Аэродинамическая схема утка. Исследование и поиск рациональной компоновки сверхзвукового перехватчика нового поколения, выполненого по аэродинамической схеме «Утка


САМОЛЕТЫ СХЕМЫ "УТКА"

Так как первый взлетевший летательный аппарат тяжелее воздуха-самолет братьев Райт "Флайер" (1903 год) - построен по схеме, которая сегодня известна под названием "утка", представляется логичным начать повествование о летательных аппаратах нетрадиционных схем с самолетов этого класса.

ОШИБОЧНЫЙ ТЕРМИН

Во-первых, термин "утка" - ошибочный. Под "уткой" в авиации общепринято понимать самолет, горизонтальное оперение которого-стабилизатор и рули высоты-расположено перед крылом, а не позади него. Этот термин может быть с таким же успехом применен и к дирижаблям, и к планерам. В частности, первые модели жестких дирижаблей Цеппелина оснащались расположенными впереди горизонтальными поверхностями управления в дополнение к традиционным хвостовым.

Обычно термин "утка" подразумевает расположение в передней части летательного аппарата основных, а не вспомогательных средств аэродинамического управления.

Этот термин появился впервые во Франции; его происхождение, вероятно, связано с тем, что крыло летящей утки находится ближе к ее хвосту, чем к голове, а вовсе не потому, что эта птица управляет своим полетом с помощью специального органа, расположенного перед крылом. Летательные аппараты этой схемы получили довольно широкое распространение.

Многие самолеты схемы "утка" можно рассматривать как самолеты с тандемными крыльями, переднее крыло которых относительно мало. В этом случае переднее горизонтальное оперение (ПГО), состоящее обычно из неподвижных (стабилизаторы) и подвижных (рули высоты) поверхностей, несет значительную часть аэродинамической нагрузки.

В последние годы термин "утка" стал применяться для описания самолетов, оснащенных вспомогательными поверхностями аэродинамического управления, установленными на носовой части, вообще говоря, самолетов довольно традиционных схем (а также некоторых самолетов с треугольным крылом), для обеспечения балансировки летательного аппарата или управления обтекающим его потоком, а не для осуществления основного управления или создания части суммарной подъемной силы, как это бывает на классической "утке".

ПОЧЕМУ ПЕРЕДНЕЕ ГОРИЗОНТАЛЬНОЕ ОПЕРЕНИЕ?

До того, как братья Райт непосредственно приступили к созданию самолета, они
Во-первых, братья Райт прекрасно понимали функции "горизонтального руля" при управлении положением самолета в пространстве и считали, что расположенное впереди оперение будет выполнять такие функции более эффективно, чем хвостовое. В этом они оказались правы, но недостатков такого технического решения они, конечно же, не знали.

Второй основной причиной их выбора было место проведения первых полетов, которые выполнялись с песчаной площадки, и поэтому отсутствовала возможность использования шасси колесного типа. И созданные ранее планеры, и первый "Флайер" оснащались полозковым шасси, при котором фюзеляж самолета располагался очень близко к земле. В то же время братья Райт понимали необходимость большого угла атаки при взлете и посадке. Низкосидящая машина типа "Флайера" наверняка цепляла бы хвостовым оперением за землю, если бы оно было выбрано; поэтому конструкторы отказались от такого решения. Они установили в хвостовой части своего летательного аппарата вертикальный киль. Балки, поддерживающие киль, оснащались шарнирами и с помощью тросовой проводки могли отклоняться вверх, не оказывая влияния на управляемость самолета, так как киль не отклонялся относительно набегающего потока.

ДОСТОИНСТВА

В современном понимании главным преимуществом аэродинамической схемы "утка" считается повышение маневренности самолета, что привлекает к этой схеме создателей военной техники. Более высокие маневренные качества самолетов такой схемы оказались очень полезными в совершенствовании характеристик некоторых из созданных в последнее время ультралегких летательных аппаратов.

Еще одним преимуществом самолетов: схемы "утка" считается то, что практически всегда можно построить такой летательный аппарат с естественной противоштопорной защитой: срыв воздушного потока на ПГО происходит раньше, чем на крыле, создающем большую часть подъемной силы, поэтому нос самолета в этом случае слегка опускается, и машина возвращается в нормальный полет.

НЕДОСТАТКИ

Существенным недостатком чсхемы "утка" является то, что летательным аппаратам этой схемы присуща продольная неустойчивость. Вместо того чтобы демпфировать движения самолета относительно поперечной оси (по тангажу), как это делает, например, оперение стрелы, воздействие воздушного потока на переднее горизонтальное оперение усиливает соответствующие возмущения.

В своих записках О. Райт отмечал, что устойчивость "утки" по тангажу определяется мастерством летчика. Опыт первых полетов показал, что в том случае, когда на переднем горизонтальном оперении создается значительная подъемная сила, она оказывает существенное влияние на балансировку самолета.

Срыв потока на ПГО вызывает примерно такое же воздействие на балансировку летательного аппарата, как, например, складывание пары ножек стола-две другие ножки продолжают поддерживать противоположный конец, и стол падает в ту сторону, где опора отсутствует.

Поэтому противоштопорные достоинства самолетов схемы "утка" довольно скоро поблекли.

Самолеты этой схемы практически полностью исчезли из практики авиастроения вплоть до того, как в начале второй мировой войны начали проводиться углубленные исследования "утки", нацеленные на поиск возможных путей повышения характеристик маневренности самолетов.

Однако и в этот период развития авиации не удалось реализовать достоинства этой схемы. Лишь в последние годы было создано несколько очень удачных самолетов схемы "утка", которые продемонстрировали преимущества этой схемы в некоторых специфических условиях применения авиационной техники.

Однако на этих самолетах уже применялись специальные средства предотвращения мощного срыва потока с ПГО. Это достигается путем увеличения критического угла атаки за счет выдува п отока на ПГО, использования аэродинамических профилей с различными несущими свойствами или применения ПГО в качестве лишь балансировочной поверхности (в этом случае ПГО не создает сколь-нибудь заметного вклада в подъемную силу), например, на самолетах с близким к треугольному крылом большой площади или самоле-тах-"бесхвостках" с крылом прямой стреловидности.

По схеме "утка" построены некоторые из современных ракет, но системы управления этих ракет обычно работают с использованием бортовых ЭВМ и автоматических средств повышения устойчивости, которые вырабатывают и осуществляют балансировочные команды, предотвращающие нарастание возмущений в канале тангажа.

Следует отметить, что все самолеты схемы "утка", реализованные в соответствии с техническим уровнем, достигнутым до 1960-х гг., стали сущим несчастьем. Как бы предвидя это, братья Райт уже в 1909 году (когда они стали использовать колесное шасси, позволяющее приподнять самолет от земли и обеспечить набор угла атаки на разоеге) отказались от ПГО и установили рули высоты в хвостовой части аппарата около руля направления.

Наиболее широкое распространение схема "утка" получила в области ультралегких летательных аппаратов. Этот класс современных летательных аппаратов проделал своеобразный путь назад к полетам того типа, которые выполняли братья Райт и которые характеризуются весьма ограниченным скоростным диапазоном, ограниченной маневренностью и сравнительно небольшой полезной нагрузкой.
В период с 1980 по 1983 гг., вероятно, было спроектировано и построено больше самолетов этой схемы, чем за всю предыдущую историю авиации.

Идеи наших читателей

ЮАН-2 «Sky Dweller> на авиасалоне МАКС-2007

ЯпЬтсрнатиЗнар

На МАКС-2009 этого самолёта ещё не будет -конструкция совершенствуется, и следующая её версия создаётся в значительной мере из деталей и узлов предыдущей. А вот на прошлом МАКСе сверхлёгкий ЮАН-2 вызвал большой интерес, несмотря даже на подпорченный многочисленными испытаниями внешний вид. Потому что это не просто ещё один СЛА. В самолёте реализована аэродинамическая схема - так называемая «флюгерная утка», - которую без натяжки можно назвать революционной. В этой статье автор идеи и руководитель строительства опытных машин, молодой авиаконструктор Алексей Юрконенко, обосновывает преимущества новой схемы. По его мнению, она идеальна для неманёвренных самолётов, и в этой категории - весьма, кстати сказать, обширной ~ может стать основой нового направления в развитии мирового самолётостроения.

Применение современных технологий проектирования самолётов привело к результату, на первый взгляд, парадоксальному: процесс улучшения характеристик авиационной техники «потерял темп». Найдены новые аэродинамические профили, оптимизирована механизация крыла, сформулированы принципы построения рациональных структур авиационных конст

рукций, улучшена газодинамика двигателей... Что же дальше, неужели развитие самолёта пришло к своему логическому завершению?

Что ж, эволюция самолёта в рамках нормальной, или классической, аэродинамической схемы действительно замедляется, На авиационных выставках и салонах массовый зритель находит огромное и пёстрое многообразие; опыт

ный же специалист видит принципиально одинаковые самолёты, отличающиеся лишь по эксплуатацией но-тех-пологическим признакам, но имеющие общие концептуальные недостатки,

«КЛАССИКА»: ПЛЮСЫ И МИНУСЫ

Напомним, что пол термином «аэродинамическая схема самолёта* подразумевается способ обеспечения статической устойчивости и управляемости самолёта в канале тангажа 1 .

Главное и, пожалуй, единственное положительное свойство классической аэродинамической схемы заключается в том, что расположенное за крылом горизонтальное оперение (ГО) позволяет без особых трудностей обеспечить продольную статическую устойчивость на больших углах атаки самолёта".

Основным недостатком классической аэродинамической схемы является наличие так называемых потерь на балансировку, которые возникают из-за необходимости обеспечения запаса продольной статической устойчивости самолёта (рис. I). Таким образом, результирующая подъёмная сила самолёта оказывается меньше, чем подъёмная сила крыла, на величину отрицательной подъёмной силы ГО.

Максимальное значение потерь на балансировку имеет место на взлётно-посадочных режимах при выпущенной механизации крыла, когда подъёмная сила крыла и, следовательно, пикирующий момент, ею обусловленный (см. рис. 1), имеют максимальное значение. Существуют, например, пассажирские самолёты, у которых при полностью выпущенной механизации отрицательная подъёмная сила ГО равна 25% их веса. Значит, примерно на ту же величину переразмерено крыло, и все экономические и эксплуатационные показатели такого летательного аппарата, мягко говоря, далеки от оптимальных значений.

АЭРОДИНАМИЧЕСКАЯ СХЕМА «УТКА»

Как избежать этих потерь? Ответ прост: аэродинамическая компоновка статически устойчивою самолёта должна исключать балансировку с отрицательной подъёмной силой на горизон-

" Тангаж - угловое движение летательного аппарата относительно поперечной оси инерции. Угол тангажа - угол между продольной осью летательного аппарата и горизонтальной гласностью.

1 Угол атаки самолёта - угол между направлением скорости набегающего потока и продольной cmpoume.tbHuu осью самолёта.

Разработка самолета МиГ-8 осуществлялась с целью проверки управляемости и устойчивости аэродинамической схемы «Утка». Проект курировало ОКБ-155. Помимо проверки новой схемы, также отрабатывали работу крыльев большой стреловидности и трехколесное шасси с наличием передней опоры.

Работа над проектом началась в феврале 45 года. В первую очередь приступили к проработке компоновки. Основную заслугу в большинстве работ следует отдать передовым инженерам Н. Матюку, Н. Андрианову, К. Пеленбергу, А. Чумаченко и Я. Селецкому. По предварительным расчетам максимальная скорость «Утки» не должна была превышать показатель в 240 км/ч. Собственно, данная теория подтвердилась благодаря продувке в аэродинамической трубе Т-102, расположенной в ЦАГИ.

Но продувка полностью не могла показать устойчивость конструкции на критических режимах. Специалисты из ЦАГИ посоветовали совершить первый полет с установленными фиксированными концевыми предкрылками. Их размах соответствовал размаху элеронов. Но перед проведением первого полета ведущий инженер В. Матвеев категорически не рекомендовал начинать испытания с околокритических режимов. По его доводу выходило, что по отношению к штопорным свойствам схема «Утка» является очень неблагополучной.

МиГ-8 видео

В ЦАГИ было выполнено много расчетов и проведено несколько испытаний для определения околокритической скорости флаттера и собственных частот колебания. По данным выявили, что самолет способен развивать скорость в 328 км/ч, а максимально допустимой является 270 км/ч. Статические испытания МиГ-8 довели до эксплуатационной нагрузки, которая составила 67% от разрушающей.

Впервые МиГ-8 поднялся в небо 13 августа 45 года. Его вел летчик-испытатель А. Жуков. В помощь Жукову для управления «Уткой» назначили представители из ЛИИ А. Гринчика. Летные испытания были поделены на несколько этапов. Первый решили провести в период с конца августа по середину сентября этого же года. Он проходил на территории ЛИИ НКАП. Решено было перестраховаться, и для повышения безопасности на самолет установили конечные предкрылки с постоянной щелью.

Результат испытаний на устойчивость был довольно-таки успешным, поскольку выяснилось, что самолет при центровке располагает положительной продольной прочностью, одинаково путевой и поперечной. Именно в ЦАГИ рекомендовали для получения данного результата привести V крыла в обратное поперечное на один градус, а конечные шайбы развернуть на 10 градусов концами вовнутрь крыла. На носок руля высоты специально поставили груз в 1 кг для выравнивания черты устойчивости со свободным и фиксированным рулем.

Дополнительно специалисты из ЛИИ выдали некоторые рекомендации для доработки самолета. Для этого «Утку» в конце 1945 года отправили на завод №155. Там инженеры начали работу над усовершенствованием, в частности переставили кили на середину консолей, установили управляемый триммер на руль высоты, а руль направления доукомплектовали компенсатором. Дополнительно на переднюю стойку вмонтировали колесо размером 500х150.

Для новых испытаний самолет вывели на заводской аэродром в феврале 1946 года. Проведя несколько полетов, конструкторы обнаружили один негативный нюанс. Температура масла в двигателе не поднималась выше метки 20 °С. После проведенного исследования выяснилось, что причина находится в отсутствующих (снятых) обтекателях. Их надели обратно. Следующий полет состоялся 28 февраля, однако вместо поднятия температуры наблюдалось ее превышение. МиГ-8 снова отправили на доработку.

Третьего марта 1946 года МиГ-8 перегнали обратно в ЛИИ НКАП. Таким образом, начался второй этап летных испытаний. В него включили испытания, связанные со штопорными свойствами самолета. Во время испытаний начали новую доработку крыла. Установили законцовки с немалым отрицательным углом поперечного V и сняли предкрылки. Но появившиеся опасения по поводу штопорных свойств МиГ-8 так и не оправдались.

Проведенные исследования показали, что как только пилот входит в штопор, необходимо сразу же отпустить штурвал, и аппарат сам из него моментально выйдет. Установленный толкающий винт создал способность проверки управляемости на малых скоростях самолета при отсутствии винтового обдува крыла. Также на них выяснились способы управляемости воздушного аппарата на земле и нюансы посадки и взлета при отсутствии винтового обдува органов управления. В будущем эти результаты использовали в создании реактивных истребителей МиГ-9 и МиГ-15. После всех испытаний и получения одобрения «Утку» в 1946 году начали использовать как транспортный и связной самолёт ОКБ. Он уникален тем, что ни разу не был в аварийной ситуации.

Конструкция самолета МиГ-8 «Утка»

МиГ-8 выполнен по схеме подкосного высокоплана с неубирающимся трехколесным шасси. Каркас фюзеляжа сконструирован из сосновых брусков и имеет фанерную обшивку. Закрытая кабина рассчитана на одного пилота и двух пассажиров. Дверь расположена по левую сторону фюзеляжа. Отличный обзор переда и боков обеспечивается благодаря хорошему остеклению кабины. Горизонтальное оперение установили на балку, расположенную в конце носовой части фюзеляжа. В то же время хвостовая часть переходит в моторный отсек, который заканчивается коком винта.

Крыло двухлонжеронного типа с относительно постоянной толщиной по размаху (12%) имеет деревянный набор и обшивку из полотна. Сконструировано крыло по профилю «Кларк УН». Угол установки соответствует двум градусам. Вертикальное оперение крыльев представлено установленными на концах шайбами. Элероны созданы по принципу «Фрайз». Они сделаны из дюралевого каркаса и полотняной обшивки.

Площадь вертикального оперения составляет 3 м 2 , горизонтального – 2,7 м 2 . Его размах – 3,5 м. Кили деревянные, направляющие рули состоят из дюралевого каркаса и полотняной обшивки. Состав руля высоты такой же. Стабилизатор деревянный. Управление элеронами и рулями направления тросовое, рулем высоты – жесткое.

Силовая установка представлена мотором М-11 ФМ воздушного охлаждения. Его мощность достигает 110 л.с. Двухлопастный толкающий деревянный винт имеет постоянный шаг. Его диаметр – 2,35 м. Лопасти винта установили под углом 24 градуса. Моторама сварная, трубчатая. Двигатель полностью закопотирован и имеет отдельные обдувы для каждого цилиндра. Пневматический запуск. Топливо находится в двух дюралевых бензобаках, которые установили в главной части каждого крыла. Общая вместительность топлива в баках – 118 л. За пассажирской кабиной расположен маслобак емкостью 18 л.

Стойки шасси сварены из металла. Амортизация воздушно-масляная. Носовое колесо имеет диаметр 300х150, а к стойке укомплектован демпфер.

МиГ-8 характеристки:

Модификация
Размах крыла, м 9.50
Длина самолета,м 6.80
Высота самолета,м 2.475
Площадь крыла,м2 15.00
Масса, кг
пустого самолета 746
нормальная взлетная 1090
топлива 140
Тип двигателя 1 ПД М-11ФМ
Мощность, л.с 1 х 110
Максимальная скорость, км/ч 215
Практическая дальность, км 500
Практический потолок, м 5200
Экипаж, чел 2
2 пассажира

: вынесенные вперёд плоскости управления без хвоста сзади.

Преимущества

Также различные разновидности схемы «утка» используются для многих управляемых ракет.

См. также

Напишите отзыв о статье "Утка (аэродинамическая схема)"

Литература

  • Лётные испытания самолётов, Москва, Машиностроение, 1996 (К. К. Васильченко, В. А. Леонов, И. М. Пашковский, Б. К. Поплавский)

Примечания

Отрывок, характеризующий Утка (аэродинамическая схема)

Лошадей подали. Денисов рассердился на казака за то, что подпруги были слабы, и, разбранив его, сел. Петя взялся за стремя. Лошадь, по привычке, хотела куснуть его за ногу, но Петя, не чувствуя своей тяжести, быстро вскочил в седло и, оглядываясь на тронувшихся сзади в темноте гусар, подъехал к Денисову.
– Василий Федорович, вы мне поручите что нибудь? Пожалуйста… ради бога… – сказал он. Денисов, казалось, забыл про существование Пети. Он оглянулся на него.
– Об одном тебя пг"ошу, – сказал он строго, – слушаться меня и никуда не соваться.
Во все время переезда Денисов ни слова не говорил больше с Петей и ехал молча. Когда подъехали к опушке леса, в поле заметно уже стало светлеть. Денисов поговорил что то шепотом с эсаулом, и казаки стали проезжать мимо Пети и Денисова. Когда они все проехали, Денисов тронул свою лошадь и поехал под гору. Садясь на зады и скользя, лошади спускались с своими седоками в лощину. Петя ехал рядом с Денисовым. Дрожь во всем его теле все усиливалась. Становилось все светлее и светлее, только туман скрывал отдаленные предметы. Съехав вниз и оглянувшись назад, Денисов кивнул головой казаку, стоявшему подле него.
– Сигнал! – проговорил он.
Казак поднял руку, раздался выстрел. И в то же мгновение послышался топот впереди поскакавших лошадей, крики с разных сторон и еще выстрелы.
В то же мгновение, как раздались первые звуки топота и крика, Петя, ударив свою лошадь и выпустив поводья, не слушая Денисова, кричавшего на него, поскакал вперед. Пете показалось, что вдруг совершенно, как середь дня, ярко рассвело в ту минуту, как послышался выстрел. Он подскакал к мосту. Впереди по дороге скакали казаки. На мосту он столкнулся с отставшим казаком и поскакал дальше. Впереди какие то люди, – должно быть, это были французы, – бежали с правой стороны дороги на левую. Один упал в грязь под ногами Петиной лошади.
У одной избы столпились казаки, что то делая. Из середины толпы послышался страшный крик. Петя подскакал к этой толпе, и первое, что он увидал, было бледное, с трясущейся нижней челюстью лицо француза, державшегося за древко направленной на него пики.
– Ура!.. Ребята… наши… – прокричал Петя и, дав поводья разгорячившейся лошади, поскакал вперед по улице.
Впереди слышны были выстрелы. Казаки, гусары и русские оборванные пленные, бежавшие с обеих сторон дороги, все громко и нескладно кричали что то. Молодцеватый, без шапки, с красным нахмуренным лицом, француз в синей шинели отбивался штыком от гусаров. Когда Петя подскакал, француз уже упал. Опять опоздал, мелькнуло в голове Пети, и он поскакал туда, откуда слышались частые выстрелы. Выстрелы раздавались на дворе того барского дома, на котором он был вчера ночью с Долоховым. Французы засели там за плетнем в густом, заросшем кустами саду и стреляли по казакам, столпившимся у ворот. Подъезжая к воротам, Петя в пороховом дыму увидал Долохова с бледным, зеленоватым лицом, кричавшего что то людям. «В объезд! Пехоту подождать!» – кричал он, в то время как Петя подъехал к нему.
– Подождать?.. Ураааа!.. – закричал Петя и, не медля ни одной минуты, поскакал к тому месту, откуда слышались выстрелы и где гуще был пороховой дым. Послышался залп, провизжали пустые и во что то шлепнувшие пули. Казаки и Долохов вскакали вслед за Петей в ворота дома. Французы в колеблющемся густом дыме одни бросали оружие и выбегали из кустов навстречу казакам, другие бежали под гору к пруду. Петя скакал на своей лошади вдоль по барскому двору и, вместо того чтобы держать поводья, странно и быстро махал обеими руками и все дальше и дальше сбивался с седла на одну сторону. Лошадь, набежав на тлевший в утреннем свето костер, уперлась, и Петя тяжело упал на мокрую землю. Казаки видели, как быстро задергались его руки и ноги, несмотря на то, что голова его не шевелилась. Пуля пробила ему голову.
Переговоривши с старшим французским офицером, который вышел к нему из за дома с платком на шпаге и объявил, что они сдаются, Долохов слез с лошади и подошел к неподвижно, с раскинутыми руками, лежавшему Пете.
– Готов, – сказал он, нахмурившись, и пошел в ворота навстречу ехавшему к нему Денисову.
– Убит?! – вскрикнул Денисов, увидав еще издалека то знакомое ему, несомненно безжизненное положение, в котором лежало тело Пети.
– Готов, – повторил Долохов, как будто выговаривание этого слова доставляло ему удовольствие, и быстро пошел к пленным, которых окружили спешившиеся казаки. – Брать не будем! – крикнул он Денисову.
Денисов не отвечал; он подъехал к Пете, слез с лошади и дрожащими руками повернул к себе запачканное кровью и грязью, уже побледневшее лицо Пети.
«Я привык что нибудь сладкое. Отличный изюм, берите весь», – вспомнилось ему. И казаки с удивлением оглянулись на звуки, похожие на собачий лай, с которыми Денисов быстро отвернулся, подошел к плетню и схватился за него.
В числе отбитых Денисовым и Долоховым русских пленных был Пьер Безухов.

О той партии пленных, в которой был Пьер, во время всего своего движения от Москвы, не было от французского начальства никакого нового распоряжения. Партия эта 22 го октября находилась уже не с теми войсками и обозами, с которыми она вышла из Москвы. Половина обоза с сухарями, который шел за ними первые переходы, была отбита казаками, другая половина уехала вперед; пеших кавалеристов, которые шли впереди, не было ни одного больше; они все исчезли. Артиллерия, которая первые переходы виднелась впереди, заменилась теперь огромным обозом маршала Жюно, конвоируемого вестфальцами. Сзади пленных ехал обоз кавалерийских вещей.
От Вязьмы французские войска, прежде шедшие тремя колоннами, шли теперь одной кучей. Те признаки беспорядка, которые заметил Пьер на первом привале из Москвы, теперь дошли до последней степени.

Московский авиационный институт (государственный технический университет)

ИССЛЕДОВАНИЕ И ПОИСК РАЦИОНАЛЬНОЙ

КОМПОНОВКИ СВЕРХЗВУКОВОГО ПЕРЕХВАТЧИКА

НОВОГО ПОКОЛЕНИЯ, ВЫПОЛНЕНОГО ПО АЭРОДИНАМИЧЕСКОЙ СХЕМЕ «УТКА»

В процессе создании современного истре­бителя-перехватчика перед конструктором встает сложная задача проектирования самолета, удовлетворяющего заданным ТТТ:

· большая практическая дальность полета на дозвуковых и сверхзвуковых крейсерских ре­жимах;

· возможность эксплуатации на всех классах аэродромов;

· малая радиолокационная и тепловая заметность;

· возможность размещения оружия во внутренних отсеках самолета;

· сверхзвуковая крейсерская скорость на нефорсированном ре­жиме работы двигателя;

· возможность маневрирования на сверхзвуковых скоростях;

· высокая боевая эффективность;

· минимальное время необходимое для подготовки к повторному вылету.

Основной целью создания разрабатываемого самолета является получение аэродинамической компоновки, максимально удовлетворяющей всем поставленным ТТТ. В данной работе сделана попытка соединить в компоновке одного самолета оптимальные решения, обеспечивающие высокие аэродинамические характеристики как на дозвуковой, так и на сверхзвуковой области полета.

Ниже в качестве примера приведен вариант рациональной компоновки сверхзвукового дальнего барражирующего перехватчика (СДБП), выполненного по схеме «утка».

Основным преимуществом аэродинамической компоновки «утка» для варианта СДБП, имеющего переднее горизонтальное оперение (ПГО), является меньшее смещение аэродинамического фокуса на сверхзвуковых режимах полета, являющихся для данного самолета крейсерскими. Это происходит за счет того, что ПГО при данных режимах полета создает подъемную силу впереди центра масс, тем самым уменьшая смещение фокуса назад. Также при использовании схемы «утка» улучшаются условия обтекания крыла за счет прохождения по верхней поверхности крыла концевых вихрей с ПГО. Благодаря этому увеличивается устойчивость пограничного слоя крыла к разрушению и повышаются допустимые углы атаки крыла.

Общий вид СДБП показан на рис. 1, компоновка – на рис.2. Для наиболее полного представления о самолете на рис. 3 показана его трехмерная модель.

Рис. 1. Общий вид самолета

Рис. 2. Компоновка самолета


Рис. 3. Трехмерная модель самолета

Проектируемый СДБП выполнен по интегральной схеме, благодаря чему уменьшается интерференция, повышаются несущие характеристики фюзеляжа и увеличиваются внутренние объемы для размещения топлива и вооружения.

Поперечное сечение носовой части фюзеляжа имеет приплюснутую форму с острыми кромками при переходе от полукруглых верхних и нижних поверхностей к почти плоским боковым. Это позволяет, во-первых, снизить заметность фюзеляжа в боковой плоскости за счет переотражения лучей от плоских боковых поверхностей, а во-вторых, при обтекании носовой части поток делится на два направления: на обтекание верхней и нижней частей фюзеляжа. Использование острых кромок при переходе от полукруглых верхних поверхностей носовой части фюзеляжа дает возможность образованию в этих переходных зонах симметричных вихрей. Это способствует повышению устойчивости СДБП на больших углах атаки и получению благоприятной картины обтекания верхней части наплыва крыла.

В центральной части фюзеляжа находятся отсеки вооружения. Створки отсеков открываются вовнутрь, по направляющим рельсам. Такое решение связано с тем, что при открытии створок в поток резко возрастает омываемая поверхность самолета, и возникает резкое перераспределение давления по самолету. Это вызывает ухудшение путевой устойчивости, что недопустимо при пуске ракет. Путевую устойчивость, конечно, можно улучшить путем увеличения площади вертикального оперения, но это решение повлечет за собой увеличение массы ВО и возрастание объема и омываемой поверхности самолета.

Хвостовая часть фюзеляжа СДБП имеет форму сплющенного конуса. Такая форма оптимальна, так как имеет наименьшее донное сопротивление. В хвостовой части находится руль высоты в виде двух секций. Первая секция в комбинации со второй при отклонении придает рулю форму параболы, вторая позволяет отклоняться рулю на углы до 45° без срыва потока. На посадке руль отклоняется вверх на угол 70°, тем самым играя роль тормозного щитка.

Крыло СДБП выполнено по треугольной схеме, что дает возможность использовать 3% профиль для уменьшения волнового сопротивления. Стреловидность крыла по передней кромке равна 60°, выбор стреловидности обусловлен сверхзвуковым полетом СДБП, при котором при увеличении угла стреловидности уменьшается коэффициент аэродинамического сопротивления, а при полете на дозвуковой скорости отодвигается начало появления волнового кризиса на поверхности крыла. Для улучшения ЛТХ СДБП на сверхзвуковых режимах полета и увеличения маневренности крыло имеет наплыв.

Отличительной особенностью данного проекта самолета является применение адаптивного крыла. Адаптивное крыло улучшает аэродинамические характеристики самолета, снижает потребную тягу его двигателя на 10...20%, увеличивает дальность на 8...20% и крейсерскую высоту на 10...30%, сни­жает расход топлива на 8...20%, и улучшает маневренные характеристики самолета.

Так, перегрузка nу уст возраста­ет до 15%, С уа тах может увели­читься до 25%, максимальное аэродинамическое качество - до 25%. Увеличение коэффициента подъемной силы происходит при изменении угла отклонения носков до 35°. Наиболее сильный рост С уа происходит при отклонении носков на углы δН = 35°. С ростом числа М потребные углы δН уменьшаются. Наибольший эффект адаптивного крыла отмечается при совместном отклонении носков и элевонов. Для получения оптимальных аэродинамических характеристик необходимо установить зависимость отклонения носков и элевонов от угла атаки, соот­ветствующего максимальному аэродинамическому качеству Кmax.

На рис. 4. показан профиль крыла СДБП с органами управления .

Рис. 4. Профиль крыла СДБП

В компоновке СДБП, исходя из требований малой заметности, был разработан вариант перспективного регулируемого малозаметного воздухозаборника, его схема показана на рис. 5.

Принятая концепция воздухозаборника имеет следующие параметры:

Трапециевидное сечение с наклоном боковых стенок 21°;

Передние кромки воздухозаборника в базовой плоскости самолета с наклоном 47°, в боковой плоскости самолета передняя кромка с изломом и углами 78° и 60°;

S‑образный канал воздухозаборника для уменьшения свечения первой ступени компрессора.

Рис. 5. Схема воздухозаборника СДБП

На верхней части воздухозаборника расположены жалюзи 1 для слива пограничного слоя из канала воздухозаборника. В нижней части располагается отклоняющаяся губа 2 для дополнительного подсоса воздуха. Регулировка воздухозаборника осуществляется с помощью трехстворчатого клина 3. Клин состоит из центральной 4 и двух боковых створок 5. Боковые створки кинематически связаны с механизмом регулировки клина 6.

Анализ предполагаемой картины образования скачков показал, что при применении трехстворчатого клина возникают восемь пространственных скачков уплотнения: первые два – на передней кромке и на повороте клина, третий скачок – на криволинейной части клина, четвертый – на нижней части воздухозаборника и четыре на боковых створках клина. Исходя из этого, можно ввести определение «трехстворчатого малозаметного пространственно регулируемого воздухозаборника».

Как известно, для полета на сверхзвуковой скорости самолету необходимо иметь минимальный мидель, а для быстрого преодоления зоны трансзвука желательно, чтобы график площадей приближался к телу вращения Сирса-Хаака, так как оно имеет минимальное волновое сопротивление.

На основе эксперименталь­ных и теоретических исследо­ваний установлено , что при околозвуковых скоростях волновое сопро­тивление компоновки самолета равно волновому сопротивлению экви­валентного тела вращения, имеющего то же самое распределение пло­щадей поперечных сечений вдоль оси, что и исходная компоновка. При этом требуется, чтобы контур тела за­канчивался либо осесимметричным обводом, либо острием, либо ци­линдрической частью. Экспериментально установлено, что можно уменьшить волновое сопротивление компоновки самолета, выбирая его форму так, чтобы эквивалентное тело вращения для самолета соответствовало телу минимального сопротивления.

На рис. 6. изображен график площадей поперечных сечений разработанного СДБП и эквивалентного ему тела Сирса -Хаака.

Рис. 6. График площадей СДБП и эквивалентного ему тела Сирса - Хаака

График площадей показывает, что распределение площадей по длине самолета приближается к графику Сирса-Хаака, откуда следует, что самолет будет иметь волновое сопротивление, близкое к минимально возможному.

Уровень совершенства самолета определяется его аэродинамикой, главным показателем которой в свою очередь является аэродинамическое качество.

Зависимость аэродинамического качества от числа Маха показана на Рис. 7

Рис. 7. Зависимость аэродинамического качества от числа Маха

В табл. 1. приведены критерии, по которым можно оценить основные параметры самолета.

Таблица 1

Критерии оценки

СДБП

Площадь миделевого сечения самолета

Площадь омываемой поверхности

Объем самолета

Площадь крыла

Эффективное удлинение

Коэффициент интегральности

Параметр волнового сопротивления

Относительная площадь миделевого сечения

Относительный объем отсеков вооружения

Максимальный вес самолета

Дальность при М=0.85

Дальность при М=2,35

В результате проделанной работы по определению рациональной компоновки СДБП были достигнуты высокие аэродинамические характеристики как на дозвуковой, так и на сверхзвуковой скорости.

Литература

1. , Аэродинамика маневренных самолетов (особенности аэродинамического проектирования) – М: Изд-во МАИ, 1996.

2. Андреев проектирования и перспективы развития маневренных самолетов. – М: Изд-во МАИ, 1996.