Полиэтилен высокого и низкого давления производство. Технология получения полиэтилена высокого и низкого давления. Карта базисов поставки

Изделия из полиэтилена (ПЭ) наряду с другими полимерными материалами нашли широкое распространение в мире как отличный заменитель таких традиционных материалов, как металлы, дерево, стекло, натуральные волокна, текстильной промышленности и других отраслях. Трубы из полипропилена стремительно вытесняют металлические трубы в коммунальном хозяйстве и промышленности. В связи с этим, мировое производство полипропилена растет очень быстрыми темпами.
Полиэтилен различных марок (LLDPE, LDPE, HDPE)продолжает удерживать лидирующие позиции среди крупнотоннажных пластиков . В 2012 мировое производство полимеров составило 211 млн. т, причем 38% или 80 млн.т. приходилось на ПЭ различных марок. Ожидается, что в 2015 году мировое производство ПЭ достигнет 105 млн.т.
Рисунок 1. Соотношение различных видов полимеров в мировом производстве, 2012г.

Можно считать ПЭ наиболее популярным полимерным материалом в первую очередь ввиду его сравнительной простоты, надежности и сравнительно низкой стоимости его изготовления. Так для производства 1 т ПЭ во всех современных технологиях требуется не больше 1,005 - 1,015 т этилена и 400-800 кВтч электроэнергии. В большинстве областей, где применяются пластики нет необходимости использования других материалов. По той же причине, второй наиболее популярный материал - полипропилен (25%).
Полипропилен и полиэтилен вместе можно назвать и наиболее «универсальными» пластиками. Посвоим характеристиками и тот и другой не являются лидерами. По оптическим свойствам все другие материалы оставляют за собой поликарбонаты, по механическим характеристикам - полиамиды, по электроизоляционным свойствам - ПВХ, а для продуктов выдувного формования идеально подходит ПЭТФ.Не являясь идеальным материалом по всем параметрам, ПЭ во всех областях показывает умеренный второй-третий результат, что дает ему возможность применяться для всех целей, а сочетание этих свойств с гораздо более низкой ценой и делает ПЭ наиболее востребованным полимерным материалом во всем мире.
Впервые ПЭ был получен в 1873 году, его отцом можно считать великого русского химика Александра Михайловича Бутлерова, который первым изучал реакции полимеризации алкенов. Другим отцом можно считать и его преемника, русского химика Гаврилу Гавриловича Густевсона, продолжавшего изучение реакций полимеризации. На западе первооткрывателем полиэтилена принято считать немецкого химика Ганса фон Пехмана, получившего ПЭ более продвинутым способом в 1899г, тогда его принято было называть «полиметилен».
Как и многие подобные открытия, ПЭ сильно опередил свое время, поэтому оказался не заслужено забыт более чем на 30 лет. Это можно понять, никто в начале века не мог предполагать, что непонятная желеобразная субсанция совершит настоящую технологическую революцию, серьезно ослабив позиции традиционных материалов.
Первой промышленной технологией получения ПЭ стала в 1935 г. газофазная технология английской компании ICI (ImperialChemicalIndustries ). Уже после этого в Европе и США стали появляться первые установки по производству ПЭ. Первоначально основным назначением этого полиэтилена стало производство проводов, благодаря хорошим электроизоляционным свойствам полиэтилена. Новые провода с полиэтиленовой изоляцией вытеснили резиновые и были широко распространены вплоть до того как их вытеснили провода из ПВХ. Однако настоящему триумфу ПЭ способствовало само время. Послевоенные годы характеризовались небывалом ростом покупательской способности граждан, повышенным спросом на продукты питания и товары легкой промышленности. Появились первые супермаркеты. Тогда-то полиэтиленовый пакет стал набирать огромную популярность во всем мире.
Примечательно, что одной из двух установок производства ПЭ, работающих на ОАО «Казаньоргсинтез» является как раз установка английской фирмы ICI , образца 1935 года ,она работает по настоящее время, являясь самой старой установкой, работающей в России.
Для уяснения различий технологий производства, важно понимание видового состава производимой продукции полиэтилена. Четко различают полиэтилены высокого давления и низкой плотности и полиэтилены низкого давления и высокой плотности.
Полиэтилен высокого давления ПЭВД/ LDPE
Полиэтилен высокого давления (ПЭВД) он же полиэтилен низкой плотности (ПЭНП), в англоязычном наименовании LDPE (Low-Density PE) получают при высокой температуре 200-260 0 С и давлении 150-300 Мпа в присутствии инициатора полимеризации (кислород или чаще органический пероксид). Эго плотность лежит в пределах 0,9 - 0,93 г/см 3 .
Полиэтилен низкого давления ПЭНД/ HDPE
Полиэтилен низкого давления (ПЭНД) он же полиэтилен высокой плотности (ПЭВП), в англоязычной наименовании HDPE (High-Density PE) получают при температуре 120-1500С, давлении ниже 0.1-2МПа в присутствии катализатора Циглера-Натта (смесь TiCl 4 и AlCl 3 ).
Таблица 1 . Сравнительные показатели различных видов полиэтилена.

Показатель ПЭВД ПЭСД ПЭНД
Общее число групп СН 3 на 1000 атомов углерода: 21,6 5 1,5
Число концевых групп СН 3 на 1000 атомов углерода: 4,5 2 1,5
Этильные ответвления 14,4 1 1
Общее количество двойных связей на 1000 атомов углерода 0,4—0,6 0,4—0,7 1,1-1,5
в том числе:
винильных двойных связей (R-CH=CH 2), % 17 43 87
винилиденовых двойных связей , % 71 32 7
транс-виниленовых двойных связей (R-CH=CH-R"), % 12 25 6
Степень кристалличности, % 50-65 75-85 80-90
Плотность, г/см³ 0,9-0,93 0,93-0,94 0,94-0,96

Иногда различают также полиэтилен среднего давления (ПЭСД), однако его принято относить к ПЭНД, т.к. эти продукты имеют одинаковую плотность и вес, а давление в процессе полимеризации при так называемых низком и среднем давлениях чаще всего одно и тоже. Нередко, особенно часто в зарубежной литературе, различного линейные продукты ПЭ высокого давления принято выделять отдельно, как это сделано на рисунке 1, однако в целом не будет ошибкой считать их вкупе с другими продуктами ПЭВД.
В ОАО «НИИТЭХИМ» исторически сложилась практика считать производство ПЭ как суммы производств ПЭВД и ПЭНД, относя ЛПЭВД к ПЭВД. Такой подход логичен, удобен и полностью обоснован. Таким же образом производство разделяет и Росстат, разделяя, продукты полимеризации этилена плотностью не менее 0,94 (имется в виду ПЭНД) и продукты полимеризации этилена плотностью менее 0,94 г/см 3 (ПЭВД).
Главное различие между ПЭВД и ПЭНД - плотность. При этом необходимо четко представлять что практически всегда применяется сополимер. Бутен-1, Гексен-1, октен-1 или другие. Чистыйгомоплимер сильно отличается от привычных нам современных полиэтиленов и имеет очень ограниченное применения ввиду очень высокой плотности и низкой текучести.
Существуют и другие более специальные виды полиэтилена. Так выделяют линейный ПЭ низкой плотности - ЛПЭНП или LLDPE , который применяется в основном для производства тары и упаковки.
Бимодальный ПЭ это полиэтилен, который синтезируется по двуреакторной каскадной технологии, т.е. там две крупных фракции с разной молекулярной массой - низкомолекулярная отвечает за текучесть, высокомолекулярная - за физико-механические характеристики.
Сшитый ПЭ (PE-X или XLPE, ПЭ-С) — полимер этилена с поперечно сшитыми молекулами (PE — PolyEthylene, X — Cross-linked). Сшивка представляет собой трехмерную сетку за счет образования поперечных связей.Металлоценовый ПЭ - полимер этилена, полученный с помощью катализаторов с единым центром полимеризации. Обычно обозначается mLLDPE , mMDPE или mHDPE .
Наиболее важный сополимер этилена - сэвилен , в зарубежной периодике принято название EVA - этиленвинилацетат.
Рисунок 2 . Структура потребления ПЭВД, ПЭНД, сэвилена, а также общее потребление ПЭ по секторам в России в 2014г. На рисунке 2 представлено соотношение ПЭНД, ПЭВД и наиболее важного из этиленовых сополимеров - сэвилена в структуре потребления в России. Из рисунка видно, что основными секторами потребления ПЭ в 2014 году были производители тары и упаковки, пленки, труб, изделий бытового и хозяйственного назначения на их долю приходилось более 86% всего объема потребляемого ПЭ.
При этом, разные виды ПЭ по-разному востребованы в секторах потребления. Так, например, сектор производства труб из ПЭ полностью представлен только ПЭНД (HDPE). Для производства труб используются ПЭНД марок ПЭ-100, ПЭ-100+.
Обратная картина видна в случае производства пленки. Если только 6% ПЭНД используется для производства пленки, то доля ПЭВД составляет уже 43%, что делает полиэтилен высокого давления и низкой плотности, наиболее подходящим для этого сектора потребления. То же касается и производства листового ПЭ, а также производства кабеля. В производстве тары и упаковки ПЭНД и ВЭВД представлены практически одинаково (30 и 28%). 13% ПЭНД идет на производство изделий бытового и хозяйственного назначения, в то время как ПЭВД на эту цель идет около 18%.
Соплолимер этилена и винилацетата - сэвилен представлен не так массово как ПЭНД и ПЭВД, его доля в общем производстве ПЭ составляет лишь 0,65%. При этом в два раза больше сэвилена приходит на российский рынок через импорт. Сэвилен идет на производство изделий бытового и хозяйственного назначения - 42%, тары и упаковки - 32%, пленки 15% и кабеля 6%.
Среди основных лицензиаров технологий производства полиолефинов давно наметилась тенденция консолидации и глобализации производителей. Количество участников рынка технологий сокращается, в конечном итоге, только крупнейшие игроки имеют возможность разработать собственную технологию. Основные лицензиары технологий производства представлены в таблице 2 .
Таблица 2 . Лицензиары технологий и основные технологии производства ПЭ.

Название Владелец Тип полимеризации Продукция
UNIPOL PE UnionCarbide Газовая фаза ЛПЭВД, ПЭНД
INNOVENE BP Chemicals Газовая фаза ЛПЭВД, ПЭНД
Innovene G BP Chem. Газовая фаза ЛПЭВД, ПЭНД
EXXPOL Exxon-Mobil Газовая фаза ЛПЭВД, ПЭНД
COMPACT (Stamylex) DSM Раствор ЛПЭВД, ПЭНД
SPHERILENE Basell Газовая фаза, каскадный ЛПЭВД, ПЭНД
HOSTALEN Basell Газовая фаза, каскадный ПЭНД
LUPOTECH T Basell В массе ПЭВД, сэвилен
ENERGX EastmanChemical Газовая фаза ЛПЭВД, ПЭНД
SCLAIRTECH NOVA Chemicals Газовая фаза ЛПЭВД, ПЭНД
BORSTAR PE Borealis Суспензия, каскадный ЛПЭВД, ПЭНД
PHILLIPS Phillips Суспензия ЛПЭВД, ПЭНД
CX Mitsui Chemicals Газовая фаза, каскадный ПЭНД

Лидирующими игроками на мировом рынке по существующим мощностям в мире являются Dow и Carbide , чья технология Unipol является самой популярной технологией в мире. Другой не менее популярной технологией является Innovene , принадлежащая BP . В результате слияния «Dow» и «UnionCarbide» в 2000 году под контроль Dow попал 50-процентный пакет акций компании Univation, которым владел UnionCarbide.
Все технологии производства можно разделить по принципу работы реактора синтеза полиэтилена . Технологии Unipol , Innovene , Exxpol , Spherilene , Hostalen , Sclairtech и CX (Mitsui ) основаны на газофазной реакции полимеризации этилена и сополимера. Реакция происходит при 70-110 0 С, давлении 15-30 бар в присутствии катализаторов Циглера-Натта.
Технологии Hostalen - Basell и CX - MitsuiChemicals предусматривают также второй реактор полимеризации по каскадной схеме. В этом реализуется возможность получения бимодального ПЭ высокой плотности, путем смешения двух крупных фракции с разной молекулярной массой - низкомолекулярной, отвечающей за текучесть, и высокомолекулярная - за физико-механические характеристики. Газофазный синтез полиэтилена отличается низкими капитальными и оперативными затратами и позволяет производить как ПЭВД, так и ПЭНД в широком диапазоне. Именно поэтому газофазные технологии наиболее популярны в России и в мире.
DSM предлагает технологию получения ПЭ, используя синтез в растворе. Она производит LLDPE, используя собственную технологию COMPACT Solution (Stamylex) в комбинации с катализаторами Ziegler. Технология COMPACT - очень гибкий процесс производства полимеров высокого качества. Синтез в растворе производится при температуре 150-300 0 и давлении 30-130 бар в присутствии катализаторов Циглера-Натта или металлоценового катализатора. В качестве растворителя используют октен. В случае использования второго жидкофазного реактора также возможно получение бимодального ПЭ. Технология отличается более высокими, по сравнению с газофазным синтезом капитальными затратами и оперативными расходами. Среди крупных производителей линейного полиэтилена технологию COMPACT применяют LG Chemicals, HyundaiPetrochemicalCo.
BorstarPE - Borealis и Philips предлагают технологию получения ПЭ низкой плотности в суспензии изобутана, при этом реакция происходит при 85-100 0 С, давлении 4,2 , после чего полученную смесь разделяют и дегазируют при 80-85 0 С. Применяют при этом специальный петлевой (slurryloop )реактор. Возможно применение каскадной схемы получения бимодального ПЭ, при использовании второго реактора.
Рисунок 3. Типы установок производства ПЭ. Принципы реактора в схемах.

Из Рисунков 3,4 видно, что нет универсального метода получения всех видов ПЭ. Каждый метод получения ПЭ перекрывает только часть продукции полиэтилена. Наиболее широкий ряд продукции можно получить в газофазном реакторе, Unipol, Innovene, Exxpol, Spherilene, Hostalen, Sclairtech иCX (Mitsui), однако каждая из этих технологий, в свою очередь, также имеет собственные ограничения. Наиболее полный перечень продуктов может предложить технология Unipol/UnipolII, однако даже у этой технологии есть существенные ограничения, касающиеся главным образом продуктов ПЭ высокой плотности с малым индексом текучести. Такие продукты применяются для изготовления продукции ПЭНД выдувного формования, пленок и труб, в этих случаях необходим бимодальный ПЭ, для производства которого, в свою очередь, применяют каскадный реактор, состоящих из двух последовательных реакторов с разными условиями полимеризации.

Рисунок 4. Принципы производства и виды производимой продукции.

Рисунок 5. Соответствие методов производства и видов производимой продукции ПЭ.

Каскадный реактор может быть реализован как для газофазного (Spherilene иHostalen, оба Basell), так и для суспезионного(Philips)способа полимеризации. Однако установки с двумя реакторами отличаются гораздо большими капитальными затратами и более сложны в обслуживании.
Для видов полиэтилена высокого давления, предназначенного для экструзионного формования необходим высокий индекс текучести. Такая продукция применяется для труб из полиэтилена. Так цифры в наиболее известных трубных марках ПЭ 60, ПЭ 80, ПЭ 100, ПЭ 100+ соответствуют своему индексу текучести.

Сырьем для изготовления полиэтиленовых пленок служат гранулы полиэтилена, получаемые путем полимеризации этилена. Для получения полиэтилена высокого и низкого давления используются две технологии, предполагающие прохождение процесса при разных условиях полимеризации. ПНД и ПВД производят при разных температуре и давлении. В результате материалы приобретают разные физические и химические свойства.

Немного о технологии производства

Гранулы, полученные под высоким давлением (1000-3000 кг/см 2) обладают меньшей собственной плотностью, составляющей 0,925 г/см 3 . Полученная таким образом пленка на ощупь более «маслянистая». Она относительно прозрачна и хорошо растягивается без раздиров. Материал отличается более короткими полимерными цепям. Он менее кристалличен и плавится при температуре более 100 С. Данные характеристики относятся к полиэтилену высокого давления, который довольно часто обозначается как ПВД.

Полиэтилен низкого давления или ПНД полимеризуется при давлении-1-5 кг/см 2 и достигает плотности 0,945 г/см 3 . Такой вид полиэтиленовой пленки более кристалличен, полимерные цепи в нем длиннее, а прозрачность меньше. Для плавления пленки из ПНД требуется более высокая температура — от 120С, поэтому энергетические затраты на ее производство выше. Зато и в процессе эксплуатации такой вид полиэтиленовой пленки может выдерживать более высокие температуры.

Популярные факты

На глаз отличить ПВД от ПНД очень легко: полиэтиленовая пленка из материала низкого давления при смятии всегда «шуршит». Отечественные аббревиатуры отличны от зарубежных ПВД соответствует LDPE (Low Density PolyEthylene,) а ПНД — HDPE (High Density PolyEthylene). Это обусловлено тем, что в России за основу классификации взято давление при полимеризации полиэтилена, а за ее пределами — плотность используемых гранул. У материала, изготовленного при высоком давлении плотность низкая, а при низком давлении, наоборот, — высокая.

Где мы чаще всего видим изделия из полиэтиленовой пленки? Конечно в магазинах. Вспомните шуршащие матовые фасовочные пакеты и пакеты-майки и знайте, что они изготовлены из полиэтилена низкого давления высокой плотности. В то время как гладкие фасовочные пакеты и пакеты с приварными и вырубными ручками сделаны из полиэтилена высокого давления низкой плотности. Изделия из ПВД имеют более эстетичный внешний вид и позволяют наносить на свою поверхность яркие, красочные рисунки.

В заключение стоит сказать о том, что в настоящее время полиэтилен стал самым массовым видом полимерного материала, применяемого в упаковочной отрасли. Он был изобретен первым, но до сих пор его популярность в упаковке остается одной из самых высоких.


Производство полимерной пленки сопровождается опасными выбросами в атмосферу и классифицируется как вредное. И при его организации следует учитывать специальные требования.

Основные требования

Предприятие следует располагать в промышленной зоне. Помещение должно отапливаться и иметь принудительную систему вентиляции. Водоснабжение обязательно, его потребление может возрасти при использовании специальных устройств переработки.

Для бесперебойной работы линии понадобится трехфазное электроподключение (380 В) и заземление всех элементов цепи. Обязательно наличие системы пожарной безопасности и плана эвакуации. Расстановка оборудования и организация рабочих мест должны соответствовать нормативам ГОСТ .

Характеристика цеха

Общая площадь цеха должна составлять не менее 300 квадратных метров , а высота потолков – минимум 8 м. Для внутренней отделки необходимо использовать негорючие материалы.

Помещение следует разделить на 3 отсека:

  • производственный цех;
  • складские помещения, которые должны быть паро- и гидроизолированы;
  • выставочный зал.

Оборудование для производства полиэтиленовой пленки

Налаживая полиэтиленовое производство, необходимо приобрести ( указана в долларах):

  • Экструдер 60000-300000
  • Флексопечатную машину 30000-50000
  • Специальный станок для изготовления упаковочных зажимов 20000-40000
  • Пакетоделательную многофункциональную машину 8000-10000

Как можно сократить расходы

Покупка Б/У линии поможет сэкономить на вложениях до 50%. В таком случае затраты в долларах будут следующими:

  • Экструдер 6000-8000
  • Флексопечатная машина 3000-6000
  • Станок для изготовления пластиковых зажимов для упаковки 10000-20000
  • Пакетоделательная машина 4000

Какое оборудование выбрать — Б/У или новое

Новое оборудование обладает рядом достоинств:

  • гарантия производителя;
  • долговечность;
  • реализация в будущем.

Но его главный недостатоквысокая цена, которую начинающий бизнесмен не готов заплатить. В таком случае приобретение оборудования Б/У является оптимальным вариантом.

Но выбор такой линии необходимо перепоручить опытному специалисту , чтобы не купить сильно изношенную или некачественную технику.

Сырье для производства полиэтиленовой пленки

Производят из гранул полимера, используя 2 вида полиэтилена с разным давлением:

  • высоким (ПВД) для фасовки и хранения пищевой продукции;
  • низким (ПНД) для сыпучих товаров.

Выгоднее всего покупать южнокорейский гранулят , стоимость тонны вещества составляет 340 евро. Но можно использовать и отечественное сырье, его цена колеблется в диапазоне 420-750 дол. Чтобы еще удешевить производство, можно перейти на вторичный гранулят.


Технология производства полиэтиленовой пленки

Полученный пласт охлаждается, раскатывается валиком и с помощью автомата разрезается на равные части.

Нанесение рисунка происходит с помощью валиков, к которым через специальный дозатор подается краска.

Готовое полотно поступает в пакетоделочную машину, где формируется шаблон изделия. Пресс делает отверстия под ручки, а специальный станок запаивает края. Далее происходит расфасовка изделий и контроль качества.

Подбор персонала

Для продуктивной работы достаточно принять в штат 6 человек: директора, бухгалтера, технолога и 3 рабочих.

Технология производства пленки достаточно проста , обслуживать машины несложно. Поэтому изготовление полиэтилена можно поручить и новичкам, предварительно обучив их всему.

Рентабельность предприятия

Начальные вложения составят около 38000 дол. на покупку Б/У оборудования и оформление документов. А ежемесячные расходы в долларах будут следующими:

  • аренда помещение 600;
  • отопление, электроэнергия 200;
  • коммунальные услуги 160;
  • зарплата сотрудников 2700;
  • налоги 450.

Общая сумма составит 3810 долларов.

Производственная мощность линии позволяет производить 70 пакетов в 60 секунд. Что при оптовой цене товара в 0,01 дол. позволит получить ежемесячный доход в 6000 дол.

А чистая прибыль составит около 2200 долларов. С учетом первоначальных вложений предприятие должно окупить себя за 1,5 года.

Производство полиэтилена – весьма . Но представленные расчеты основывались на идеальных условиях спроса.

В действительности прибыль будет зависеть от возможностей сбыта и инфляции.




Первый опыт полимеризации этилена в конце XIX века получил выходец из России – учёный Густавсон , проведя этот процесс с катализатором AlBr3. На протяжении долгих лет полиэтилен производился в небольших объемах, но в 1938 году процесс промышленного производства освоили англичане. В то время метод полимеризации был ещё не совершенен.

1952 год совершил прорыв в процессе промышленного производства . Немецкий химик Циглер изобрёл эффективный вариант полимеризации этилена под действием металл-органических катализаторов. Впрочем, настоящая технология производства полиэтилена основана именно на данном методе.

Сырье

Исходным материалом для получения является этен – простейший представитель ряда алкенов. Простота данного способа производства сильно зависит от наличия этилового спирта, который используется как сырьё. Современные промышленные линии для получения полимера разрабатывают с учётом их работы на нефтяных и попутных газах – легкодоступных фракций нефти.

Такие газы выделяются при пиролизе или крекинге нефтепродуктов при очень высоких температурах и содержат в себе примеси H2, CH4, C2H6 и другие газы. Попутный газ в свою очередь содержит такие компоненты как газы-парафины, поэтому при подвергании их термической обработке с высоким выходом получают этилен.

Технология производства полиэтилена высокого давления

Процесс получения ПЭ идёт по радикальному механизму. При проведении применяют разного рода инициаторы для снижения активационного порога молекулы. В качестве примера таковых можно привести перекись водорода, органические перекиси, О2, нитрилы. Радикальный механизм, в общем, не имеет отличий от обычной полимеризации:

  • 1 стадия – инициирование;
  • 2 стадия – увеличение цепи;
  • 3 стадия – обрыв цепи.

Цепь инициируется посредством выделения свободных радикалов при термической обработке их источника. Этен реагирует с выделившимся радикалом, наделяется определённой Еакт, увеличивая тем самым число молекул мономера вокруг себя. В дальнейшем наблюдается нарастание цепи.

Технология процесса

Существует два варианта процесса полимеризации – либо полиэтилен образуется в массе, либо в суспензии. Первый получил и представляет собой совокупность процессов.

Газ этилен, являющийся смесью, а не чистым веществом, вначале проходит путь фильтрации через тканевый фильтр, задерживающий механические примеси. Далее к очищенному этену подводят инициатор в баллоне, объём которого рассчитывается исходя из условий процесса. Поправка делается на наибольший выход полимера.

После, смесь транспортируют, фильтруют и подвергают сжатию в две стадии. На выходе из реактора получают практически чистый полиэтилен с примесью этилена, от которого избавляются дросселированием смеси в приёмнике под низким давлением.

Технология производства полиэтилена низкого давления

Источниками сырья для получения данного вида полиэтилена служат чистый, без примесей этилен и катализатор – триэтилат алюминия и тетрахлорид Ti. Заменой Al(C2H5)3 может послужить как хлорид диэтилалюминия, так и дихлорид этилата алюминия. Катализатор получается в 2 стадии.

Технология процесса

Для данного процесса получения ПЭ низкого давления характерна как периодичность, так и непрерывность. От выбора технологии зависит и схема процесса, каждая их которых различна по конструкции оборудования, объёму реакторов, методу очистки полиэтилена от примесей и др.

Самая распространённая схема получения полимера включает три непрерывных стадии: полимеризация сырья, очистка продукта от остатков катализатора и его высушивание. Аппараты для катализаторной подачи выделяют в мерники пятипроцентный раствор смешанного катализатора, после чего он поступает в бак, в котором смешивается с органическим растворителем до необходимой концентрации в 0.2%. Из бака готовая смесь катализатора отводится в реактор, где поддерживается при необходимом давлении.

Этилен подводится в реактор снизу, где впоследствии перемешиваясь с катализатором, образует рабочую смесь. Для производства полиэтилена при пониженном давлении характерно загрязнение продукта остатками катализаторной смеси, которые изменяют его окраску на коричневую. Очистка основного продукта производится нагреванием смеси, в результате чего происходит разрушение катализатора, дальнейшее отделение примесей и их прямая фильтрация от полиэтилена.

Увлажнённый продукт поступает на сушку в сушильные камеры бункера, где полностью очищается на кипящем слое азота (T = 373 K). Сухой порошок высыпается из бункера на пневмолинию, где отправляется на гранулирование. На эту же линию отправляется пыль с частицами полиэтилена, оставшаяся после очистки азота.

Полиэтилен - самый дешевый неполярный синтетический полимер из класса полиолефинов, представляющий из себя твердое белое вещество с сероватым оттенком.

Производством полиэтилена занимаются практически все крупнейшие компании нефтехимической промышленности. Основным сырьем для него является этилен. Синтезируют полиэтилен при низком, среднем и высоком давлениях. В основном полиэтилен выпускают в гранулах диаметром от 2 до 5 мм, намного реже в виде порошка.

Существует четыре основных способа производства полиэтилена, с помощью которых получают:

  • полиэтилен высокого давления (ПВД)
  • полиэтилен низкого давления (ПНД)
  • полиэтилен среднего давления (ПСД)
  • линейный полиэтилен высокого давления (ЛПВД)

Производство полиэтилена высокого давления (ПВД) или низкой плотности (ПНП)

В промышленности ПВД получают при высоком давлении путем полимеризации этилена в автоклаве или в трубчатом реакторе. Процесс в реакторе происходит по радикальному механизму под действием кислорода, органических пероксидов (лаурил, бензоил) или их смесей. Смешанный с инициатором, нагретый до семисот градусов и сжатый компрессором до двадцати пяти мегапаскаль, этилен сначала поступает в первую часть реактора, где разогревается до тысяча восемьсот градусов, а потом во вторую - для полимеризации при температуре от 190 до 300 градусов и давлении от 130 до 250 мегапаскалей. В среднем этилен находится в реакторе от 70 до 100 секунд. Степень превращения до двадцати процентов, все зависит от типа и количества инициатора. Из полученного полиэтилена удаляют не прореагировавший этилен, затем его охлаждают и гранулируют. Гранулы подсушивают и упаковывают. Товарный ПВД выпускают в виде неокрашенных и окрашенных гранул.

Производство полиэтилена низкого давления (ПНД) или высокой плотности (ПВП)

ПНД получают в промышленности с помощью низкого давлении. Для этого используют три основных технологии:

  • полимеризация происходит в суспензии
  • полимеризация происходит в растворе (гексане)
  • газофазная полимеризация

Самый распространенный способ - это полимеризация в растворе.

Полимеризация в растворе проводится при температуре от 160 до 2500 градусов и давлении от 3,4 до 5,3 мегапаскалей, контакт с катализатором происходит в течении 10-15 минут. Выделяется полиэтилен из раствора с помощью удаления растворителя: сначала в испарителе, потом в сепараторе и затем в вакуумной камере гранулятора. Гранулированный полиэтилен пропаривается водяным паром (температура, превышающая температуру плавления полиэтилена). Товарный ПНД выпускают в виде неокрашенных и окрашенных гранул и иногда в порошке.

Производство полиэтилена среднего давления (ПСД)

ПСД получают в промышленности при среднем давлении путем полимеризации этилена в растворе. Полиэтилен СД образуется при:

  • температуре - 150 градусов
  • давление до 4 мегапаскалей
  • наличие катализатора (Циглера-Натта)

ПСД из раствора выпадает в виде хлопьев.

Полиэтилен, полученный таким образом, имеет:

  1. средневесовой молекулярный вес до 400 000
  2. степень кристалличности до 90 процентов

Производство линейного полиэтилена высокого давления (ЛПВД) или низкой плотности (ЛПНП)

Линейный полиэтилен высокого давления получают с помощью химической модификации ПВД (при температуре в 150 градусов и 30-40 атмосферах).

ЛПНП по структуре подобен ПЭВП, но имеет более длинные и многочисленные боковые ответвления. Производство линейного полиэтилена происходит двумя способами:

  • газофазная полимеризация
  • полимеризация в жидкой фазе - наиболее популярный

Производство линейного полиэтилена вторым способом происходит в реакторе с сжиженным слоем. В основание реактора подается этилен, полимер же отводят непрерывно, при этом постоянно сохраняя в реакторе уровень сжиженного слоя. Условия: температура около ста градусов, давление от 689 до 2068 кН/м2. Эффективность способа полимеризации в жидкой фазе ниже (два процента превращения за цикл), чем у газофазного (до тридцати процентов превращения за цикл). Однако данный способ имеет и свои плюсы - размер установки значительно меньшее, чем у оборудования для газофазной полимеризации, и существенно ниже капиталовложения. Практически идентичным является способ в реакторе с устройством для перемешивания с использованием циглеровских катализаторов. Пари этом получается наиболее высокий выход.

С недавних пор для производства линейного полиэтилена начали применять технологию, в которой используются металлоценовые катализаторы. Данная технология позволяет получить более высокую молекулярную массу полимера, что способствует увеличению прочности изделия.

ПВД, ПНД, ПСД и ЛПВД отличаются друг от друга и по своей структуре и по своим свойствам, соответственно, и применяются они для решения различных задач.

На ряду с выше перечисленными способами полимеризации этилена существуют и другие, однако промышленного распространения они не получили.