Что такое отказ оборудования. Понятие отказа. Классификация отказов

Момент наступления отказа всегда случаен, а причины разнообразны по своей физической природе. Различают внезапные и постепенные отказы. Если вас интересует автоматическая парковка , рекомендуем посетить сайт 3390017.ru.

Внезапный отказ . Отказ, характеризующийся скачкообразным изменением одного или нескольких параметров состояния машины, называется внезапным. Он вызывается обычно неожиданным изменением внешних условий или воздействий. Чаще всего это перегрузки вследствие попадания посторонних предметов в рабочие органы машины, наезды, рывки при неправильном управлении и т. д. Внезапный отказ может возникнуть с одинаковой вероятностью независимо от длительности предыдущей работы машины, т. е. ее срока службы.

Постепенный отказ . Отказ, характеризующийся постепенным изменением одного или нескольких параметров состояния машины, называется постепенным. Причиной могут быть различные процессы, протекающие в ее деталях (изнашивание, коррозия, накопление усталостных повреждений и т. д.). Вероятность возникнове ния постепенного отказа повышается о увеличением длительности предыдущей работы машины.

В результате неожиданных внешних воздействий или постепенных процессов в соединениях и деталях возникают дефекты, т. е. несоответствие изделия требованиям, установленным нормативно-технической документацией.

Дефекты в соединениях деталей. Классификацию дефектов можно показать в виде схемы (рис. 2).

Потеря жесткости. В соединениях и связях ослабляются резьбовые и заклепочные соединения, в результате чего наступает потеря жесткости. При техническом обслуживании необходимо проверять крепежные детали остукиванием и своевременно подтягивать с усилием, определенным техническими требованиями.

Нарушение контакта. Этот дефект возникает вследствие уменьшения площади прилегания поверхностей у соединяемых деталей. В результате происходит потеря герметичности соединений, увеличиваются ударные нагрузки, что ускоряет процесс изнашивания.

Нарушение посадки деталей. Это наиболее распространенный дефект в соединениях, возникающий из-за увеличения зазора или уменьшения натяга.

Нарушение размерных цепей. Этот дефект характеризуется изменением соосности, перпендикулярности, параллельности и т. д., вследствие чего происходит нагрев деталей, повышение нагрузки, изменение геометрической формы, разрушение деталей.

Дефекты деталей . Классификацию дефектов можно показать в виде схемы (рис. 3).

Изнашивание. Процесс разрушения и удаления материала с поверхности твердого тела при трении деталей в подвижных соединениях называют изнашиванием. Различают изнашивание механическое, коррозионно-механическое и при заедании.

Механическое изнашивание происходит в результате механических воздействий. Оно наиболее распространено, причем возможны следующие разновидности:

  1. абразивное - в результате режущего или царапающего действия твердых частиц, находящихся в свободном или закрепленном состоянии;
  2. эрозионное - при воздействии потока жидкости или газа;
  3. гидроабразивное (газоабразивное) - в результате действия твердых частиц, взвешенных в жидкости (газе);
  4. усталостное - в результате усталостного разрушения при повторном деформировании микрообъемов материала поверхностного слоя;
  5. кавитационное - гидроэрозионное изнашивание при движении твердого тела относительно жидкости.

Коррозионно-механическое изнашивание происходит в результате механического воздействия, сопровождаемого химическим или электрическим взаимодействием материала со средой. Разновидности коррозионно-механического изнашивания:

  1. окислительное, при котором основное влияние на изнашивание оказывает химическая реакция материала с кислородом или окисляющей окружающей средой;
  2. фреттинг-коррозия - изнашивание соприкасающихся тел при малых колебательных относительных перемещениях.

Изнашивание при заедании происходит в результате схватывания, глубинного вырывания материала, переноса его с одной поверхности трения на другую и воздействия появившихся неров-ностей на сопряженную поверхность.

Износ - результат изнашивания.

Отложения и наносы. Как дефекты, они возникают в результате осаждения на поверхности деталей продуктов загрязнения масла, топлива и воды, в виде лаков, нагара, смол, накипи и т. д. Наносы вызывают изменение режимов теплообмена, формы и размеров деталей, что ухудшает работоспособность соединений и сборочных единиц.

Меры предупреждения - тщательная фильтрация материалов перед заправкой, предварительный отстой топлива, удаление отложений при техническом обслуживании, восстановление герметичности полостей механизма.

Деформации и разрушения. Эти дефекты происходят при длительном воздействии на детали крутящих моментов, динамических нагрузок и высоких температур, что приводит к скручиванию, изгибу, короблению, смятию, пластическим деформацияем усталостным разрушениям, изломам и трещинам.

Изменение свойств материала деталей. Этот процесс происходит под действием температур (при этом изменяется поверхностная твердость), циклических нагрузок (теряется упругость пружин, рессор), химических превращений (сульфатация пластин аккумуляторов, затвердение резиновых деталей) и т. д.

Коррозия свободных поверхностей. Самопроизвольное и необратимое разрушение материалов вследствие физико-химического взаимодействия со средой носит название коррозии. Основные меры предупреждения - нанесение защитных покрытий (хромирование, никелирование), окраска поверхностей, применение ингибиторов.

Для защиты наружных поверхностей машин наносят отработанное масло с ингибитором ИМ (5…7%). Цилиндры и воздушную систему двигателей консервируют с использованием ингибитора ИП. Систему охлаждения консервируют ингибитором ИВ, растворив 1% в мягкой воде при температуре 50…60 °С. Эту воду заливают в систему на 5 мин и сливают.

Допускаемые и предельные размеры деталей. В результате изнашивания подвижного соединения, например типа «вал-втулка», размер отверстия увеличивается, а вала уменьшается. Характер изнашивания обычно протекает по кривой, показанной на рисунке 4. Первый участок кривой характеризует период приработки (ускоренное изменение размера детали, т. е. изнашивание), второй - период нормальной работы, третий - период аварийного износа.

Предельный размер. Износ в точке перехода прямолинейного участка изнашивания в криволинейный - зону аварийного износа - называют предельным И пр, т. е. таким, при котором дальнейшая эксплуатация детали невозможна или нецелесообразна из-за недопустимого снижения экономических или технологических показателей. Размер детали при таком износе считается предельным, по нему определяют предельное состояние детали. Наработка до предельного состояния соответствует полному ресурсу Т п.

Предельный размер детали устанавливают на основе экономического, качественного и технического критериев.

Экономический критерий определяется предельным снижением экономических показателей - потерей мощности, снижением производительности, увеличением расхода топлива, смазки и т. д.

При использовании качественного критерия учитывают отклонение качества выполнения сельскохозяйственных операций от агротехнических требований (глубина заделки семян, процент дробления зерна и т. д.).

Технический критерий характеризуется резким ускорением изнашивания, которое может привести к аварии.

Во время ремонта возможность повторного использования бывшей в эксплуатации детали определяется по допустимому размеру.

Допускаемый размер устанавливают из условия, чтобы остаточный ресурс детали был не меньше межремонтного Т м. Его определяют на основе допускаемого износа И д. Для нахождения Ия необходимо отложить от точки с на кривой (см. рис. 4) значение межремонтного ресурса Т м. Точка в соответствует допускаемому износу И д. Деталь во время ремонта выбраковывают, если ее размер больше (для отверстия) или меньше (для вала) допускаемого.

Управление техническим состоянием машины. В процессе эксплуатации происходит ухудшение технико-экономических показателей машины. Для поддержания их в установленных пределах необходимо управлять техническим состоянием машины, т. е. измерять параметры, сравнивать их с допускаемыми или предельными, определять остаточный ресурс, назначать вид и объем ремонтно-обслуживающих воздействий и выполнять эти работы.

Операции ТО и ремонта могут быть плановыми, строго регламентированными или же выполняться по заявкам без ограничений какими-либо сроками.

Установлены три стратегии ТО и ремонта: по потребности (после отказа); регламентированная (в зависимости от наработки); по состоянию (с периодическим контролем - диагностированием). Две последние стратегии носят планово-предупредительный характер.

Наиболее эффективно проведение ремонтно-обслуживающих воздействий по состоянию, с периодическим или постоянным контролем. Эта стратегия позволяет получить наибольшую безотказность машин при наименьших издержках на их техническое обслуживание и ремонт.

Классификация отказов


К атегория:

Техническая эксплуатация машин



-

Классификация отказов


Основа классификации отказов - характер возникновения и особенности протекания процессов, приводящих к отказу. Отказы могут быть внезапными и постепенными.

Внезапный отказ возникает при скачкообразном изменении одного или нескольких параметров объекта, определяющих его качество. Такие изменения являются следствием сочетания неблагоприятных факторов воздействия. Внезапный отказ может возникнуть при возрастании механических нагрузок, превышающих расчетные, при несоблюдении условий эксплуатации, наличии скрытых технологических дефектов, при прекращении подачи смазки и т. п. Потеря работоспособности при этом происходит внезапно, без предшествующих признаков разрушения.

Постепенные отказы происходят вследствие постепенного изменения одного или нескольких параметров объекта. Основной причиной их является износ деталей и процесс естественного старения. Постепенному отказу предшествуют различные прямые и косвенные признаки, позволяющие его прогнозировать.

Принципиальной разницы между внезапными и постепенными отказами не существует. Внезапные отказы чаще всего являются следствием постоянного, но скрытого от глаз наблюдателя, старения, ухудшающего начальные параметры объекта. Так, постепенное накопление усталостных напряжений приводит к внезапному отказу.

Отказы в зависимости от их последствий можно разделить на зависимые и независимые. Зависимые отказы происходят вследствие отказа другой детали. Примером зависимого отказа может служить выход из строя поршня при обрыве клапана. Независимые отказы не зависят от отказов других деталей рассматриваемого изделия.

В зависимости от причины возникновения отказы подразделяют на конструкционные, производственные и эксплуатационные. Конструкционный отказ - это отказ, возникший в результате несовершенства или нарушения установленных правил и (или) норм конструирования объекта. Отказ, возникший в результате несовершенства либо нарушения установленного процесса изготовления или ремонта, выполнявшегося на ремонтном предприятии, называется производственным отказом. Эксплуатационный отказ - это отказ, возникший в результате нарушения установленных правил и (или) условий эксплуатации объекта.

Основным источником информации о надежности РЭО и СА на всех этапах жизненного цикла являются сведения об отказах, поэтому анализ отказов имеет исключительно важное значение для системы управления надежностью. В процессе анализа отказы классифицируют, определяют причины их возникновения, раскрывают механизм отказов и разрабатывают технические и организационные мероприятия по их предотвращению.

Классификация отказов на этапе разработки и производства приборов имеет своей целью определение факторов, которые играют доминирующую роль в выявлении причин отказов. Такими факторами могут быть конструктивные недоработки, дефекты материалов, нарушения технологического режима и установленных процедур контроля и испытаний. Причины отказов могут быть организационными и техническими. Для устранения организационных причин необходимо уточнить процедуры контроля и самоконтроля операторов, процедуры испытаний, совершенствовать технологический процесс. Для устранения технических причин следует изучить механизмы отказов с целью выработки технических мероприятий по исключению их действия.

Особое внимание при анализе отказов уделяется систематическим, или повторяющимся, отказам. Они возникают под воздействием неслучайного сочетания неблагоприятных факторов, и поэтому причины, их вызывающие, должны быть выявлены и устранены.

Методика анализа отказов предусматривает ряд последовательных действий, направленных на выявление причин и механизмов отказов. Согласно этой методике, прежде всего, проводится тщательный анализ условий возникновения отказа, при этом детально изучаются рабочие режимы.

Основные виды отказов классифицируют по:

Характеру изменения параметров объекта - постепенный, внезапный;

Связи с отказами других объектов - независимый, зависимый;

Стадии возникновения причины отказа - конструкционный, производственный, эксплуатационный, деградационный;

Устойчивости неработоспособности - самоустраняющийся, перемежающийся,

Способу обнаружения - явный, скрытый.

При постепенном отказе изменение параметра происходит без резкого скачка. Например, качество поддерживающей жидкости гирокомпаса с течением времени постепенно снижается. Такие отказы вызываются износом и старением элементов изделия, особенно изоляции токоведущих частей и подвижных электрических и механических соединений. Старение изоляции, т. е. необратимое изменение ее структурного и химического состава, происходит под действием различных эксплуатационных факторов: температуры, влажности, вибрации, электродинамических сил и др. Износ элементов подвижных электрических контактов электрических машин (коллекторов, контактных колец и щеток) вызывается механическим трением, биением рабочих поверхностей, нагревом в контакте и искрением.

Постепенное изменение электрических параметров полупроводниковых приборов и интегральных микросхем обусловлено неравномерным распределением примесей в полупроводниковом кристалле, применением структур с резко отличающимися физическими характеристиками. Возможность изменения параметров и пределы этих изменений учитываются критериями отказа. Предельные изменения параметров приборов учитываются при конструировании аппаратуры, чтобы исключить чувствительность ее выходных характеристик к этим изменениям.

В качестве примеров постепенных отказов можно привести отказы приборов, происходящие в результате возрастания обратных токов р-п-переходов за счет токов утечек, уменьшения коэффициента усиления транзисторов, возрастания прямого падения напряжения диодов, изменения уровня нуля или единицы цифровых интегральных микросхем и порогового напряжения МДП-приборов.

Внезапный отказ характеризуется скачкообразным изменением значений одного или нескольких параметров объекта. Так, перегорание предохранителя в цепи питания силового трансформатора в усилителе эхолота приводит к мгновенному выходу из строя линии приема сигналов. Такие отказы происходят в основном в результате короткого замыкания или обрыва электрической цепи (жил кабеля и приводов, резисторов, конденсаторов, полупроводниковых приборов, ИМС и др.). К общим причинам внезапных отказов РЭО и СА относятся конструкционные недостатки, низкое качество изготовления, неправильные действия судового обслуживающего персонала.

Причинами внезапных отказов могут быть как естественные постепенные изменения физической структуры прибора, которые при определенных условиях приобретают лавинообразный характер, приводящий к отказу, так и условия функционирования прибора в аппаратуре. При использовании прибора в электрическом режиме в его структуре в результате локальных флуктуаций плотности тока и перегревов могут возникать микроповреждения, которые, накапливаясь, при очередной неконтролируемой кратковременной перегрузке приводят к внезапному отказу. Характерными примерами внезапных отказов являются обрывы в структуре прибора и короткие замыкания (КЗ), возникающие в результате пробоя диэлектрических изолирующих слоев или проплавления p-n-переходов, вызываемых перегрузками. За коротким замыканием, как правило, следует обрыв, так как в местах пробоя резко возрастает плотность тока, происходит значительный разогрев образовавшейся проводящей перемычки и ее перегорание.

Деление отказов на внезапные и постепенные носит достаточно условный характер и определяется, в основном, возможностями контроля параметров объекта. Отказ классифицируется как внезапный, если ему не предшествует направленное изменение какого-либо из наблюдаемых эксплуатационных параметров, и, значит, практически невозможно прогнозировать время возникновения такого отказа. Постепенному отказу предшествует закономерное изменение эксплуатационного параметра, что позволяет прогнозировать время возникновения отказа.

Для ряда элементов постепенные отказы составляют значительную часть всех отказов.

Вероятность появления постепенных и внезапных отказов некоторых радиоэлементов представлена в табл. 3.1.

По взаимосвязи между элементами отказы принято разделять на независимые и зависимые. Если отказ определенного элемента прибора не обусловлен повреждением или отказами других элементов, его называют независимым. Например, в гирокомпасе отказ системы ускоренного приведения гиросферы в меридиан не может быть обусловлен выходом из строя системы охлаждения, так как эти системы работают независимо друг от друга.

Отказ узла пройденного расстояния в лаге может быть связан с неисправностью в узле скорости. Так как эти узлы между собой сопрягаются, то этот отказ является зависимым. Выход из строя блока питания (при отсутствии защиты от КЗ) из-за короткого замыкания в потребителе электроэнергии также может служить примером зависимого отказа.

Отказы электронных приборов, возникающие в результате процессов, происходящих в их внутренней структуре, называют независимыми. Однако весьма часты случаи, когда повреждения приборов связаны с выходом из строя предохранителей цепей защиты от перегрузок и пассивных ограничительных элементов.

Отказы приборов по указанным причинам также называют зависимыми.

При рассмотрении причин выхода из строя полупроводниковых приборов и интегральных микросхем в аппаратуре необходимо установить степень зависимости отказа приборов от отказов других элементов. Это очень важно при выборе мер по устранению последующих отказов.

По характеру устранения различают самоустраняющиеся (сбой) и перемежающиеся отказы. В судовых условиях при кратковременном выключении судовой сети может нарушиться работоспособность любого судового электрорадионавигационного прибора (ЭРНП) и средства связи. Однако при подаче питания отказ может самоустраниться. Это пример сбоя, т. е. однократно возникающего и самоустраняющегося отказа или отказа, устраняемого оператором. Если несколько сбоев одного и того же характера следуют друг за другом, происходит перемежающийся отказ прибора. Простейшим примером таких отказов служат сбои, появляющиеся в приборах из-за наличия в объеме герметичного корпуса токопроводящих частиц, способных создавать кратковременные замыкания между внутренними выводами и отдельными токопроводящими дорожками.

Самоустраняющиеся отказы могут возникать вследствие кратковременного воздействия на некоторый элемент (или элементы) устройства или системы внешних помех, а также в результате кратковременного изменения параметров элементов (кратковременное нарушение контактов, подвижных связей и т. п.).

Самоустраняющийся отказ ЭВМ сопровождается искажением информации при операциях передачи, хранения и обработки, поэтому, если не устранить последствия такого отказа, задача может оказаться неправильно решенной из-за искажения данных, промежуточных результатов или непосредственно программ. При самоустраняющемся отказе РЭО и СА, построенных на базе микропроцессоров и ЭВМ, необходимо восстанавливать достоверность информации, например, путем повторного пуска программы или ее части; в этом случае ремонт или регулировка аппаратуры, как правило, не требуется.

По степени обнаружения различают отказы:

Явные - обнаруживаются визуально или штатными методами и средствами контроля и диагностирования при подготовке объекта к использованию или в процессе его применения по назначению;

Скрытые - не обнаруживаются визуально или штатными методами и средствами контроля и диагностирования, но выявляются при техническом обслуживании или с помощью специальных методов диагностирования.

При возникновении отказа или повреждения следует выявить признаки (критерии) нарушения работоспособности объекта, выяснить причину их появления, определить характер и последствия.

Конструкционные отказы происходят в результате несовершенства или нарушения установленных правил и (или) норм конструирования объекта. Причинами, вызывающими такие отказы, могут быть неправильная оценка возможностей приборов при их выборе для изготовления аппаратуры, ошибки при ее конструировании. В результате приборы могут подвергаться перегрузкам и преждевременно выходить из строя.

Производственные отказы возникают вследствие несовершенства или нарушения установленного процесса изготовления или ремонта объекта, который выполняется на ремонтном предприятии.

При производстве радиоэлектронной аппаратуры приборы могут повреждаться в процессе входного контроля из-за неправильного выбора режимов измерений и испытаний, при установке в аппаратуру вследствие нарушения технологических режимов сборки.

Эксплуатационные отказы связаны с нарушением установленных правил и (или) условий эксплуатации объекта. Приведем пример эксплуатационного отказа. Правила включения гирокомпаса требуют, чтобы перед пуском все выключатели находились в положении «Выключено». Если оператор, нарушив это требование, оставит выключатель затухания в положении «Без затухания», что соответствует состоянию «Включено», то гирокомпас в меридиан не придет, несмотря на то, что все операции пуска будут выполнены строго в соответствии с правилами. В результате неправильных действий оператора произойдет отказ, который следует квалифицировать как эксплуатационный.

Деградационный отказ обусловлен естественными процессами старения, изнашивания, коррозии и усталости при соблюдении всех установленных правил и (или) норм проектирования, изготовления и эксплуатации.

Ресурсный отказ возникает тогда, когда объект достигает предельного состояния.

Критерий отказа - это признак или совокупность признаков нарушения работоспособного состояния объекта, установленного в нормативно-технической и (или) конструкторской (проектной) документации (например, контрольные амперметры показывают ненормальные токи в цепи питания моторов гирокомпаса). Кроме того, к критериям отказов относятся качественные признаки, указывающие на нарушение нормальной работы объекта: конкретные изменения в приборе, связанные с возникновением отказа (например, обрыв провода, деформация детали, обгорание контактов и т. п.).

Причина отказа - это явления, процессы, события и состояния, приведшие к возникновению отказа объекта. Причинами отказов могут быть нарушения правил и норм, допущенные при конструировании, производстве и технической эксплуатации, а также естественные процессы изнашивания и старения.

Последствия отказа - явления, процессы, события и состояния, обусловленные возникновением отказа объекта. Например, последствием отказа волновода в РЛС является выход из строя радиолокатора.

Классификация отказов имеет большое значение в практике эксплуатации РЭО и СА, так как позволяет определять причины отказа и устранять их.

Рассмотренные выше термины отражены в Государственных стандартах и нормативно-технической документации и являются обязательными при классификации отказов.

В процессе эксплуатации представляется возможным обнаружить и устранить ряд повреждений, которые могли бы привести к отказам, называемым предотвращаемыми. К ним относятся в основном постепенные отказы, при которых удается контролировать предшествующее им изменение характеристик РЭО.

Некоторые повреждения объекта не могут быть обнаружены и в конечном счете могут привести к непредотвращаемым отказам. К ним относятся внезапные отказы, статистические закономерности возникновения которых неизвестны.

Следует иметь в виду, что не все постепенные отказы можно предотвратить, так как часто весьма трудно определить медленные изменения параметров различных элементов РЭО и СА. Не все внезапные отказы относятся к непредотвращаемым, так как появление некоторых внезапных отказов может быть предсказано на основе изучения статистических закономерностей их возникновения во времени. Деление отказов на предотвращаемые и непредотвращаемые является условным, используется при оценке эффективности профилактических работ. Совершенствование методов контроля радиоаппаратуры приводит к тому, что все большая часть изменений параметров аппаратуры может быть обнаружена и предупреждена.

Соотношение между количеством предотвращаемых и непредо-твращаемых отказов различных типов радиоаппаратуры оценивается коэффициентом характера отказов:

где - количество предотвращаемых и непредотвра-щаемых отказов в данном типе радиоаппаратуры.

На значение коэффициента характера отказов любого типа аппаратуры большое влияние оказывают конструкционные, технологические и эксплуатационные факторы: свойства материалов и технология изготовления элементов, физические и химические воздействия на аппаратуру при эксплуатации, длительность эксплуатации и т. д.

Коэффициент характера отказов A(t) может быть определен для конкретных типов радиооборудования на основании статистических данных по отказам. Ниже приведены значения коэффициента характера отказов (в %) некоторых элементов радиоаппаратуры:

В процессе эксплуатации значительное количество отказов радиооборудования можно предотвратить путем своевременного выявления неисправностей и их устранения (настройка, регулировка и т. д.). Количество предотвращаемых отказов зависит от качества выполнения работ. Кроме того, совершенствование методов и средств контроля способствует тому, что большая часть изменений параметров ТС может быть обнаружена, а значит, и предупреждена.

Анализ отказов аппаратуры показывает, что примерно 40 - 45% всех отказов происходит из-за ошибок, допущенных при конструировании, 20% - из-за ошибок в процессе производства, 30% - в результате неправильной эксплуатации, 5 -10% - вследствие естественного износа и старения.

Причины отказов интегральных схем. В настоящее время уделяется большое внимание контролю качества электронного оборудования, однако, несмотря на это, в процессе эксплуатации часто происходят отказы отдельных компонентов или целых систем.

Выход из строя компонента может произойти по целому ряду причин, в частности из-за перегрузок по току или напряжению, чрезмерного нагревания, воздействия агрессивных химических веществ или повышенной влажности, а также некоторых условий производства и эксплуатации оборудования. Так, на начальном этапе эксплуатации отказы являются результатом производственных дефектов, ошибок проектирования или неправильного использования компонентов, а также применения дефектных компонентов, которые не были выявлены на этапе входного контроля. Большинство отказов в активный период эксплуатации происходит из-за высокой температуры и влажности, перегрузок по току и напряжению, вибрации, тепловых и механических воздействий, в дальнейшем - в результате старения компонентов. Причинами отказов, возникающих в процессе эксплуатации, могут служить коррозия, электрическая утечка, пробой изоляции, перемещение металлических ионов в направлении тока под воздействием электрического поля, а также разрушение материалов и проводников. Отказы механических компонентов, например, разъемов, происходят в результате износа контактов и увеличения их сопротивления.

Среди факторов, которые наиболее часто являются причиной выхода из строя электронного оборудования, можно выделить следующие:

Электрические перегрузки. Повреждения, вызванные электрическими перегрузками в процессе работы устройства, возникают под воздействием повышенного напряжения, тока или мощности. К таким повреждениям относятся:

Разрушение переходов и областей металлизации, а также обугливание и разрушение, связанные с перегревом отдельных областей кристаллов (в полупроводниковых устройствах);

Разрушение резистивного слоя или перегорание (плавление) провода в проволочных резисторах, появление разломов и изменение цвета корпуса (в резисторах);

Пробой диэлектрического материала и выделение тепла (в конденсаторах);

Плавление провода в обмотках, приводящее к короткому замыканию витков, чрезмерному выделению тепла в них, перегоранию или обугливанию компонента (в трансформаторах и катушках);

Электростатические разряды. Происходят из-за накопления заряда на выводах микросхем. При соприкосновении заряженного объекта с проводящей поверхностью возникает электрический разряд, приводящий к кратковременному потоку большого количества электронов в проводнике. Если при этом происходят необратимые изменения во внутренней структуре микросхемы, она выходит из строя.

К повреждениям, вызываемым электростатическими разрядами, относятся:

Разрыв тонких оксидных пленок в полупроводниковых устройствах как следствие пробоя диэлектрика;

Плавление проводников и областей металлизации из-за перегрева под воздействием высокого напряжения;

Ухудшение параметров или скрытые дефекты в структуре компонентов, которые не приводят к немедленному выходу устройства из строя, но делают работу системы неустойчивой и провоцируют эксплуатационные отказы в жестких условиях;

Наведение мощных электрических полей, приводящих к возникновению помех и сбоев в работе расположенных рядом электронных устройств.

Электромагнитные помехи и тепловой удар. Быстроменяющиеся электрические и магнитные поля способствуют появлению электромагнитных помех в проводниках. Наиболее часто источниками таких помех являются флуоресцентные лампы, промышленное и медицинское электронное оборудование, а также электробытовые приборы, использующие электродвигатели. К естественным источникам такого рода помех можно отнести грозовые разряды. Электромагнитные помехи в объекте становятся проблемой, когда имеется их источник, среда, передающая или ответвляющая помехи, и чувствительная к ним система. Электромагнитный сигнал от источника помех передается на чувствительное устройство благодаря явлениям проводимости и излучения. В первом случае помехи проникают в устройство через прямой проводящий тракт, во втором - через окружающую среду. Для того чтобы уменьшить электромеханические помехи, необходимо уже на стадии проектирования выбрать правильные схемотехнические решения и соответствующие им компоненты, правильную разводку печатных плат, специальные приемы заземления и экранирования.

Отказы элементов систем являются основными предметами исследования при анализе причинных связей. Как показано во внутреннем кольце (рис. 4.1.2), расположенном вокруг «отказа элементов», отказы могут возникать в результате:

1) первичных отказов;

2) вторичных отказов;

3) ошибочных команд (инициированные отказы).

Отказы всех этих категорий могут иметь различные причины, приведенные в наружном кольце. Когда точный вид отказов определен и данные по ним получены, а конечное событие является критическим, то они рассматриваются как исходные отказы .

Первичный отказ элемента определяют как нерабочее состояние этого элемента, причиной которого является он сам, и необходимо выполнить ремонтные работы для возвращения элемента в рабочее состояние. Первичные отказы происходят при входных воздействиях, значение которых находится в пределах, лежащих в расчетном диапазоне, а отказы объясняются естественным старением элементов. Разрыв резервуара вследствие старения (усталости) материала служит примером первичного отказа.

Вторичный отказ - такой же, как первичный, за исключением того, что сам элемент не является причиной отказа. Вторичные отказы объясняются воздействием предыдущих или текущих избыточных напряжений на элементы.

Амплитуда, частота, продолжительность действия этих напряжений могут выходить за пределы допусков или иметь обратную полярность и вызываются различными источниками энергии: термической, механической, электрической, химической, магнитной, радиоактивной и т.п. Эти напряжения вызываются соседними элементами или окружающей средой, например - метеорологическими (ливень, ветровая нагрузка), геологическими условиями (оползни, просадка грунтов), а также воздействием со стороны других технических систем.

Примером вторичных отказов служит «срабатывание предохранителя от повышенного электрического тока», «повреждение емкостей для хранения при землетрясении». Следует отметить, что устранение источников повышенных напряжений не гарантирует возвращение элемента в рабочее состояние, так как предыдущая перегрузка могла вызвать необратимое повреждение в элементе, требующее в этом случае ремонта.

Инициированные отказы (ошибочные команды). Люди, например операторы и обслуживающий технический персонал, также являются возможными источниками вторичных отказов, если их действия приводят к выходу элементов из строя. Ошибочные команды представляются в виде элемента, находящегося в нерабочем состоянии из-за неправильного сигнала управления или помех (при этом лишь иногда требуется ремонт для возвращения данного элемента в рабочее состояние). Самопроизвольные сигналы управления или помехи часто не оставляют последствий (повреждений), и в нормальных последующих режимах элементы работают в соответствии с заданными требованиями. Типичными примерами ошибочных команд являются: «напряжение приложено самопроизвольно к обмотке реле», «переключатель случайно не разомкнулся из-за помех», «помехи на входе контрольного прибора в системе безопасности вызвали ложный сигнал на остановку», «оператор не нажал на аварийную кнопку» (ошибочная команда от аварийной кнопки).

Множественный отказ (отказы общего характера) есть событие, при котором несколько элементов выходят из строя по одной и той же причине. К числу таких причин могут быть отнесены следующие:

Конструкторские недоработки оборудования (дефекты, не выявленные на стадии проектирования и приводящие к отказам вследствие взаимной зависимости между электрическими и механическими подсистемами или элементами избыточной системы);

Ошибки эксплуатации и технического обслуживания (неправильная регулировка или калибровка, небрежность оператора, неправильное обращение и т. п.);

Воздействие окружающей среды (влага, пыль, грязь, температура, вибрация, а также экстремальные режимы нормальной эксплуатации);

Внешние катастрофические воздействия (естественные внешние явления, такие как наводнение, землетрясение, пожар, ураган);

Общий изготовитель (резервируемое оборудование или его компоненты, поставляемые одним и тем же изготовителем, могут иметь общие конструктивные или производственные дефекты. Например, производственные дефекты могут быть вызваны неправильным выбором материала, ошибками в системах монтажа, некачественной пайкой и т. п.);

Общий внешний источник питания (общий источник питания для основного и резервного оборудования, резервируемых подсистем и элементов);

Неправильное функционирование (неверно выбранный комплекс измерительных приборов или неудовлетворительно спланированные меры защиты).

Известен целый ряд примеров множественных отказов: так, некоторые параллельно соединенные пружинные реле выходили из строя одновременно и их отказы были вызваны общей причиной; вследствие неправильного расцепления муфт при техническом обслуживании два клапана оказались установлены в неправильное положение; из-за разрушения паропровода имели место сразу несколько отказов коммутационного щита. В некоторых случаях общая причина вызывает не полный отказ резервированной системы (одновременный отказ нескольких узлов, т.е. предельный случай), а менее серьезное общее понижение надежности, что приводит к повышению вероятности совместного отказа узлов систем. Такое явление наблюдается в случае исключительно неблагоприятных окружающих условий, когда ухудшение характеристик приводит к отказу резервного узла. Наличие общих неблагоприятных внешних условий приводит к тому, что отказ второго узла зависит от отказа первого и спарен с ним.

Для каждой общей причины необходимо определить все вызываемые ею исходные события. При этом определяют сферу действия каждой общей причины, а также место расположения элементов и время происшествия.

Некоторые общие причины имеют лишь ограниченную сферу действия. Например, утечка жидкости может ограничиваться одним помещением, и электрические установки, их элементы в других помещениях не будут повреждены вследствие утечек, если только эти помещения не сообщаются друг с другом.

Отказ считают по сравнению с другим более критичным, если его предпочтительнее рассматривать в первую очередь при разработке вопросов надежности и безопасности. При сравнительной оценке критичности отказов учитывают последствия отказа, вероятность возникновения, возможность обнаружения, локализации и т. д.

Указанные выше свойства технических объектов и промышленная безопасность – взаимосвязаны. Так, при неудовлетворительной надежности объекта вряд ли следует ожидать хороших показателей его безопасности.

В то же время перечисленные свойства имеют свои самостоятельные функции. Если при анализе надежности изучается способность объекта выполнять заданные функции (при определенных условиях эксплуатации) в установленных пределах, то при оценке промышленной безопасности выявляют причинно-следственные связи возникновения и развития аварий и других нарушений с всесторонним анализом последствий этих нарушений.

Основные понятия теории надежности

Надежность - это свойство объекта сохранять свои выход-ные характеристики в определенных пределах при данных условиях эксплуатации.

Работоспособным , называется такое состояние системы (элемента), при котором значения пара-метров, характеризующих способность системы выполнять за-данные функции, находятся в пределах, установленных норма-тивно-технической или конструкторской документацией.

Неработоспособным , называется состояние системы, при котором значение хотя бы одного параметра, характери-зующего способность выполнять заданные функции, не нахо-дится в пределах, установленных указанной документацией.

Например, система измерения температуры является неработо-способной, если основной параметр, характеризующий качество ее функционирования — погрешность измерения, превышает заданную величину.

Исправ-ное состояние - это такое состояние, при котором система соответствует всем требованиям нор-мативно-технической и конструкторской документации.

Не-исправное - при котором имеется хотя бы одно несоответствие требованиям.

Отличие между исправным и работоспособным состояниями заключается в следующем. Работоспособная система удовлет-воряет только тем требованиям, которые существенны для функционирования, и может не удовлетворять прочим требо-ваниям (например, по сохранности внешнего вида элементов). Система, находящаяся в исправном состоянии, заведомо рабо-тоспособна.

Предельное состояние - это состояние, при котором дальней-шее применение системы по назначению недопустимо или не-целесообразно. После попадания в предельное состояние может следовать ремонт (капитальный или сред-ний), в результате чего восстанавливается исправное состоя-ние, или же система окончательно прекращает использоваться по назначению.

Отказ - событие, заключающееся в нарушении работоспособности системы, т. е. в переходе ее из работоспособного в неработо-способное состояние.

Повреждением - событие, заключаю-щееся в переходе системы из исправного в неисправное но работоспособное состояние.

Восстановлением называется событие, заключающееся в пе-реходе системы из неработоспособного в работоспособное со-стояние.

К невосстанавливаемым относят систе-мы, восстановление которых непосредственно после отказа счи-тается нецелесообразным или невозможным, а к восстанавли-ваемым - в которых проводится восстановление непосредственно после отказа.

Одна и та же система в различных условиях применения может быть отнесена к невосстанавливаемым (например, если она расположена в необслуживаемом помещении, куда запре-щен доступ персонала во время работы технологического агре-гата) и к восстанавливаемым, если персонал сразу же после отказа может начать восстановление. Само понятие «восста-новление» следует понимать не только как корректировку, на-стройку, пайку или иные ремонтные операции по отношению к тем или иным техническим средствам, но и как замену этих средств.

В принципе подавляющее большинство систем, применяе-мых для автоматизации технологических процессов, подлежит восстановлению после отказа, после чего они вновь продолжа-ют работу. То же относится к большей части технических средств; к числу невосстанавливаемых можно отнести только такие их элементы, как интегральные схемы, резисторы, кон-денсаторы и т. п.

Виды отказов

Отказы можно различать по нескольким признакам.

По характеру устранения различают окончательные (устойчивые) и перемежающиеся (то возникающие, то исчезающие) отказы. Отказ объекта — событие, заключающееся в том, что объект либо полностью, либо частично теряет свойство работоспо-собности. При полной потере работоспособности возникает полный отказ, при частичной — частичный отказ. Понятия полно-го и частичного отказов каждый раз должны быть четко сформулированы перед анализом надежности, поскольку от этого зависит количественная оценка надежности. Требования к надежности изделия, а также количественная оценка надежности без указания признаков отказа не имеют смысла.

Отказы могут быть внезапными и постепенными. Эти отказы различны по природе возникновения.

Внезапному отказу может не предшествовать постепенное на-копление повреждений, и он возникает внезапно. Технология изго-товления современных элементов аппаратуры столь сложна, что не всегда удается проследить за скрытыми дефектами производст-ва, которые должны выявляться на стадии тренировки и прира-ботки аппаратуры. В результате в сферу эксплуатации могут про-никать следующие дефектные элементы: резистор с недостаточно прочным креплением токоотвода; полупроводниковый прибор, у которого толщина промежуточной области недостаточна; полупро-водниковый прибор, у которого на поверхности полупроводнико-вого материала застряла токопроводящая микрочастица; токопроводящий слой печатного монтажа, у которого толщина либо чрез-мерно малая, либо чрезмерно большая; интегральная схема, у которой соединение вывода с печатным монтажом недостаточно врочное, и т. д. В процессе эксплуатации случайно могут создать-ся условия, при которых скрытый дефект приводит к отказу изде-лия (пиковые нагрузки, тряска и вибрация, температурный скачок, помехи и т. д.). Но неблагоприятного сочетания неблагоприятных ^факторов может и не быть, тогда не будет и внезапного отказа. При большом уровне случайных неблагоприятных воздействий внезапный отказ может произойти даже при отсутствии скрытых дефектов.

Постепенный отказ возникает в результате постепенного накоп-ления повреждений, главным образом вследствие износа и старе-ния материалов.

Выделять внезапные и постепенные отказы необходимо, пото-му что закономерности, которым они подчиняются, различны. Раз-личными поэтому должны быть и способы борьбы с этими отказа-ми. Для уменьшения числа внезапных отказов может быть реко-мендована предварительная тренировка и приработка изделий с целью выявления скрытых дефектов производства, а также вве-дение защиты от неблагоприятных воздействий типа помех, пере-грузок, вибраций и т. п. Уменьшению числа постепенных отказов может содействовать своевременная замена сменных блоков, вы-работавших технический ресурс.

Отказ может быть кратковременным самоустраняющимся. В этом случае он называется сбоем. Характерный признак сбоя — то, что восстановление работоспособности после его возникновения не требует ремонта аппаратуры. Причиной сбоя может быть либо кратковременный отказ аппаратуры (например, залипание контак-та), либо кратковременно действующая помеха, либо дефекты про-граммы, приводящие к неблагоприятным временным характеристи-кам работы аппаратуры. Опасность сбоев заключается в том, что их трудно и часто даже невозможно обнаружить в процессе рабо-ты аппаратуры, но они могут исказить информацию настолько, что приведут к отказу выполнения заданной функции.

Отказы в АСУ целесообразно подразделять на аппаратурные и программные.

Программным отказом считается событие, при котором объект утрачивает работоспособность по причине несовершенства программы (несовершенство алгоритма решения задачи, отсутствие про-граммной защиты от сбоев, отсутствие программного контроля за состоянием изделия, ошибки в представлении программы на физическом носителе и т. д.). Программный отказ устраняется путем исправления программы.

Для объектов ответственного назначения целесообразно выделять в отдельную группу отказы, которые могут приводить к катастрофическим последствиям (гибели людей и т. д.). В заданиях по надежности необходимо выделять в отдельную группу требования по обеспечению безопасности.