О потерях на тэс пара и воды. Потери в системах конденсации пара

Потери пара и конденсата электростанций разделяются на внутренние и внешние. К вну­тренним относят потери от утечки пара и кон­денсата в системе оборудования и трубопро­водов самой электростанции, а также потери продувочной воды парогенераторов.

Для упрощения расчета потери от утечек условно сосредотачивают в линии свежего пара

Непрерывная продувка производимая для обеспечения надежной работы ПГ и получения пара требуемой чистоты.

D пр =(0,3-0,5)% D 0

D пр =(0,5-5)% D 0 -для химически очищенной воды

Для снижения продувки нужно повышать количество ПВ и понижать потери утечек.

Наличие потерь пара и конденсата приводит к понижению тепловой экономичности ЭС. Для восполнения потерь требований добавочная вода для подготовки которой необходимы дополнительные затраты. Поэтому потери пара и конденсата нужно понижать.

Например потери с продувочной водой нужно понижать с полного расширителя сепаратора продувочной воды.

Внутренние потери: D вт =D ут +D пр

D ут -потери от утечек

D пр -потери от продувочной воды

На КЭС: D вт ≤1%D 0

Отопит.ТЭЦ: D вт ≤1,2%D 0

Пром. ТЭЦ: D вт ≤1,6%D 0

Кроме D тв на ТЭЦ когда пар из отбора турбин прямо пропорционально направлен к промышленным потребителям.

D вн =(15-70)%D 0

На отопительных ТЭЦ теплота отпускаемая к потребителю по закрытой схеме чем пром. Паров. Теплообмен

Пар из отбора турбины конденсируется в теплообменнике промышленного типа и конденсат ГП возвращается в систему эл. Станции.

Вторичный теплоноситель нагревается и направляется к тепловому потребителю

В такой схеме внешние потери конденсата отсутствуют

В общем случае: D пот =D вт +D вн - ТЭЦ

КЭС и ТЭЦ с закрытой схемой D кот =D вт

Потери тепла D пр понижаются в охладителях продувочной воды. Охлаждается продувочная вода для подпитки тепловой сети и питательной установки.

20 Баланс пара и воды на тэс.

Для расчета тепловой схемы, определения расхода пара на турбины, производительности парогенераторов, энергетических показателей и т. п. необходимо установить, в частности, основные соотношения материального баланса пара и воды электростанции

    Материальный баланс парогенератора: D ПГ = D О + D УТ или D ПВ = D ПГ + D ПР.

    материальный баланс турбоустановки: D О = D К + D r + D П.

    Материальный баланс теплового потребителя: D П = D ОК + D ВН.

    Внутренние потери пара и конденсата: D ВНУТ = D УТ + D" ПР.

    Материальный баланс для питательной воды: D ПВ = D К + D r + D ОК +D" П + D ДВ.

    Добавочная вода должна покрывать внутренние и внешние потери:

D ДВ = D ВНУТ + D ВН = D УТ + D" ПР + D ВН

Рассмотрим сепаратор-расширитель продувочной воды

р с <р пг

h пр =h / (р пг)

h // п =h // (р с)

h / пр =h / (р с)

Составляется тепловой и материальный баланс сепаратора

Теплов.: D пр h пр =D / п h // п +D / пр h / пр

D / пр =D пр (h пр -h / пр)/ h // п -h / пр

D / п = β / п D пр; β / п ≈0,3

D / пр =(1-β / п) D пр

Расчетный расход продувочной воды определяется из материального баланса примен. С пв (кг/т)- концентрация примесей в ПВ

С пг -допустимая концентрация примесей в котловой воде

С п -концентрация примесей в паре

D ПВ = D ПГ + D ПР – материальный баланс

D ПВ С п = D ПР - С пг + D ПГ С п

D ПР = D ПГ * ; D ПР = ; α пр =D пр /D 0 =

Чем выше количество ПВ то С пг /С ув →∞ и тогда α пр →0

Количество ПВ зависит от количества добавочной.

В случае прямоточных ПГ продувка воды не осуществляется и ПВ должна быть особенно чистой.

Восполнение потерь пара и воды на ТЭС

На ТЭС при Ро ≥ 8,8 МПа (90 Атм) восполнение потерь осуществляется полностью обессоленной добавочной водой.

На ТЭС при Ро ≤ 8,8 МПа применяется химическая очистка добавочной воды – удаление катионов жёсткости, замещение их на катионы натрия, с сохранением остатков кислот (анионов).

Подготовка обессоленной воды ведётся тремя способами:

1. Химический метод

2. Термический метод

3. Комбинированные физико-химические методы (использование элементов химической очистки, диализного, мембранного)

Химический метод подготовки добавочной воды

В поверхностных водах имеются грубодисперсные, коллоидные и истинно растворённые примеси.

Вся система химической водоподготовки делится на две стадии:

1) Предочистка воды

2) Очистка от истинно растворённых примесей

1. Предочистка производится в осветлителях воды. При этом удаляются грубодиспергированные коллоидные примеси. Происходит замещение магниевой жёсткости на кальциевую и осуществляется магнезиональное обескремнивание воды.

Al 2 (SO 4) 3 или Fe(SO 4) – коагулянты

MgO+H 2 SiO 3 → MgSiO 3 ↓ + H 2 O

После предочистки вода содержит только истинно растворённые примеси

2. Очистка от истинно растворённых примесей осуществляется с помощью ионитных фильтров.

1) Н – катионитовый фильтр

Вода походит две ступени Н – катионитовых фильтров, затем одна одна ступень анионитового фильтра.

Декарбонизатор – улавливание СО 2 . После Н – катионитового и ОН – анионитового в воде слабые кислоты Н 2 CO 3 , H 3 РO 4 , H 2 SiO 3 при этом СO 2 переходит в свободную форму и далее вода идёт на декарбонизатор, в котором СО 2 удаляется физическим способом.



Закон Генри – Дальтона

Количество данного газа, растворённого в воде прямопропорционально парциальному давлению этого газа над водой.

В декарбонизаторе за сёт того, что концентрация СО 2 в воздухе приблизительно равна нулю, СО 2 из воды выделяется в декарбонизаторе.

Остатки слабых кислот (РО 4 , СО 2 , SiO 3) улавливаются на сильном анионитовом фильтре.

Термический метод обессоливания добавочной воды

Основан на том явлении, что растворимость солей в паре при малых давлениях очень мала.

Термическая подготовка добавочной воды осуществляется в испарителях.

Количество пара, идущего в одноступенчатой схеме приблизительно равен очищенному.

Принципиальные тепловые схемы отпуска пара и тепла с ТЭЦ.

Отпуск тепла с ТЭЦ.

Всех потребителей тепла можно разделить на 2 категории:

1. расход тепла (потребление) зависит от климатических условий (отопление и вентиляция);

2. расход тепла не зависит от климатических условий (горячая вода).

Тепло может отпускаться в виде пара, либо в виде горячей воды. Вода как теплоноситель для отопления имеет преимущества перед паром (нужен меньше диаметр труб + меньше потерь). Вода готовится в сетевых подогревателях (основных и пиковых). Пар же отпускается только на технологические нужды. Он может отпускаться непосредственно из отбора турбины либо через паропреобразователь.

При расчете расход тепла на отопление учитывается:

– площадь квартиры

– разница температуры на улице и в доме

– отопительная характеристика здания

Q = Væ (t внутр – t наруж)

[ккал/ч] = [м 3 ]*[ккал/м 3 ·ч·ºС]*[ºС]

где Q – расход тепла в единицу времени Гкал/ч или ккал/ч

æ (каппа) – сколько тепла теряется 1 м 3 здания в единицу времени при изменении тепла на 1 градус. Изменяется в пределах от 0,45 до 0,75


Отопление

Вентиляция

18 +8-10 -26 t пара, o C

Рисунок 55.

Годовой отпуск тепла на отопление .

Пиковая часть

Отопление

Основная часть

Горячая вода

0 550 5500 8760 n

количество часов, где пиковая нагрузка

Рисунок 56.

Для расчета тепла со станции на отопление используются коэффициенты теплофикации:

α ТЭЦ = Q отбор /Q сети

где Q отбор – то количество тепла, которое мы отбираем из отбора турбины

Q сети – то количество тепла, которое мы должны сообщить сетевой воде на станции

Схема отпуска тепла с ТЭЦ

Теплоподготовительные системы (ТПС):

Теплофикационная установка (ТУ)

Общестанционная установка (ОУ)

Существуют 2 вида ТПС:

1) для ТЭЦ с турбинами мощностью 25 МВт и меньше, а так же ГРЭС большой мощности. Для этого типа ТПС теплофикационная установка турбины состоит из основного и пикового подогревателя, а общие станционные установки включают: сетевые насосы, установки по умягчению подпиточной воды, насосы и деаэраторы подпиточной воды

2) для ТЭЦ с турбинами мощность которых больше 50 МВт. Для этого типа теплофикационные установки турбины состоят из 2-х последовательно включенных основных подогревателей (верхний и нижний) и насосов сетевой воды с 2-ч ступенчатой перекачкой: 1 насос стоит до нижнего основного подогревателя, а насос 2-ой ступени – после верхнего основного подогревателя. Обще станционные установки состоят из пикового водогрейного котла (ПВК), установок по умягчению подпиточной воды, деаэраторов и насосов подпиточной воды.

Схема теплофикационной установки первого типа.

Рисунок 57.

РОУ – редукционно-охладительная установка

Температура сетевой воды зависит от температуры наружного воздуха. Если температура наружного воздуха = 26 градусам, то на выходе из пикового подогревателя температура сетевой воды должна быть приблизительно 135 –150 ºС

Температура сетевой воды на входе в основной подогреватель ≈ 70 ºС

Конденсат редуцированного пара из пикового подогревателя сливается в основной подогреватель и далее проходит путь вместе с конденсатом греющего пара.

14. Коэффициент теплофикации α ТЭЦ. Способы покрытия пиковой тепловой нагрузки на ТЭЦ.

К.т.н. С.Д. Содномова, доцент кафедры «Теплогазоснабжение и вентиляция», Восточно-сибирский государственный технологический университет, г. Улан-Удэ, Республика Бурятия

В настоящее время баланс отпуска и потребления теплоты в системах паро- снабжения определяется по показаниям приборов учета на источнике теплоты и у потребителей. Разницу показаний этих приборов относят к фактическим потерям теплоты и учитывают при установлении тарифов на тепловую энергию в виде пара.

Раньше при работе паропровода близкой к проектной нагрузке эти потери составляли 1015%, и ни у кого при этом не возникало вопросов. В последнее десятилетие в связи со спадом промышленного производства произошло изменение графика работы и сокращение потребления пара. При этом дисбаланс между потреблением и отпуском теплоты резко увеличился и стал составлять 50-70% .

В этих условиях возникли проблемы, прежде всего от потребителей, которые считали необоснованным включать в тариф такие большие потери тепловой энергии. Какова структура этих потерь? Как осознанно решать вопросы повышения эффективности работы систем пароснабжения? Для решения этих вопросов необходимо выявить структуру дисбаланса, оценить нормативные и сверхнормативные потери тепловой энергии.

Для количественной оценки дисбаланса была усовершенствована программа гидравлического расчета паропровода перегретого пара, разработанная на кафедре для учебных целей. Понимая, что при снижении расходов пара у потребителей, скорости теплоносителя уменьшаются, и относительные потери теплоты при транспорте возрастают. Это приводит к тому, что перегретый пар переходит в насыщенное состояние с образованием конденсата. Поэтому была разработана подпрограмма, позволяющая: определять участок, на котором перегретый пар переходит в насыщенное состояние; определять длину, на которой пар начинает конденсироваться и далее производить гидравлический расчет паропровода насыщенного пара; определять количество образующегося конденсата и потери теплоты при транспорте. Для определения плотности, изобарной теплоемкости и скрытой теплоты парообразования по конечным параметрам пара (P, T) использованы упрощенные уравнения, полученные на

основе аппроксимации табличных данных, описывающих свойства воды и водяного пара в области давлений 0,002+4 МПа и температур насыщения до 660 О С .

Нормативные потери теплоты в окружающую среду определялись по формуле:

где q - удельные линейные тепловые потери паропровода; L - длина паропровода, м; β - коэффициент местных потерь теплоты.

Потери теплоты, связанные с утечками пара, определялись по методике :

где Gnn - нормируемые потери пара за рассматриваемый период (месяц, год), т; ί η - энтальпия пара при средних давлениях и температурах пара по магистрали на источнике теплоты и у потребителей, кДж/кг; ^ - энтальпия холодной воды, кДж/кг.

Нормируемые потери пара за рассматриваемый период:

где V™ - среднегодовой объем паровых сетей, м 3 ; р п - плотность пара при средних давлении и температуре по магистралям от источника тепла до потребителя, кг/м 3 ; n - среднегодовое число часов работы паровых сетей, ч.

Метрологическую составляющую недоучета расхода пара определяли с учетом правил РД-50-213-80 . Если измерение расхода ведется в условиях, при которых параметры пара отличаются от параметров, принятых для расчета сужающих устройств, то для определения действительных расходов по показаниям прибора необходимо произвести пересчет по формуле:

где Q m . a . - массовый действительный расход пара, т/ч; Q m - массовый расход пара по показаниям прибора, т/ч; р А - действительная плотность пара, кг/м 3 ; ρ - расчетная плотность пара, кг/м 3 .

Для оценки потерь теплоты в системе паро- снабжения был рассмотрен паропровод ПОШ г. Улан-Удэ, который характеризуется следующими показателями:

■ суммарный расход пара за февраль - 34512 т/месяц;

■ среднечасовой расход пара - 51,36 т/ч;

■ средняя температура пара - 297 О С;

■ среднее давление пара - 8,8 кгс/см 2 ;

■ средняя температура наружного воздуха - -20,9 О С;

■ длина основной магистрали - 6001 м (из них диаметром 500 мм - 3289 м);

■ дисбаланс теплоты в паропроводе - 60,3%.

В результате гидравлического расчета были определены параметры пара в начале и в конце расчетного участка, скорости теплоносителя, выявлены участки, где происходит образование конденсата и связанные с ним потери теплоты. Остальные составляющие определялись по вышеприведенной методике. Результаты расчетов показывают, что при среднечасовом отпуске пара с ТЭЦ 51,35 т/ч потребителям доставлено 29,62 т/ч (57,67%), потери расхода пара составляют 21,74 т/ч (42,33%). Из них потери пара следующие:

■ с образовавшимся конденсатом - 11,78 т/ч (22,936%);

■ метрологические из-за того, что потребители не учитывают поправки к показаниям приборов - 7,405 т/ч (14,42%);

■ неучтенные потери пара - 2,555 т/ч (4,98%). Объяснить неучтенные потери пара можно

осреднением параметров при переходе со среднемесячного баланса на среднечасовой баланс, некоторыми приближениями при расчетах и, кроме того, у приборов имеется погрешность 2-5%.

Что касается баланса по тепловой энергии отпущенного пара, то результаты расчетов представлены в таблице. Откуда видно, что при дисбалансе в 60,3% нормативные потери теплоты составляют 51,785%, сверхнормативные, неучтенные расчетом тепловые потери, - 8,514%. Таким образом, определена структура тепловых потерь, разработана методика количественной оценки дисбаланса расходов пара и тепловой энергии.

Таблица. Результаты расчетов потерь тепловой энергии в паропроводе ПОШ г. Улан-Удэ.

Наименование величин ГДж/ч %
Общие показатели
Среднечасовой отпуск теплоты с коллекторов ТЭЦ 154,696 100
Полезный среднечасовой отпуск теплоты потребителям 61,415 39,7
Фактические потери теплоты в паропроводе ПОШ 93,28 60,3
Нормативные потери теплоты 70,897 45,83
Эксплуатационные технологические потери тепловой энергии, из них:

Тепловые потери в окружающую среду

Потери тепловой энергии с нормативными утечками пара

Потери теплоты с конденсатом

43,98 28,43
Метрологические потери из-за недоучета теплоты без введения поправки 9,212 5,955
Итого
Нормативные потери тепловой энергии 80,109 51,785
Неучтенные расчетом сверхнормативные потери теплоты 13,171 8,514

Литература

1. Абрамов С.Р. Методика снижения тепловых потерь в паропроводах тепловых сетей / Материалы конференции «Тепловые сети. Современные решения», 17-19 мая 2005 г. НП «Российское теплоснабжение».

2. Содномова С.Д. К вопросу определения составляющих дисбаланса в системах пароснабжения / Материалы международной научно-практической конференции «Строительный комплекс России: Наука, образование, практика». - Улан-Удэ: Изд-во ВСГТУ, 2006 г.

3. Ривкин С.Л., АлександровА.А.Теплофизические свойства воды и водяного пара. - М.: Энергия 1980 г. - 424 с.

4. Определение эксплуатационных технологических затрат (потерь) ресурсов, учитываемых при расчете услуг по передаче тепловой энергии и теплоносителя. Постановление ФЭК РФ от 14 мая 2003 г. № 37-3/1.

5. РД-50-213-80. Правила измерения расхода газов и жидкостей стандартными сужающими устройствами. М.: Изд-во стандартов.1982 г.

В.Л. Гудзюк, ведущий специалист;
к.т.н. П.А. Шомов, директор;
П.А. Перов, инженер-теплотехник,
ООО НТЦ «Промышленная энергетика», г. Иваново

Расчеты и имеющийся опыт показывают, что даже несложные и относительно дешевые технические мероприятия по совершенствованию теплоиспользования на промышленных предприятиях приводят к существенному экономическому эффекту.

Обследования паро-конденсатных систем многих предприятий показали, что нередко на паропроводах отсутствуют и дренажные карманы для сбора конденсата, и конденсатоотводчики. По этой причине часто имеют место повышенные потери пара. Моделирование истечения пара на основе программного продукта позволило определить, что потери пара через дренажи паропровода могут возрастать до 30%, если через дренаж проходит паро-конденсатная смесь, по сравнению с отводом только конденсата.

Данные измерений на паропроводах одного из предприятий (таблица), дренажи которых не имеют ни карманов для сбора конденсата, ни конденсатоотводчиков, и частично открыты в течение всего года, показали, что потери тепловой энергии и средств могут быть достаточно большими. Из таблицы видно, что потери при дренаже паропровода Ду 400 могут быть даже меньше, чем из паропровода Ду 150.

Таблица. Результаты измерений на паропроводах обследованного промышленного предприятия, дренажи которых не имеют карманов для сбора конденсата и конденсатоотводчиков.

Уделив некоторое внимание работе по сокращению этого вида потерь при низких затратах, можно получить существенный результат, поэтому была проверена возможность использования устройства, общий вид которого представлен на рис. 1. Оно устанавливается на существующем дренажном патрубке паропровода. Это может быть выполнено на работающем паропроводе без его отключения.

Рис. 1. Устройство для дренажа паропровода.

Следует отметить, что для паропровода подходит далеко не любой конденсатоотводчик, а стоимость оборудования конденсатоотводчиком одного спускника составляет от 50 до 70 тыс. руб. Дренажей, как правило, много. Они располагаются на расстоянии друг от друга в 30-50 м, перед подъемами, регулирующими клапанами, коллекторами и т.п. Конденсатоотводчик требует квалифицированного обслуживания, особенно в зимний период. В отличие от теплообменного аппарата, количество отводимого и, тем более, используемого конденсата, по отношению к расходу пара по паропроводу, - незначительно. Чаще всего, пароконденсатная смесь из паропровода через дренаж сбрасывается в атмосферу. Количество ее регулируется запорным вентилем «на глаз». Поэтому, сокращение потерь пара из паропровода вместе с конденсатом может дать неплохой экономический эффект, если это не будет связано с большими затратами средств и труда. Такая ситуация имеет место на многих предприятиях, и является скорее правилом, чем исключением.

Данное обстоятельство побудило нас проверить возможность снижения потерь пара из паропровода, при отсутствии, по какой-то причине, возможности оборудовать дренажи паропровода конденсатоотводчиками по типовой проектной схеме. Задача состояла в том, чтобы с минимальными затратами времени и средств организовать вывод из паропровода конденсата при минимальной потере пара.

В качестве наиболее легко реализуемого и недорогого способа решения этой задачи была рассмотрена возможность использования подпорной шайбы. Диаметр отверстия в подпорной шайбе можно определить по номограмме или расчетом. Принцип действия основан на различных условиях истечения конденсата и пара через отверстие. Пропускная способность подпорной шайбы по конденсату в 30-40 раз больше, чем по пару. Это позволяет непрерывно сбрасывать конденсат при минимальном количестве пролетного пара.

Для начала надо было убедиться том, что можно сократить количество пара, выводимого через дренаж паропровода вместе с конденсатом при отсутствии кармана отстойника и гидрозатвора, т.е. в условиях, к сожалению, часто встречающихся на предприятиях с паропроводами низкого давления.

Показанное на рис. 1 устройство имеет входное и два одинаковых по размеру выходных шайбированных отверстия. На фотографии видно, что через отверстие с горизонтальным направлением струи выходит паро-конденсатная смесь. Это отверстие может быть перекрыто краном и используется периодически при необходимости продувки устройства. Если кран перед этим отверстием закрыт, из паропровода через второе отверстие выходит конденсат с вертикальным направлением струи - это рабочий режим. На рис. 1 видно, что при открытом кране и выходе через боковое отверстие конденсат распыляется паром, а на выходе через нижнее отверстие - пара практически нет.

Рис. 2. Рабочий режим устройства для дренажа паропровода.

На рис. 2 представлен рабочий режим устройства. На выходе - в основном поток конденсата. Это наглядно показывает, что имеется возможность снижения расхода пара через подпорную шайбу без гидрозатвора, необходимость в котором является основной причиной, ограничивающей ее применение для дренажа паропровода, особенно в зимнее время. В этом устройстве выходу пара из паропровода вместе с конденсатом препятствует не только дроссельная шайба, но и специальный фильтр, ограничивающий выход пара из паропровода.

Проверена эффективность нескольких конструктивных вариантов такого устройства для вывода из паропровода конденсата с минимальным содержанием пара. Они могут быть изготовлены как из покупных комплектующих, так и в механической мастерской котельной с учетом условий эксплуатации конкретного паропровода. Может быть также использован с небольшой переделкой имеющийся на рынке фильтр для воды, который способен работать при температуре пара в паропроводе.

Стоимость изготовления или приобретения комплектующих для одного спускника не более нескольких тысяч рублей. Реализация мероприятия может быть выполнена за счет эксплуатационных расходов, и как минимум, в 10 раз дешевле использования конденсатооотводчика, особенно в тех случаях, когда нет возврата конденсата в котельную.

Величина экономического эффекта зависит от технического состояния, режима работы и условий эксплуатации конкретного паропровода. Чем длиннее паропровод и больше число дренажных спускников, и при этом дренаж производится в атмосферу, тем больше экономический эффект. Поэтому, в каждом конкретном случае требуется предварительная проработка вопроса о целесообразности практического использования рассматриваемого решения. Отрицательного эффекта по отношению к дренажу паропровода с выбросом паро-конденсатной смеси в атмосферу через вентиль, как это часто имеет место, не просматривается. Считаем, что для дальнейшего изучения и накопления опыта целесообразно продолжить работу на действующих паропроводах низкого давления.

Литература

1. Елин Н.Н., Шомов П.А., Перов П.А., Голыбин М.А. Моделирование и оптимизация трубопроводных сетей паропроводов промышленных предприятий // Вестник ИГЭУ. 2015. T. 200, № 2. С. 63-66.

2. Бакластов А.М., Бродянский В.М., Голубев Б.П., Григорьев В.А., Зорина В.М. Промышленная теплоэнергетика и теплотехника: Справочник. М.: Энергоатомиздат, 1983. С.132. Рис. 2.26.

Какие внутристанционные и внешние потери пара и конденсата имеют место на ТЭС и АЭС? Сравните потери рабочего тела на КЭС и ТЭЦ

Внутристанционные (или внутренние) потери пара и конденсата включают в себя следующие основные составляющие:

Утечки из-за неплотностей в соединениях трубопроводов и агрегатов, в арматуре; особого внимания с этой точки зрения требуют фланцевые соединения;

Расход на уплотнения турбины и на различные технические нужды, например, расход пара на разогрев мазута;

Потери дренажей и другие незначительные потери.

Кроме того, на ТЭС с барабанными котлами к внутренним потерям относят непрерывную продувку котловой воды, осуществляемую с целью снижения концентраций примесей в рабочем теле парогенерирующей установки.

Внутренние потери обычно составляют :

На КЭС не более 1% от расхода пара на турбину;

На ТЭЦ отопительного типа до 1,2%;

До 1,6% на ТЭЦ промышленного и промышленно-отопительного типа.

ТЭЦ могут работать по открытой или закрытой схеме в зависимости от способа теплоснабжения потребителей.

Закрытая схема предполагает отпуск потребителю тепловой энергии через дополнительные теплообменные устройства, т.е. без каких-либо безвозвратных потерь рабочего тела пароводяного контура электростанции.

Если ТЭЦ работает по открытой схеме , то имеют место внешние потери рабочего тела в связи с неполным его возвратом. Например, невозврат конденсата пара от потребителей может достигать 50-70%.

КЭС не имеют внешних потерь пара и конденсата.

Какие существуют методы подготовки добавочной воды? Каковы назначение и принцип действия расширителей, испарителей и паропреобразователей?

Для восполнения потерь пара и конденсата на ТЭС осуществляется подготовка добавочной воды. Можно выделить два наиболее часто используемых способа водоподготовки - химический и термический.

Химический способ позволяет достичь требуемой чистоты добавочной воды с применением различных химических реагентов и фильтров. С их помощью из первичной неочищенной воды удаляются нерастворимые примеси и ионные соединения.

Термическая водоподготовка означает обессоливание методом испарения первичной воды с последующей конденсацией образовавшегося пара. Получаемый таким образом дистиллят имеет весьма высокую чистоту, а если она недостаточна, то повторным испарением и конденсацией можно получить бидистиллят.

Расширитель (Р) предназначен для снижения потерь с продувочной водой барабанного парогенератора (рис. 23).

Рис. 23.

Поскольку ионообменные смолы катионитного и анионитного фильтров не могут работать при высоких температурах, требуется снижение параметров продувочной воды в охладителе продувки с неизбежными при этом потерями теплоты. В расширителе часть продувочной воды превращается в насыщенный пар за счет уменьшения давления. Поскольку вынос примесей с паром очень мал, требуется очистка (а, значит, и охлаждение) только сепарата (рис. 23). Этим достигается значительное снижение потерь теплоты.

В испарителе (И) осуществляется термическая подготовка добавочной воды методом дистилляции (рис. 24).

Рис. 24.

Для испарения воды используется греющий (первичный) пар из турбины. Образующийся вторичный пар поступает в конденсатор испарителя (КИ) для получения из него дистиллята. Продувка испарителя позволяет обеспечить требуемое качество подготовки воды.

Рис. 25.

С помощью паропреобразователя (рис. 25) можно подавать тепловому потребителю вторичный пар, оставляя на ТЭЦ конденсат греющего (первичного) пара. Это целесообразно при высоком содержании примесей в сырой воде.

Температурный перепад в стенках теплообменной поверхности паропреобразователя составляет примерно 12-15 о С, что снижает тепловую экономичность турбоустановки.

Подаваемый потребителю пар необходимо немного перегреть в паро-паровом теплообменнике (ТО на рис. 25) во избежание его частичной конденсации при транспортировке по паропроводам.