно выключать маточную гайку при возвращении суппорта в исходное положение?