Рассчитать сетевую модель продолжительности строительных работ. Ранние и поздние сроки свершения событий. Резерв времени событий. Расчет и анализ сетевых графиков

Практическое занятие №2

Параметры сетевой модели

1. Порядок сетевого планирования

1. Установление полного перечня работ, которые необходимо выполнить при планировании комплекса работ.

2. Составление топологии сети - четкой последовательности и взаимосвязей всех работ и построение сетевого графика.

3. Оценка продолжительности выполнения отдельных работ.

4. Расчет параметров сетевого графика.

5. Анализ и оптимизация сетевого графика.

6. Управление ходом работ по сетевому графику.

Параметры сетевой модели

В системах СПУ применяются различные типы сетевых моделей, отличающиеся составом информации о комплексе работ.

Встречаются модели с детерминированной и вероятностной структурой сети, с детерминированными и вероятностными оценками продолжительности работ сети. При выборе модели руководителю проекта приходится принимать компромиссное решение: с одной стороны, сетевая модель должна быть простой, а с другой – адекватной объекту.

Широкое применение получила сетевая модель ПДВ (простейшая детерминированная временная), которая характеризуется следующими тремя моментами:

а) имеется сеть с единственным исходным и единственным завершающим событием;

б) продолжительности всех работ t ij известны, однозначно определены (вспомните из математики: детерминант – определитель) и указаны на графике (обычно в днях, в зарубежной практике – чаще в неделях);

в) задан момент начала выполнения комплекса Т 0 , а также задается (но не обязательно) директивный срок Т дир наступления завершающего события.

Рассмотрим временные параметры этой модели.

По известным продолжительностям работ легко определить продолжительность каждого пути – t(L) . Продолжительность любого пути равна сумме продолжительностей работ, его составляющих:

Для пояснения обратимся к рис.1. На графике над стрелками указаны продолжительности работ в днях (напомним, что продолжительность фиктивной работы равна нулю).




Найдем на графике полные пути и определим их продолжительность (по номерам событий):

L 1 1 – 2 – 5 – 7 – 8 t(L 1) = 14 дн.

L 2 1 – 2 – 4 – 5 – 7 – 8 t(L 2) = 12 дн.

L 3 1 – 3 – 4 – 5 – 7 – 8 t(L 3) = 13 дн.

L 4 1 – 3 – 6 – 7 – 8 t(L 4) = 16 дн.

Всегда найдется путь, имеющий наибольшую продолжительность, он называется критическим L кр . Его продолжительность получила особое обозначение:

t(L кр) = Т кр.

Понятие критического пути является центральным понятием в системе СПУ. Значение L кр , во-первых, состоит в том, что он является самым длинным путем в сети и, таким образом, является единственным путем, который определяет полную продолжительность процесса. Поэтому, если мы хотим определить полную продолжительность процесса, нужно определить Т кр , а определять для этой цели все остальные t(L) не имеет смысла. Во-вторых, если мы хотим сократить продолжительность процесса, нужно прежде всего сокращать продолжительность работ, принадлежащих L кр . Таким образом, логика сетевого планирования приводит нас к необходимости находить в сетях критические пути и определять их продолжительность.

На графике рис. 1 путь L 4 имеет наибольшую продолжительность, равную 16 дням, и потому является критическим. Обычно критический путь на графиках выделяется (цветными, двойными, жирными и т.п. стрелками).

Обратим внимание, что в сети может быть несколько критических путей (с точки зрения использования ресурсов – чем больше критических путей в графике, тем лучше).

Обычно к L кр принадлежит 10-15 % работ. Чем сложнее сеть, тем таких работ меньше (считается, что в сети средней сложности количество работ в 1,7 раза превышает количество событий).

Другие полные пути рассматриваемого сетевого графика могут либо полностью проходить вне критического пути (L 1 и L 2 ), либо частично с ним совпадать (L 3 ). Эти пути называются ненапряженными : на участках, не совпадающих с критической последовательностью работ, они имеют резервы времени. Задержка в наступлении событий, лежащих на этих участках, до определенного момента не влияет на срок завершения всего комплекса.

Из ненапряженных путей наибольшее внимание привлекают наименее напряженные и подкритические. Подкритические пути имеют продолжительность, близкую к Т кр (отличаются от Т кр на определенную величину, устанавливаемую руководителем проекта). Эти пути могут стать критическими в результате задержки выполнения их работ или в результате сокращения продолжительности работ, лежащих на критическом пути, и, следовательно, являются потенциально опасными с точки зрения соблюдения сроков завершения проекта.

Например, при увеличении времени выполнения работы 2-5 (рис. 1) на 2 дня это приведет к тому, что t(L 1) = 16 дн. = Т кр . Тогда L 1 тоже станет критическим и будет определять срок выполнения всего комплекса.

Наименее напряженные пути могут рассматриваться с точки зрения возможности использования ресурсов (рабочей силы, оборудования, денежных средств). Возможное удлинение этих путей, вызванное переброской ресурсов, до определенных пределов не опасно для сроков проекта.

Работы, принадлежащие критическому и подкритическим путям, составляют критическую зону комплекса (15-20 % всех работ).

Зная продолжительность всех работ, можно также определить сроки наступления всех событий сети. Для каждого события определяют ранний и поздний сроки его наступления.

Ранний срок наступления события – это минимальный из возможных моментов его наступления, когда будут выполнены все работы, предшествующие данному событию. Он определяется максимальной из продолжительностей всех путей, предшествующих данному событию:

где - путь, предшествующий данному событию i ;

Поясним это на примере рис. 1. Событию 5 предшествуют три пути: 1-2-5 с продолжительностью 7 дн., 1-2-4-5 с продолжительностью 5 дн. и 1-3-4-5 с продолжительностью 6 дн. Событие 5 не может наступить ранее 7 дней, т.к. только в течение этого периода будут выполнены все предшествующие ему работы 2-4, 3-4 и 2-5.

Легко увидеть, что для события 3 ранний срок его наступления = 4 дн., т.к. ему предшествует только один путь 1-2, состоящий из одной работы.

Поздний срок наступления события - это максимальный из допустимых моментов его наступления, при котором еще не изменяется общий срок выполнения всего комплекса. Поздний срок определяется разностью между Т кр и наибольшей из продолжительностей путей, следующих за событием i :

(3)

где - путь, следующий за событием i ;

Максимальный из этих путей.

Продолжим рассмотрение рис. 1. За событием 5 следует только один путь 5-7-8 продолжительностью 7 дней. Следовательно,

16 – 7 = 9 дн.

За событием 3 следуют два пути: 3-4-5-7-8 с продолжительностью 9 дн. и 3-6-7-8 с продолжительностью 12 дн. Следовательно, = 16 – 12 = 4 дн., т.е. событие 3 не может наступить позже 4 дней от начала работ, иначе это скажется на изменении срока всего комплекса.

Так как по определению критического пути

, (4)

то для всех событий, принадлежащих критическому пути, справедливо равенство:

В справедливости этого мы уже убедились из рассмотренного примера для события 3. Оно лежит на критическом пути, поэтому

Зная сроки наступления событий, можно для каждой работы сети определить сроки ее начала и окончания, выявив тем самым возможности смещения сроков. Применительно к каждой работе рассматриваются четыре срока:

Ранний срок начала работы ; (6)

Ранний срок окончания работы ; (7)

Поздний срок начала работы ; (8)

Поздний срок окончания работы . (9)

С учетом равенства (5) для событий, лежащих на критическом пути, можно сделать вывод, что у работ критического пути ранние и поздние сроки начала или окончания совпадают:

Следующим важным параметром является резерв времени – применительно к пути, событию и работе.

Критический путь является самым продолжительным в сети. Разность между продолжительностью критического пути Т кр и продолжительностью любого другого пути t(L) называется резервом времени пути L и обозначается :

(11)

Чем короче путь L , чем больше он по времени не совпадает с критическим, тем у него больше резерв времени. Физический смысл этого параметра таков: резерв времени пути показывает, на сколько в сумме могут быть увеличены продолжительности работ, принадлежащих пути L , чтобы при этом не изменился общий срок выполнения всего комплекса работ.

Так, L 1 (см. рис. 1) не совпадает с критическим на участке сети между 1 и 7 событиями. Его продолжительность, как было показано выше, составляет 14 дней, и, следовательно, резерв равен двум дням. Только двумя днями располагают руководители всех трех работ при непредвиденной задержке в их выполнении.

Все события, не лежащие на критическом пути, обладают резервом времени, который определяется как разность между поздним и ранним сроками его наступления:

Резерв времени события показывает, на какой предельно допустимый срок можно задержать наступление этого события, не вызывая при этом увеличения срока выполнения всего комплекса работ. При большей задержке критический путь переместится на максимальный из путей, проходящих через данное событие i .

Так, для события 5 (рис.1) = 9 – 7 = 2 дн. При задержке этого события на 2 и более дней критический путь переместится на максимальный путь L 1 , проходящий через событие 5.

События, лежащие на критическом пути, имеют нулевой резерв времени , в том числе исходное и завершающее события.

Для работ сетевой модели определяются два резерва времени: полный и свободный.

Полный резерв времени работы - это резерв максимального из путей, проходящих через работу i,j

, (13)

где - поздний срок наступления конечного события этой работы;

Ранний срок наступления начального события этой работы;

Продолжительность выполнения работы.

Физический смысл этого параметра таков: этот резерв показывает, на сколько можно задержать начало или увеличить продолжительность отдельной работы, не изменяя директивного (или раннего, если директивный не задан) срока наступления завершающего события. В последнем случае (если директивный срок не задан) – не изменяя Т кр .

Обратим внимание на следующий важный момент: полный резерв принадлежит не одной работе, а всем путям, которые проходят через данную работу. Поэтому использование его полностью на одной из работ пути L аннулирует полные резервы времени всех работ , принадлежащих этому пути.

Например, = 2 дн. (см. рис.1), т.к. он определяется резервом пути L 1 . Если использовать его полностью на работе 5-7, то другие работы этого пути (1-2, 2-5) останутся без резервов времени.

Полные резервы времени принимают минимальное значение у работ, лежащих на критическом пути. Это свойство является необходимым и достаточным условием принадлежности работы критическому пути и используется для его нахождения при расчете сети. Минимальное значение полного резерва равно нулю, если Т дир не задан или превышает момент начала работ Т 0 на величину Т кр . В общем случае оно равно разности (Т кр - Т дир ).

Свободный резерв времени работы представляет собой максимальное время, на которое можно задержать начало или увеличить продолжительность работы i,j при условии, что все события сети наступают в свои ранние сроки:

. (14)

Свободный резерв образуется не у всех работ, а только у работ, непосредственно принадлежащих событиям, через которые проходят пути с различной продолжительностью. Это надо понимать так: если событию предшествует одна работа (например, работа 1-2 на рис.1), то для нее свободный резерв равен нулю по определению ( = 0), в других случаях – 0.

Свободный резерв является частью полного, и потому чаще на практике применяется другая формула:

где – резерв конечного события работы i,j .

Свободный резерв показывает, какая часть полного резерва времени работы может быть использована для увеличения ее продолжительности при условии, что это не вызовет изменения раннего срока наступления ее конечного события. Свободный резерв является независимым резервом, т.е. использование его на одной из работ не изменяет величины свободных резервов времени остальных работ сети. Используя свободный резерв времени, ответственный исполнитель может маневрировать в его пределах временем начала данной работы, ее окончания или ее продолжительностью, не затрагивая интересов других руководителей работ.

Практическое занятие №3

Расчет параметров сетевых графиков.

«Графический» способ

Для расчета параметров сетевых графиков предложен ряд способов:

а) непосредственно на самом графике (так называемый «графический» способ);

б) табличный способ;

в) матричный способ;

г) на основе машинных алгоритмов.

В средних и крупных комплексах такую работу выполняют специально выделенные работники, входящие в службу СПУ. В настоящее время на многих предприятиях и в организациях имеются стандартные и собственной разработки программы расчета параметров сети на ЭВМ.

«Графический» способ

Расчет параметров и запись результатов осуществляются на самом графике. Для этого сетевой график, желательно не имеющий пересечений, вычерчивается в укрупненном масштабе: диаметр кружков, изображающих на графике события, равен 15-25 мм. Кружки делятся на 4 сектора.

«Ключ» к чтению такого графика показан на рис. 2: в нижних секторах будем изображать номер события; в левых секторах – ранние сроки наступления событий; в правых – поздние сроки наступления событий; в верхних – резервы времени событий; в квадратных скобках под стрелкой – полный и свободный резерв каждой работы; над стрелкой – продолжительность работы.


Вначале график перечерчивается в укрупненном масштабе (рис. 4). Напомним, что продолжительность фиктивной работы равна нулю. И еще: не имеет значения, в какой сектор кружка направлена стрелка.

Параметры графика рассчитываются в следующем порядке.

1. Определение раннего срока наступления каждого события .

Для исходного события 1 имеем = 0 и это указывается в левом секторе. Для остальных событий в соответствии с формулой (2).


Это означает, что если в событие входит одна стрелка (например, событие 2), то к раннему сроку наступления предыдущего события 1 прибавляется продолжительность работы 1-2, а результат записывается в левом секторе события 2.

В событие 3 входит две работы: 1-3 и 2-3. Поэтому вначале получаем два значения: 0 + 4 = 4 и 2 + 7 = 9. Большее значение (9 дней) является ранним сроком наступления события 3, что и отмечается в его левом секторе.

Поскольку завершающее событие всегда лежит на критическом пути, можно сказать, что = = 19 дней. Через какие работы и события пройдет критический путь, мы не знаем, но его продолжительность уже определена при расчете первого параметра сети.

2. Определение поздних сроков наступления событий .

Расчет ведется от завершающего события (с конца графика) в строго обратном порядке. Поскольку у событий, лежащих на критическом пути, ранние и поздние сроки совпадают, то для завершающего события = = 19 дней, что и отмечено в правом секторе (рис. 5).



Для остальных событий в соответствии с формулой (3) можно записать . Для события 5 имеем = 19 – 4 = 15 дней, для события 6 = 19 – 2 = 17 дней, для события 4 = 15 – 0 = = 15 дней.

В эти события, идя с конца графика, можно попасть только одним путем, поэтому нет необходимости определять минимальное значение, как, например, для события 3. Из него выходят работы 3-4 и 3-6, поэтому вначале получаем два значения: 15 – 6 = 9 и 17 – 3 = 14. Меньшее значение (9 дней) является поздним сроком наступления события 3, что и отмечено в его правом секторе.

3. Определение резервов времени событий .

Расчет можно вести или с начала графика, или с его конца. Для любого события . Это значит, что для каждого события из значения его правого сектора надо вычесть значение левого сектора, а результат поставить в его верхний сектор (рис. 6).


4. Нахождение критического пути на графике, т.е. находятся события и работы, лежащие на критическом пути.

Процедуру можно осуществлять с начала или конца графика.

а) Необходимое условие принадлежности события критическому пути: , т.е. отыскивают последовательно события с нулевыми резервами времени.

б) Если из события с нулевым резервом выходит несколько работ, имеющих нулевой резерв конечного события, то проверяется достаточное условие принадлежности работы критическому пути:

5. Определение полного резерва времени работы .

Находим полные резервы только для работ, не лежащих на критических путях и не являющихся фиктивными, по формуле (13) . Результат записывается в квадратных скобках под стрелкой или рядом с ней. Так, для работы 1-3 полный резерв времени равен 9 – 4 – 0 = 5 дней, для работы 2-5 имеем 15 – 6 – 2 = 7 дней и т.д.

Напомним, что если у работы , то она обязательно лежит на критическом пути (это для самопроверки).

6. Определение свободного резерва времени работы .

Свободный резерв времени является частью полного, поэтому его определяют у тех же работ, не лежащих на критическом пути и не являющихся фиктивными, по формуле (15) . Расчет по этой формуле проще, чем по формуле (14), т.к. к этому времени полные резервы работ и резервы событий уже рассчитаны. Так, для расчета надо взять значение полного резерва работы 2-5 (7 дней) и вычесть из него резерв конечного события этой работы (0 дней), результат указать под стрелкой и закрыть квадратную скобку. Аналогично быстро рассчитываются свободные резервы других работ.

Практические советы:

б) для ускорения процесса расчета параметров этап 6 целесообразно совмещать с этапом 5, т.к. в сложных сетях каждый раз отыскивать на графике одну и ту же работу затруднительно.

Практическое занятие №4


Построение сетевого графика предусматривает использование четырех элементов, включаемых в график: работа, событие, ожидание и зависимость. Кодирование элементов сетевого графика производятся с помощью арабских цифр. При этом кодом работы (зависимости) будут номера начального и конечного по отношению к ней событий. Используются обозначения, приведенные на рис. 5.

Ниже приводятся фрагменты сетевых графиков выполнения работ нулевого цикла на двух и трех захватках.

отрывка монтаж гидро- обратная котлована фундаментов изоляция засыпка

I захватка

II захватка

Рис. 4.1. Фрагмент сетевого графика выполнения работ на двух захватках


отрывка монтаж гидро- обратная

котлована фунд-тов изоляция засыпка




Рис. 4.2. Фрагмент сетевого графика выполнения работ на трех захватках


После построения сетевого графика и нумерации его событий производится расчет параметров одним из ручных методов (табличным или секторным). При расчете сетевого графика определяются следующие параметры: раннее начало(t рн i , j) и раннее окончание(t ро i , j) работы; позднее начало (t n н i , j) и позднее окончание (t n о i , j) работы; общий (R i , j) и частный (r i , j) резервы времени.



3.2. Расчет сетевого графика табличным методом

Расчет табличным методом производится в 5 этапов (см. рис. 7 и табл. 3):

I этап - заполнение 1, 2, 3 граф с сетевого графика;

II этап - расчет ранних сроков, начиная от исходного события к завершающему и используя следующие взаимосвязи между расчетными параметрами: t рн исх =0; t рн i , j =max t po k , i ; t po i , j = t рн i , j +t i , j ;

III этап - расчет поздних сроков, начиная от завершающего события сетевого графика и используя следующие взаимосвязи: t п o зав = max t po зав;

t п o i , j =min t пн j , k ; t пн i , j = t п o i , j - t i , j ;

IV этап - расчет общих (полных) резервов времени на основе известных расчетных формул: R i , j = t пн i , j - t рн i , j или R i , j = t по i , j - t ро i , j ;

V этап - расчет частных (свободных) резервов времени на основе следующей зависимости: r i , j = t рн j , k - t ро i , j .



Рис. 7 – Пример сетевого графика с расчетом табличным методом

Таблица 3

Расчет сетевого графика табличным методом

Номер начала события пред-шест. работ Код работы Продолжитель­ность работы Ранние сроки Поздние сроки Резервы времени Дата раннего начала работы
Начало Окончание Начало Окончание Общие (полные) Частные (свобод.)
- 1-2
2-3
2-4
3-4
3-5
3-6
2, 3 4-5
3, 4 5-7
6-7

3.3 Расчет сетевого графика секторным методом

Для расчета сетевого графика секторным методом каждое событие его делится на четыре сектора, в которые вносятся следующие данные:

Рис. 8. График выполнения работ наземного цикла

Расчет производится в 5 этапов (см. рис. 9):

I - нумерация событий графика;

II - расчет ранних начал и заполнение левого и нижнего сектора;

III - расчет поздних окончаний и заполнение правого сектора;

IV - расчет общих (полных) резервов времени работ и заполнение левого прямоугольника под каждой работой;

V этап -расчет частных (свободных) резервов времени и заполнение правого прямоугольника под каждой работой.

Для расчета резервов времени используются производные от ранее известных формул. Например (см. рис. 9): общий (полный) резерв времени:

R i , j = t по ij - t i , j – t рн i , j , для зависимости 4-5: 12-0-9=3; для работы 4-7: 28-8-9=11.

Частный (свободный) резерв времени: r i , j = t рн j , k - t i , j - t рн i , j , для работы 1-3: 8-0-2=6; для работы 2-6: 9-8-1=0.


13.01.99 14.01.99




13-2-4

Рис 4.5. Пример ручного расчета сетевого графика секторным методом

3.4. Оптимизация сетевого графика и привязка к календарю

Оптимизация сетевого графика по времени предусматривает сокращение величины критического пути на определенную (заданную) величину дней. Для этого работы, находящиеся на критическом пути (выделенные на рис. 4.3 и подчеркнутые в табл. 6), должны быть выстроены в порядке возрастания цены сокращения. Ценой сокращения (Ц c i , j) считается величина численности работников, приходящихся на один день продолжительности работы сетевого графика, и определяемая по формуле

Для графика, приведенного на рис. 4.3, цена сокращения работ соответственно равна: Ц с 1-2 = 0,5; Ц с 2-3 = 2; Ц с 3-5 = 0,5; Ц с 5-7 = = 1,5. Следовательно, сокращение продолжительности работ критического пути можно выполнить в следующем порядке: 1-2, 3-5, 5-7, 2-3. Сократить продолжительность критического пути на заданную величину можно за счет одной или нескольких работ с одновременным добавлением численности рабочих до предельного рекомендуемого количества, приведенного по видам работ в табл. 3, исходя из условия, что t i , j * n i , j = const. Например, полученную расчетом величину критического пути сетевого графика, приведенного на рис. 4.3 (Т кр = 31 день), требуется сократить на 6 дней, т.к. продолжительность выполнения данного количества работ установлена 25 дней.

Предпочтение отдаем работе 1-2, но сократить ее можно только на 5 дней, т.к. предельное количество рабочих в бригаде дано 10 человек (12*6=72 чел-дня, 72:10=7,2 дня, 12-7,2=4,8 ~ 5 дней). Еще один день будем снимать с работы 3-5, имеющей такую же цену сокращения, но меньшую по отношению к работе 1-2 расчетную продолжительность (8*4=32 чел-дня, 32:7=4,6 ~ 5 дней). \

После изменения исходных расчетных параметров работ критического пути (см. рис. 4.3 над работами 1-2 и 3-5) величина критического пути будет равна установленной продолжительности (25 дней), но график потребует пересчета.


РАЗДАТОЧНЫЙ МАТЕРИАЛ

Задание 1. Определить продолжительность работ, построить линейный календарный график поточного выполнения работ и эпюру загруз­ки трудовых ресурсов.


Задание 2.Рассчитать ритмы работы звеньев монтажников и каменщиков и построить циклограмму ритмичного потока при сооружении наземной части 6-ти этажного каркасно-кирпичного здания. Проверить, не превышает ли общее время выполнения работ на этаже 10 дней.

Задание 3.Рассчитать параметры неритмичного потока матричным методом и построить циклограмму выполнения работ на объекте

Задание 4. Составить сетевой график для поточного выполнения работ "нулевого цикла", рассчитать его табличным методом и привязать к календарю по раннему началу, исходя из заданной даты начала строительства объекта:

Задание 5. Построить фрагмент сетевого графика, рассчитать секторным методом и сократить критический путь на заданную величину.

Список литературы

1. Дикман Л.Г. Организация строительного производства: Учебник для строительных вузов - М.: Издательство АСВ. 2002. - 512 с.

2. Организация и планирование строительного производства /Под ред. д-ра техн. наук проф. А.К. Шрейбера. - М: Высшая школа. 1987.

3. Расчет и оптимизация сетевых графиков строительства/В.А. Побожий, СИ. Павленко, В.Я. Целлермаер. - М: Издательство АСВ, 2001. - 240 с.

4. СНиП 3.01.01 - 85 Организация строительного производства - М.: Стройиздат, 1981.


1. Методические указания по организации проведения практических занятий

2. Основные теоретические положения поточной организации работ 3

2.1.Расчет и построение линейного календарного графика 3

2.2.Расчет параметров и построение циклограммы ритмичного потока 4

2.3.Расчет параметров и построение циклограммы неритмичного потока 6

3. Построение и расчет сетевых графиков 8

3.1.Методы построения сетевых графиков 12

3.2.Расчет сетевого графика табличным метолом 12

3.3.Расчет сетевого графика секторным методом 13

3.4.Оптимизация сетевого графика и привязка к календарю 14

4. Раздаточный материал 15
Список литературы

Рис. 40 Сетевая модель к расчету параметров табличным методом

Таблица 2

Методика ручного расчета сетевого графика в табличной форме (табл. 2) заключается в следующем.

1. Нумеруем (кодируем) события, соблюдая правило: номер предшествующего события должен быть меньше номера последующего.

2. Заполняем первые три графы таблицы, в которые заносятся исходные данные по каждой работе - номера начальных событий предшествующих работ (графа 1), код работ (графа 2), продолжительность работы (графа 3). Заполнение следует начинать с графы 2. При этом следует придерживаться правила: в графу 2 нужно сначала записать все работы, выходящие из исходного события в порядке возрастания номеров, а затем записать продолжительность работ в графу 3. В графе 1 ставим прочерки для работ, выходящих из исходного события сетевого графика, так как они не имеют предшествующих работ. Закончив запись работ, выходящих из исходного события, переходим к работам, выходящим из второго и последующих событий в порядке их возрастания.

3. Определяем ранние сроки начала и окончания работ. Заполняем построчно графы 4, 5. Расчет ведем от исходных к завершающим событиям. Для исходного события сетевого графика ранние сроки начала работ принимаем равными нулю, а окончания работ их - продолжительности.

Если работе ij предшествует только одна работа hi, то раннее окончание работы hi равно раннему началу работы ij. Раннее начало рассматриваемой работы равно раннему окончанию предыдущей работы.

При рассмотрении сложного события, когда ему предшествуют две и более работ, раннее начало рассматриваемой работы равно наибольшему значению из ранних окончаний предшествующих работ.

4. Рассчитываем поздние параметры работ - позднее начало и позднее окончание и записываем построчно результаты в графы 6, 7. Расчет ведем в обратном порядке - от завершающих работ до исходной снизу вверх. Сначала по каждой строке определяем поздние окончания работ (графа 7), затем поздние начала работ (графа 6). Для простого события, из которого выходит только одна работа, позднее окончание предшествующей работы равно позднему началу рассматриваемой работы. Позднее начало данной работы равно разности между се поздним окончанием и продолжительностью.

Для сложного события, из которого выходит несколько работ, позднее окончание предшествующих работ равно меньшему из поздних начал рассматриваемых работ. При правильном расчете позднее начало исходной работы должно быть равно нулю.

5. Определяем полный резерв времени. Полный резерв времени по каждой строке определяется при сопоставлении граф 6, 4 или 7, 5, как разность позднего и раннего начал или позднего и раннего окончаний работ. Результат записываем в графу 8.

6. Определяем частный резерв времени по каждой работе как разность между ранним началом последующей работы по графе 4 и ранним окончанием данной работы по графе 5. Результат записываем в графу 9.

Работы не имеющие общего резерва, не имеют и частного резерва, поэтому в графе 9 должен быть всюду О, где 0 имеется в графе 8.

Любая последовательность работ сетевого графика, в которой конечное событие каждой работы совпадает с начальным событием следующей за ней работы, называется путем .

Путь сетевого графика, в котором начальная точка совпадает с исходным событием, а конечная - с завершающим событием, называется полным.

Путь от исходного события до любого взятого предшествует данному событию. Предшествующий событию путь, имеющий наибольшую длину, называется максимальным предшествующим . Он обозначается L 1 (i), а его продолжительность t.

Путь, соединяющий любое взятое событие с завершающим, называется последующим путем. Такой путь с наибольшей длиной называется максимально последующим и обозначается L 2 (i), а его продолжительность t.

Полный путь, имеющий наибольшую длину, называется критическим . Пути, отличные от критического, называются ненапряженными . Они имеют резервы времени.

Работы критического пути выделяются жирными линиями или двойными. Продолжительность критического пути считается главным параметром графика.

Рассмотрим алгоритм определения критического пути на сетевом графике, использующий алгоритм метода динамического программирования.

Упорядочим вершины графика по рангам и пронумеруем их с конца к началу. Это позволит совместить номера рангов с этапами попятного движения при отыскании условно-оптимальных управлений на последнем, двух последних и т.д. этапах. Нахождение критического пути разберем на примере сетевого графика, изображенного на рис. 10.7.

Согласно принципу оптимальности Беллмана , оптимальное управление на каждом этапе определяется целью управления и состоянием на начало этапа. Состояние системы - это события, лежащие на рангах. Для совершения конечного события Х 16 необходимо совершение предшествующих событий. Возможные состояния системы на начало последнего этапа работ - совершение событий Х 14 и Х 15. В кружках у точек Х 14 и Х 15 поставим максимальную продолжительность работ на последнем этапе: Х 14 5 , Х 15 7 . Найдем максимальную продолжительность работ на двух последних этапах. Состояние системы на начало предпоследнего этапа обусловлено событием Х 13. Максимальная продолжительность пути, ведущая из Х 13 к Х 16 равна .

Следовательно, в кружке у события Х 13 нужно поставить число 14 и т.д. Проводя этапы от конца к началу, узнаем длину критического пути t кр =96. Чтобы найти сам критический путь, процесс вычислений пройдем от начального события Х 1 к конечному Х 16 . Число 96 на первом этапе (от начала) мы получили, прибавив 16 к числу 80. Следовательно, критический путь на этом этапе будет равен (Х 1 , Х 3). Число 80 = 16 + 64. Следовательно, критический путь на втором этапе проходит через работу (Х 3 , Х 4) и т.д. На графике он выделен жирной линией:


X 1 - X 3 - X 4 - X 7 - X 8 - X 10 - X 11 - X 12 - X 13 - X 15 - X 16 .

Ранние и поздние сроки свершения событий. Резерв времени событий

Все пути, отличные по продолжительности от критического, располагают резервами времени. Разность между длиной критического пути и любого некритического называется полным резервом времени данного некритического пути и обозначается : .

Ранним сроком свершения события называется самый ранний момент времени, к которому завершаются все предшествующие этому событию работы, т.е. определяется продолжительностью максимального пути, предшествующего событию , т.е.:

или

Чтобы найти ранний срок совершения события j , нужно знать критический путь ориентированного подграфа, состоящего из множества путей, предшествующих данному событию j . Ранний срок исходного события равен нулю: t p (1)=0.

Поздним сроком совершения события называется самый поздний момент времени, после которого остается ровно столько времени, сколько необходимо для завершения всех работ, следующих за этим событием. Самый поздний из допустимых сроков свершения события в сумме с продолжительностью выполнения всех последующих работ должен не превышать длины критического пути. Поздний срок свершения события вычисляется как разность между продолжительностью критического пути и продолжительностью максимального из последующих за событием путей :

Для событий, лежащих на критическом пути, ранний и поздний сроки свершения этих событий совпадают .

Разность между поздним и ранним сроками свершения события составляет резерв времени события : . Интервал называется интервалом свободы события . Резерв времени события показывает максимально допустимое время, на которое можно отодвинуть момент его свершения, не увеличивая критический путь.

Так как сумма определяет продолжительность пути максимальной длины, проходящего через это событие, то , т.е. резерв времени любого события равен полному резерву времени максимального пути, проходящего через это событие .

При расчете временных параметров вручную удобно пользоваться четырехсекторным способом. При этом способе кружок сетевого графика, обозначающий событие, делится на четыре сектора. В верхнем секторе ставится номер события; в левом - наиболее раннее из возможных время свершения события (); в правом - наиболее позднее из допустимых время свершения события ; в нижнем секторе - резерв времени данного события : .

Для вычисления раннего срока свершения событий: , применяем формулу , рассматривая события в порядке возрастания номеров, от начального к завершающему, по входящим в это событие работам.

Поздний срок свершения событий вычисляем по формуле , начиная с конечного события, для которого ( - номер конечного события), по выходящим из него работам.

Критические события имеют резерв времени равный нулю. Они и определяют критические работы и критический путь.

Пример 10.2 . Пусть задан сетевой график, изображенный на рис. 10.8.

Решение. Вычислим ранние сроки свершения событий :

Итак, завершающее событие может произойти лишь на 14-ый день от начала выполнения проекта. Это максимальное время, за которое могут быть выполнены все работы проекта. Оно определяется самым длинным путем. Ранний срок свершения работы 6 =14 совпадает с критическим временем кр - суммарной продолжительностью работ, лежащих на критическом пути. Теперь можно выделить работы, принадлежащие критическому пути, возвращаясь от завершающего события к исходному. Из двух работ, входящих в событие 6 , , длина критического пути определила работы (5, 6), так как ( 5 + 56)=14. Поэтому работа (5, 6) - критическая и т.д. Работы (1, 3), (3, 4), (4, 5), (5, 6) определили критический путь: кр = (1-3-4-5-6).

Вычислим теперь поздние сроки свершения событий . Положим . Воспользуемся методом динамического программирования. Все расчеты будем вести от завершающего события к начальному событию. Поздние сроки свершения событий равны:

Так как после события 5 для завершения проекта нужно выполнить работу (5, 6) длительностью 3 дня. Из события 4 выходят две работы, поэтому:

Резерв времени для события 2 равен: . Резервы остальных событий равны нулю, так как эти события критические.

Ранние и поздние сроки начала и окончания работ. Определение резервов времени работ. Полный резерв времени работ.

Событие, непосредственно предшествующее данной работе, будем называть начальным и обозначать , а событие, непосредственно следующее за ней, - конечным и обозначать . Тогда любую работу будем обозначать . Зная сроки свершения событий, можно определить временные параметры работ.

Ранний срок начала работы равен раннему сроку свершения события : .

Ранний срок окончания работы равен сумме раннего срока свершения начального события и продолжительности этой работы: или .

Поздний срок окончания работы совпадает с поздним сроком свершения ее конечного события : .

Поздний срок начала работы равен разности между поздним сроком свершения ее конечного события и величиной этой работы:

Поскольку сроки выполнения работ находятся в границах, определяемых и , то они могут иметь разного вида резервы времени.

Полный резерв времени работы - это максимальное время, необходимое для выполнения любой работы без превышения критического пути. Он вычисляется как разность между поздним сроком свершения конечного события и ранним сроком времени для выполнения самой работы: . Так как , то .

Таким образом, полный резерв времени работы - это максимальное время, на которое можно увеличить ее продолжительность, не изменяя продолжительности критического пути. Все некритические работы имеют полный резерв времени отличный от нуля.

Свободный резерв времени работы - это запас времени, которым можно располагать при выполнении данной работы при условии, что начальное и конечное ее события наступят в свои ранние сроки: .

Расчет и анализ сетевых графиков

Основные понятия и определения

1.1. Сетевое планирование и управление (СПУ) - это система планирования комплекса работ, ориентированная на достижение конечной цели. СПУ основано на графическом изображении определенного комплекса работ, отражающих их логическую последовательность, взаимосвязь и длительность, с последующей оптимизацией разработанного графика при помощи методов прикладной математики и вычислительной техники и его использованием для текущего руководства этими работами.

Объектом управления в системе СПУ является коллектив людей, располагающий определенными ресурсами (людскими, материальными, финансовыми и др.) и выполняющий определенный комплекс работ (проект), призванный обеспечить достижение намеченной цели.

1.2. Сетевой график (сетевая модель или просто сеть) - это модель всего процесса выполнения данного комплекса робот, изображенная в виде ориентированного графа и отражающая взаимосвязь и параметры всех работ.

1.3. Работа - это трудовой процесс, приводящий к некоторому результату и требующий затрат времени и ресурсов. Работой считают и ожидание.

Ожидание - работа не требующая затрат труда (и других ресурсов), но требующая затрат времени.

Работа на сетевом графике обозначается сплошной линией со стрелкой.

Продолжительность работы указывается числом над стрелкой. Единицей измерения продолжительности работ может быть день, неделя, декада, месяц. Длина стрелки выбирается произвольно. Она не отражает продолжительности работы. Работа обозначается шифрами начального и конечного события (ij ). Продолжительность работы tij .

Зависимость или фиктивная работа - логическая связь между двумя или несколькими событиями, не требующими затрат ни времени, ни ресурсов. На графике фиктивная работа обозначается пунктирной стрелкой.

1.4. Событие - это результат свершения одной или нескольких работ, дающий возможность начать одну либо несколько следующих работ. Событие не имеет продолжительности по времени, оно означает лишь факт свершения какой-то работы. Событие на графике изображается кружком (i ), внутри которого, указывается номер его. Событие, за которым следует работа, называется начальным (обозначается индексом – i ), а которому предшествует робота - конечным (j ). В сети существует одно исходное событие (J ) и одно завершающее – (С).

I.5. Путь - это любая последовательность робот сетевой модели, в которой конечное событие каждой работы совпадает с начальным событием следующей за ней. Путь обозначается индексом (L ). Продолжительность пути определяется суммой продолжительностей вводящих в данный путь, работ и обозначается t(L ). Различают путь полный (L (J - C )), т. е. путь от исходного со­бытия до завершающего, и путь от любого события до другого L (m 1 - m 2).

Критический путь - это полный путь, обладающий максимальной продолжительностью из всех возможных на данном графике – L кр. В сетевом графике может быть несколько критических путей. Критический путь определяет срок выполнения данного комплекса работ (проекта в целом).

По построенной сетевой модели для каждой работы определяется ожидаемая продолжительность ее выполнения - t ож, а также дисперсия времени выполнения работы - .

В системе СПУ применяются два способа определения времени выполнения работ. В том случае, если работа часто повторяется (то есть имеются некоторые нормативные данные о ее продолжительности), или имеет достаточно близкий прототип, то продолжительность работы определяется однозначно (сети с детерминированными оценками). Но для большинства работ, выполняющихся впервые (например, научно-исследовательских, экспериментальных, опытно-конструкторских) этого сделать нельзя. В этом случае продолжительность выполнения работ носит неопределенный характер и для оценки времени ее выполнения применяют методы математической статистики. Продолжительность работы считается случайной величиной, подчиненной определенному закону распределения и ожидаемое время ее выполнения (а также и дисперсия) рассчитывается по определенным аппроксимирующим формулам на основании экспертных оценок, полученных от ответственных исполнителей работ.

Рассчитанная таким образом продолжительность выполнения работы представляет собой, с известным приближением, математическое ожидание времени ее выполнения, как случайной величины, подчиненной принятому закону ее распределения.

В практике СПУ наиболее широкое применение получили следующие формулы для определения ожидаемой продолжительности работы и дисперсии времени ее выполнения.

Ниже приведены три разновидности этих формул, которые соответствуют вариантам индивидуальных заданий:

1-й способ ; ;

2-й способ ; ;

3-й способ ; .

Для расчета по этим формулам от ответственных исполнителей получают путем опроса следующие экспертные оценки времени выполнения работ:

а (или tmin ) - минимальная (оптимистическая) продолжительность работы, т. е. оценка продолжительности работы в предположении наиболее благоприятного стечения обстоятельств;

b (или tmax ) - максимальная (пессимистическая) продолжительность работы, т. е. продолжительность работы в предположении наиболее неблагоприятного стечения обстоятельств;

m (или t н. в.) - наиболее вероятная оценка продолжительности работы - оценка продолжительности при наиболее часто встречающихся условиях выполнения работы.

Расчет параметров сетевого графика

Параметрами сетевого графика называются величины, характеризующие положение работ и событий, которые дают возможность проанализировать состояние работ и принять необходимые решения. Исходными для определения всех временных параметров сетевых моделей служит продолжительность работы (tij). На основании продолжительности работ в сетевом графике определяются его временные параметры, основными из них являются следующие.

1. Продолжительность пути

,

где К - количество работ, входящих в данный путь.

Таким образом, продолжительность пути это суммарная продолжительность работ, составляющих данный путь.

Продолжительность критического пути

Ткр = t [L (J -C )max ] .

Продолжительность критического пути определяет срок наступления завершающего события сети, то есть определяет срок выполнения проекта (планируемого комплекса работ) в целом.

2. Резерв времени пути - это разность между продолжительностью критического и данного пути. Он показывает, на сколько в сумме могут быть увеличены продолжительности работ, принадлежащих данному пути, не изменяя срока выполнения проектов

R (L ) = Tкр - t (L ) .

3. Ранний срок свершения события - срок, необходимый для выполнения всех работ, предшествующих данному событию i

Тр(i ) = t [L (J -i )max ] или Тр(j ) = max .

Ранний срок исходного события сети принимается равным нулю: Тр(J ) = 0 .

4. Поздний срок свершения события - это наиболее поздний из допустимых сроков свершения события, превышение которого на какую-то величину вызывает аналогичную задержку наступления завершающего события

Тп(i ) = Tкр - t [(i -C )max ] или Тп(i ) = [Тп(j )-tij ]min .

Поздний срок завершающего события равен его раннему сроку Тп(С )=Тр(С ), это же имеет место и для событий, лежащих на критическом пути Тр(i ) = Тп(i ).

5. Резерв времени свершения события - это такой предельно допустимый срок, на который можно задерживать свершение данного события, не вызывая при этом увеличения продолжительности критического пути (то есть не изменяя срока свершения завершающего события), то есть всего проекта в целом.

У событий, лежащих на критическом пути, резервов времени не существует. Резерв времени события определяется следующим образом:

R (i ) = Tп(i ) - Tp(i ) = R (Lmax ) .

Резерв времени события равен резерву времени максимального из путей, проходящих через данное событие.

6. Ранний срок начала работы - это самый ранний из возможных сроков начала работы: t р. н.(ij ) = Tp(i ) .

7. Ранний срок окончания работы - это самый ранний из возможных сроков окончания работы

t р. о.(ij ) = t р. н.(ij ) + tij = Tp(i ) + tij .

8. Поздний срок начала работы - самый поздний срок начала работы, при котором не увеличивается продолжительность критического пути, т. е. срок окончания проекта в целом

t п. н.(ij ) = t п. о.(ij ) - tij = Tп(j ) - tij .

9. Поздний срок окончания работы - самый поздний срок окончания работы, при котором не увеличивается продолжительность критического пути, то е. сть срок окончания проекта

t п. о.(ij ) = Tп(j ) .

Для работ критического пути:

t р. н.(ij ) = t п. н.(ij ) и t р. о.(ij ) = t п. о.(ij ) .

10. Полный резерв времени работы - это величина резерва времени максимального из путей, проходящих через данную работу. Он равен разности между поздним сроком наступления события и ранним сроком наступления события за вычетом продолжительности работы

R п(ij ) = Tп(j ) - Tp(i ) - tij .

Полный резерв времени работы показывает, на сколько может быть увеличена продолжительность отдельной работы или отсрочено ее начало, чтобы продолжительность проходящего через нее максимального пути не превысила продолжительности критического пути (то есть, чтобы не изменился срок выполнения проекта в целом).

Использование полного резерва целиком на данной работе отнимает все полные резервы времени у работ, лежащих на всех путях, которые проходят через данную работу.

Полный резерв времени работ критического пути равен нулю, а для остальных работ он положителен.

11. Свободный резерв времени работы - равен разности между ранними сроками наступления событий j и i за вычетом продолжительности работы (ij ):

R c(ij ) = Tp(j ) - Tp(i ) - tij .

Свободный резерв представляет собой часть полного резерва времени работы. Он указывает максимальное время, на которое можно увеличить продолжительность отдельной работы, или отсрочить ее начало, не меняя ранних сроков начала последующих работ, при условии, что непосредственно предшествующее событие наступило в свой ранний срок.

В качестве плановых сроков начала работ берутся при этом ранние сроки наступления событий. Сводный резерв времени является в определенном смысле независимым резервом, то есть использование его на одной из работ не меняет величины свободных резервов времени остальных работ сети.

3.12. Коэффициент напряженности работы используется в сетевом планировании для характеристики напряженности сроков выполнения работ и определяется по следующей формуле:

,

где t (Lmax ) - продолжительность максимального пути, проходящего через данную работу;

t ¢(L кр) - продолжительность отрезка пути t (Lmax ), совпадающего с критическим путем.

С помощью коэффициента напряженности получают оценку напряженности работ, лежащих на путях равной продолжительности и обладающих одинаковыми резервами времени.

Величина коэффициента напряженности у разных работ в сети лежит в пределах 0 £ Кн(ij ) £ i .

Для всех работ критического пути Кн(ij ) = 1.

Величина коэффициента напряженности помогает при установлении плановых сроков выполнения работ оценить, насколько свободно можно располагать имеющимися резервами времени. Этот коэффициент дает исполнителям работ предоставления степени срочности работ и позволяет установить очередность их выполнения, если она не определяется технологическими связями работ.

Способы расчета параметров сетевых графиков

Существует два способа ручного расчета параметров сетевых графиков (причем, в литературе по СПУ встречаются различные разновидности данных способов): непосредственно на графике; табличный способ.

1. Первый способ (расчет параметров непосредственно на графике) предусматривает определение, как правило, следующих параметров, ранних сроков свершения событий, поздних сроков свершения событий, резервов времени свершения событий и критического пути. При расчете по этому способу кружок, изображающий событие, делится на четыре сектора. Верхний сектор отводится для номера события - i , левый сектор для раннего срока свершения события Тр(i ), правый для позднего срока свершения события Тп(i ), а нижний сектор для резерва времени свершения события - R (i )

Расчет параметров производится на основании приведенных выше определений и формул (логических соотношений) по определенным правилам. Расчет начинается с определения ранних сроков свершения событий - Tp(i ). Определение Tp(i ) начинается с исходного события и далее через последующие события к завершающему (то есть расчет ведется слева направо), руководствуясь следующим общим правилом для определения ранних сроков событий.

Ранний срок свершения события j определяется путем прибавления к раннему сроку предшествующего ему события i продолжительности работы, ведущей к событию j . В том случае, если в событие j входит несколько работ, нужно определить ранний срок по каждой из этих работ и из них выбрать максимальный, который и будет ранним сроком свершения события j . Для исходного события J ранний срок его свершения принимается равным нулю.

Tp(J ) = 0 .

Определение поздних сроков свершения событий производится в обратном порядке, то есть справа налево, то есть от завершающего события к исходному. При определении поздних сроков принимается, что для завершающего события ранний срок его свершения является одновременно и наиболее поздним.

Тр(С ) = Тп(С ) .

Поздний срок свершения события j определяется путем вычитания из позднего срока предшествующего ему события i продолжительности работы, ведущей к этому событию j .

В случае, если к событию j подходит несколько работ, то определяется величина позднего срока по каждой из этих работ и из них выбирается минимальная, которая и будет определять поздний срок свершения данного события.

Резерв времени события i определяется непосредственно на сети путем вычитания из величины, записанной в правом секторе события Тп(i ) величины, записанной в левом секторе - Тр(i ). Найденная величина и является резервом времени свершения события и записывается в нижнем секторе события.

Все события в сети, за исключением событий, принадлежащих критическому пути, имеют резерв времени. Критический путь определится в результате выявления всех последовательно лежащих событий с резервами, равными нулю, а его продолжительность величиной позднего (тоже самое раннего) срока свершения завершающего события.

На рис. 1 приведен расчет сети непосредственно на графике.

Рис. 1. Расчет параметров сетевого графика

2. При табличном способе расчета определяются, как правило, параметры, относящиеся к работам, а именно: ранние и поздние сроки начал и окончаний работ, резервы времени работ. Расчет параметров в этом случае производится в таблице по определенной форме. Пример такого расчета для сетевого графика, изображенного на рис. 1, показан в нижеприводимой табл. 1.

Расчет табличным способом может производиться либо только на основании формул и сетевого графика с параметрами событий, либо по определенным правилам (алгоритмам). В последнем случае состав параметров и последовательность их расположения может быть иной. Расчет по таким алгоритмам излагается в литературе (см. список литературы).

Таблица 1

Расчет параметров работ сетевого графика

i -j

Продолжительность работы, tij

Раннее начало работы, t р. н.

Раннее окончание работы, t р. о.

Позднее начало работы, t п. н.

Позднее окончание работы, t п. о.

Резервы времени

Коэффициент напряженности работы, К н

полный, R п

свободный, R с

Анализ и оптимизация сетевого графика

После расчета параметров сетевого графика производится его анализ, и в нужных случаях, его оптимизация. Задачами анализа является пересмотр структуры сети с целью определения возможности увеличения числа параллельно выполняемых работ, определение коэффициентов напряженности работ, что позволяет наряду с расчетом резервов времени работ и путей, распределить все работы по зонам (критическая, подкритическая и резервная). Важной задачей анализа сетевого графика является определение вероятности свершения завершающего события в заданный срок.

Заданный срок свершения завершающего события (то есть директивный срок выполнения проекта) Тд может отличаться от расчетного Ткр, полученного на основе критического пути, но, несмотря на это (в силу того, что ожидаемые продолжительности работ определялись как случайные величины) сохраняется определенная вероятность, что завершающее событие наступит в заданный директивный срок или раньше его. При определении этой вероятности принимается, что продолжительность выполнения проекта (то есть величина критического пути) является случайной величиной, подчиняющейся нормальному закону распределения.

Аналитическая вероятность того, что завершающее событие наступит в заданный (директивный) срок или ранее него, определяется следующим образом:

,

где - соответствующее значение функции Ф(Z ), взятое из таблицы нормального распределения; Z - аргумент нормальной функции распределения вероятности.

Среднее квадратичное отклонение срока наступления завершающего события определяется по формуле:

,

где ij кр - последовательность работ, лежащих на критическом пути;

К - количество работ, составляющих критический путь;

Дисперсия работы, лежащей на критическом пути.

Пример. Для графика, изображенного на рис. 1, определить вероятность выполнения проекта в заданный директивный срок, равный 8 ед. времени. Ранее было определено, что расчетный срок выполнения проекта составляет Ткр = 9 ед. Предположим, что также определены и дисперсии работ, составляющих критический путь, пусть например:

тогда и .

Пользуясь таблицей значений функции Лапласа по величине Z = - 1,7 (см. табл. 2), находим искомую вероятность РК » 0,045.

Вывод. При планировании в системах СПУ принято, что если:

0,85 < РК < 0,65 - то это считается границами допустимого риска (то есть считается нормальным положением); при РК < 0,85 - то считается, что опасность нарушения заданного срока очень большая (неприемлема) и необходимо в этом случае и произвести повторное планирование с перераспределением ресурсов с целью минимизации срока выполнения проекта; при РК > 0,65 - считается вероятность слишком велика, то есть на работах критического пути имеются избыточные ресурсы. В этом случае тоже производят повторное планирование с целью сокращения потребных ресурсов.

При невозможности достижения удовлетворительного значения РК может потребоваться изменение заданного срока выполнения проекта. Эта задача решается как обратная рассмотренной выше. Задаваясь желаемой величиной вероятности РК свершения завершающего события в заданный срок, можно из вышеприведенного уравнения определить значение функции , и, зная величины Ткр и , определить величину Тд.

После анализа сетевого графика в необходимых случаях проводится его оптимизация. Она необходима для обеспечения большей надежности свершения завершающего события в заданный срок, для выравнивания загрузки работников, лучшего распределения ресурсов и т. д. Оптимизация графика во времени (то есть достижение минимального срока выполнения проекта при заданных ресурсах) производится путем переброски ресурсов с некритических путей, имеющих резервы времени, на критический путь, что приводит к сокращению его продолжительности. В пределе продолжительности всех полных путей могут быть равны и являются критическими и тогда все работы ведутся с одинаковым напряжением, а общий срок выполнения проекта существенно сократится.

Таблица 2

Таблица значений функции Лапласа Рк = Ф (Z )