Многоцелевой авиационно космическая система макс. Многоцелевая авиационно-космическая система (макс) фото. Европейских проектов было сразу несколько

Многоцелевая авиационно-космическая система (МАКС ) обладает рядом принципиальных преимуществ. Это, в первую очередь, возможность выведения нагрузок на орбиты любого наклонения, высокая оперативность и низкая стоимость применения и отсутствие необходимости отчуждения земель под поля падения элементов конструкции.
В отличие от ракетных систем, привязанных к стартовым площадкам немногочисленных космодромов и ограниченных в выборе орбит, МАКС может применяться для аварийного спасения экипажей космических объектов или для срочной разведки районов техногенных и природных чрезвычайных ситуаций.

3D-модель орбитального самолета

К реализации проекта МАКС НПО «Молния » приступило в 80-х годах XX века, под руководством Г. Е. Лозино-Лозинского, ещё до первого полёта «Бурана », используя при этом опыт и результаты работ по проекту «Спираль », по экспериментальным беспилотным орбитальным ракетопланам — аппаратам «Бор », и «Бурану ». К настоящему времени уже проработаны основные элементы конструкции орбитальной ступени, изготовлен макет внешнего топливного бака, существует значительный задел по двигательным установкам.
МАКС — двухступенчатый комплекс, состоящий из самолёта-носителя (Ан -225 «Мрия » / «Мечта » — точнее на базе Ан-225 предполагалась разработка нового самолета-носителя Ан-325), на котором устанавливается орбитальный самолёт. Орбитальный самолёт может быть как пилотируемым, так и беспилотным. Конструкция Ан-225 допускает установку грузового контейнера с внешним топливным баком с криогенными компонентами топлива вместо орбитального самолёта.

Вместо первой ступени обыкновенной ракеты здесь используется самолёт Ан-225; вторая ступень может быть выполнена в трех вариантах:
1. МАКС-ОС с орбитальным самолётом и одноразовым баком;
2. МАКС-М с беспилотным самолётом;
3. МАКС-Т с одноразовой беспилотной второй ступенью и грузом до 18 тонн.

«Система базируется на обычных аэродромах 1-го класса, дооборудованных необходимыми для МАКСа средствами заправки компонентами топлива, наземного технического и посадочного комплекса, и вписывается в основном в существующие средства наземного комплекса управления космическими системами».
МАКС может применяться для аварийного спасения экипажей космических объектов или в целях наземной разведки. Отсутствие привязки к космодрому также расширяет применение такой системы.
Этот проект, в отличие от «Бурана », основан на принципе самоокупаемости. По расчётам, затраты должны окупаться через 1,5 года, а сам проект может дать 8,5-кратную прибыль. Эта система является уникальной, так как в мире не разрабатывалось ни одного подобного аппарата. Кроме того, МАКС значительно дешевле ракет за счёт многократного использования самолёта-носителя (до 100 раз), стоимость выведения груза на низкую околоземную орбиту — порядка 1000 долл./кг; для сравнения: средняя стоимость выведения в настоящее время составляет около 8000-12000 долл./кг, для конверсионной РН «Днепр » — 3500 долл./кг. К преимуществам можно также отнести большую экологическую чистоту за счёт применения менее токсичного топлива (трёхкомпонентный двигатель РД-701 керосин/водород+кислород). В настоящее время на проект уже истрачено около 14 млрд долларов.

Многоцелевая авиационно-космическая система (МАКС )

Проект МАКС получил золотую медаль (с отличием) и специальный приз премьер-министра Бельгии в 1994 году в Брюсселе на Всемирном салоне изобретений, научных исследований и промышленных инноваций «Брюссель -Эврика-94».
Многоцелевые авиационно-космические системы разрабатываются сейчас во многих странах, однако, по мнению ряда зарубежных специалистов, Россия продвинулась на этом пути дальше своих конкурентов. Обладание такой системой, как МАКС, помогло бы ей в начале XXI века занять твёрдые позиции на рынке космических услуг.
В начале 2006 г. проект МАКС принял участие в конкурсе на проект пилотируемого космического корабля нового поколения, проводимого Роскосмосом в соответствии с федеральной космической программой (ФКП ) в рамках темы «Клипер » (опытно -конструкторская работа «Создание многоразового пилотируемого корабля нового поколения для транспортно-технического обслуживания орбитальных пилотируемых станций, перспективных космических комплексов и других объектов околоземной группировки», N36 по ФКП).
В конкурсе, помимо НПО «Молния » с проектом МАКС, также участвовали ГКНПЦ им. Хруничева с проектом пилотируемого транспортного корабля и РКК «Энергия » со своим проектом «Клипер ». Последний был первоначальным фаворитом конкурса, точнее — сам конкурс был организован специально под этот проект. Предполагалось, что конкурс будет внутриведомственным, с участием в нем только предприятий, подчиненных Роскосмосу. Однако НПО «Молния », получив письменное согласие от Федерального агентства по промышленности, смогло добиться своего участия в конкурсе, спутав все карты его организаторам. В результате конкурс стал межведомственным. Однако уже в ходе проведения конкурса возникли трения между руководством РКК «Энергия » и Роскосмосом (и наметилось сближение руководства Роскосмоса с руководством ГКНПЦ), и несмотря на то, что условия конкурса ( «Технические требования к пилотируемому космическому кораблю нового поколения») изначально писались под «Клипер » РККЭ и им также со значительным запасом отвечал проект МАКС, Роскосмос информационным письмом (исх . номер ВР-21-1526 от 10.03.2006) поменял условия конкурса, введя надуманное требование к конкурсным предложениям «обеспечения самостоятельного решения задач доставки экипажей к Луне и возвращение их на Землю, а в перспективе — использование модификации корабля в составе марсианских пилотируемых экспедиций». Первенство перешло к бескрылому проекту пилотируемого транспортного корабля ГКНПЦ им. Хруничева, однако ситуация стала настолько скандальной (к этому времени строка по ОКР «Клипер » исчезла из ФКП, и одновременно с этим Европейское космическое агентство (ESA ) вмешалось в события, пообещав $30 млн. на «совместную разработку нового пилотируемого корабля»), что Роскосмос прекратил конкурс, объявив его несостоявшимся. Все проекты были отклонены, причем в обосновании этого решения к проекту МАКС было только одно техническое замечание — самолет-носитель иностранного производства…
Тем не менее, попытки привлечения внебюджетных средств в проект МАКС продолжаются и сегодня — с целью практической реализации проекта МАКС и его эффективного применения.

В 1982 году, еще до полета системы «Буран-Энергия», Генеральный конструктор НПО «Молния» Глеб Лозино-Лозинский, проанализировал перспективы создания авиационно-космических систем. Он обобщил опыт работы над проектом «Спираль» , а также над экспериментальным беспилотным ракетопланом БОР-4 и на его основе предложил новую разработку - проект МАКС . В 1988 году большой кооперацией (порядка 70 предприятий авиационной и космической промышленности СССР) был разработан эскизный проект системы МАКС, включивший в себя 220 томов.

Система МАКС

Согласно предложенной концепции система МАКС состояла из дозвукового самолета-носителя и установленной на нем орбитальной ступени с внешним топливным баком. В качестве первой ступени «МАКС» планировалось использование тяжелого самолета «Ан-225» («Мрия») или в перспективе Ан-325.

Предлагаемый проект мог быть реализован в следующих вариантах:

  1. МАКС-ОС с орбитальным самолётом и одноразовым баком;
  2. МАКС-М с беспилотным самолётом;
  3. МАКС-Т с одноразовой беспилотной второй ступенью и грузом до 18 тонн

Система могла стартовать с обычных аэродромов 1-го класса, оборудованных необходимыми для МАКС средствами заправки компонентами топлива. Что касается применения МАКС, то помимо традиционных задач вывода груза на орбиту, с помощью данной системы можно осуществлять аварийное спасение экипажей космических объектов и наземную разведку. Отсутствие привязки к космодрому делает систему чрезвычайно мобильной.

По произведенным расчётам, затраты проект МАКС (в отличие от системы “Буран- Энергия ”) окупился бы через 1,5 года, дав в конечном итоге более, чем 8-кратную прибыль. Эта система уникальна, так как в мире не разработано ничего подобного. И что самое существенное, МАКС значительно дешевле ракет за счёт многократного использования самолёта-носителя (до 100 раз). Стоимость выведения груза на низкую околоземную орбиту в проекте МАКС - менее 1000 долл./кг., что не сопоставимо со стоимостью груза, выводимого современными традиционными средствами. Так, средняя стоимость выведения груза в настоящее время составляет около 8000-12 000 долл./кг, для экономичной конверсионной ракеты-носителя «Днепр» эта цена составляет 3500 долл./кг., что, как мы видим, очень далеко от показателей проекта МАКС.

Общие характеристики системы МАКС:

  • Габариты орбитального самолета «МАКС-ОС»: длина - 19,3 метра, размах крыла - 13,3 метра, высота - 8,6 метра, масса - 27 тонн
  • Cтартовая масса системы: 620 тонн, в том числе 2-й ступени - 275 тонн
  • Полезная нагрузка, выводимая на орбиту до 400 километров: 5,8–6,6 тонны.

Маршевая двигательная установка включает в себя два двигателя «РД-701», которые работают на трехкомпонентном топливе (жидкий водород, керосин и жидкий кислород), обеспечивая достаточную экологическую чистоту. Базовый пилотируемый вариант самолета «МАКС-ОС» имеет кабину для двух членов экипажа. Разработаны варианты самолета «МАКС-ОС» для транспортно-технического обеспечения орбитальных станций. Вариант «ТТО-1» оборудован стыковочным модулем и второй герметичной кабиной на четырех человек. Вариант «ТТО-2» предназначен для доставки в негерметичном отсеке оборудования, устанавливаемого на наружной стороне орбитальных станций. Для выведения на орбиту тяжелых (до 18 тонн) полезных нагрузок предназначена модификация «МАКС-Т», имеющая вторую беспилотную ступень одноразового применения.

Особенностью данного проекта является то, что все основные элементы системы в основе своей разработаны. Самолет «Мрия» неоднократно испытывался как транспортная платформа при дальних перевозках орбитального корабля «Буран». При максимальной взлетной массе в 600 тонн «Ан-225» может поднимать полезный груз до 250 тонн, развивая при этом скорость 850 км/ч на высоте от 9000 до 11 000 километров. Подобного самолета, разработанного в КБ Антонова, в мире ни у кого больше нет. Вторая орбитальная ступень разработана во множестве модификаций: космический самолет Челомея, проект “Буран” . Вся техника проверена на работоспособность и, вне всякого сомнения, система должна была эффективно заработать. Чтобы показать уровень данного проекта достаточно вспомнить состоявшийся в ноябре 1994 года в Брюсселе Всемирный салон изобретений, научных исследований и промышленных инноваций «Брюссель-Эврика-94». Проект «МАКС» получил золотую медаль и специальный приз премьер-министра Бельгии…

Возникает только один закономерный вывод: наши политические лидеры, действующие в духе “перестройки”, не заинтересованы в лидирующем положении России в аэрокосмической сфере. А потому, как и множество подобных проектов, МАКС был закрыт.

Многоразовая авиационно-космическая система

Поиски Ноева Ковчега

Подводные пирамиды Йонагуни

Орден ассасинов

Искусственный интеллект создан?

Ку-клукс-клан

Сезон замены резины

Климатические условия первостепенно влияют на дорожную обстановку и как следствие, на поведение водителей. С наступлением холода автовладельцы меняют резину на...

Боевой космический корабль Буран-Б

1976 год стал стартом нового космического проекта Советского Союза. Специальным секретным постановлением ЦК КПСС и Совета Министров СССР соответствующим организациям было...

Мужчина-фантом

Потусторонний мир продолжает преподносить сюрпризы… Американский врач Натаниел Фодор однажды столкнулся с феноменом – журналисткой Джен, испытывающей на себе любовь...

Остров Корфу

Остров Корфу (или Керкира, как его называют греки) – одно из самых популярных туристических направлений современной Греции. С площадью в 593 ...

Никола Тесла - свободная энергия

Свободная энергия - миф или реальность? На протяжении тысяч лет, люди пытались получить дармовую энергию в виде механической энергии. На рассвете...

Мудрецы древности

Китайская философская проза начинается со времени Конфуция и его современников. Это была поистине удивительная эпоха, когда одна за другой...

Ландшафтное озеленение

Ландшафтный дизайнер знает, что любая, самая великолепная дизайнерская задумка померкнет без соответствующего фона. Земля, на которой творит дизайнер, является...

И две ракетные ступени для вывода корабля на орбиту. В итоге были изготовлены только корабль и несколько его копий в масштабе 1:3 которые слетали в космос. Несмотря на это «Спираль» и американский проект X-15 которые были родом из 1960-х оказались ближе всего к завершению из всех проектов воздушного старта космических грузов на данный момент.

Трудности в создании двигателя для гиперзвукового самолёта-разгонщика (ГПВРД) и хроническое невезение преследовали такие проекты. И даже сейчас, когда казалось бы появление первых рабочих ГПВРД (X-43 и X-51) открыло для таких проектов дорогу в космос, появление многоразовых первых ступеней (от SpaceX , Blue Origin и Индии) похоже собирается окончательно поставить на истории этих проектов жирную точку. Что же им всё время так мешало? Об этом и пойдёт речь ниже.

Теория

Чем же так выгоден воздушный старт? Дело в том, что он позволяет экономить в массе ракеты за счёт того что часть скорости и высоты покрываются самолётом-разгонщиком (то есть снижает необходимый запас характеристической скорости или delta-V), также это позволяет ставить сразу на первую ракетную ступень ЖРД с вакуумными соплами, которые имеют больший удельный импульс , что увеличивает эффективность двигателя и также снижает вес ракеты. При этом двигатели самолётов, такие как турбореактивные (ТРД), прямоточные (ПВРД) и даже гиперзвуковые (ГПВРД) - хоть и имеют удельный импульс, падающий с ростом скорости, но он всё равно остаётся существенно выше чем у ЖРД до 10 скоростей звука (10М):


Параллельно со сбросами ракетопланов «Стратосферные крепости» B-52 участвовали в испытаниях NASA аппаратов с несущим корпусом названных за их форму и посредственную аэродинамику «летающими ванными» - корабли серии M2-F1 , M2-F2 и M2-F3 (по центру). Как высказывался об этом летательном аппарате Милтон Томпсон : «если бы человек выпал из B-52 в момент отделения M2-F1 от самолёта, то аппарат опередил бы его у Земли». В дальнейшем аэродинамику улучшили, благодаря чему появились HL-10 (справа) и X-25A (слева), но все эти аппараты имели лишь небольшие двигатели и предназначались исключительно для исследования аэродинамики при спуске с орбиты что, в итоге легло в основу конструкции «Спейс Шаттла» . Так что рекордом для всех трёх аппаратов стали результаты в 1976 км/ч по скорости и 27524 м по высоте показанные на HL-10 в полётах 18 и 27 февраля 1970 года соответственно.

Сердцем программы должен был стать гиперзвуковой самолёт-разгонщик, который должен был развивать 4-6М. В начале этот проект хотели поручить ОКБ Туполева (уже занимавшемся в тот момент Ту-144) но в итоге он от него отказался. Проект приняло ОКБ Микояна которое проводило продувки моделей самолёта в аэродинамической трубе вплоть до закрытия проекта. Самолёт-разгонщик разгонялся с помощью разгонной тележки до скорости 400 км/ч после чего запускал свои двигатели и отрывался от земли. Для улучшения аэродинамики после взлёта нос самолёта поднимался, ограничивая тем самым обзор в низ - такой вариант использовался на Ту-144 и «Конкорде» , а для советского бомбардировщика Т-4 пошли ещё дальше и сделали кабину полностью закрывающейся.

Так как базовое топливо для ракетных ступеней (фтор/водород) и топливо для ГПВРД самолёта-разгонщика (водород) до этого не применялось для этих целей - решено было на начальном этапе разработать промежуточный вариант системы с несколько худшими показателями. Однако даже этот промежуточный вариант должен был стать по многим показателям лучше всего что было создано до этого, а основной вариант системы и вовсе поражает воображение:
Таким образом данная система могла вывести на орбиту груз в 10+ тонн при стартовой массе всего в 115 тонн - то есть полезный груз составлял около 10% стартовой массы! Это является просто немыслимым показателем для современных химических ракет, которые выводят на орбиту в среднем 3,5% от собственной массы (и только у самой тяжёлой версии полностью водородной Delta IV этот показатель достигает 3,9%). Такие характеристики достигались ГПВРД самолёта-разгонщика, которому не надо было тащить с собой в стратосферу окислитель, и фторным топливом ракетных ступеней которое имело удельный импульс в 479 сек в вакууме.


Несмотря на одновременный старт создания разгонщика, двигателей к нему и орбитального корабля, к закрытию проекта в начале 70-х двигатель был не готов, продувки моделей разгонщика продолжались до 1975 года, а только 25 апреля этого года (уже после официального закрытия проекта) - самолёт-аналог МиГ-105.11 был передан с завода-изготовителя для испытаний. Так как корабль имел военную направленность, предполагалось что кабина пилота будет отстреливаемой, иметь собственные двигатели и парашют для возможности самостоятельного схода с орбиты и посадки на землю. Из-за общих проблем с проектом эта часть корабля реализована так и не была.

В первые самолёт-аналог МиГ-105.11 был сброшен с Ту-95КМ в своём 11 совместном полёте 27 октября 1977 года, после чего приземлился ВПП Грошево. Испытания аналога проходили до 13 сентября 1978 года, когда из-за ошибки руководителя полёта при заходе на посадку по неправильному курсу в вечернее время пилота ослепило Солнце, в результате чего произошла жёсткая посадка повредившая шасси. 24 октября самолёт был отправлен на подвесе того же Ту-95КМ на Тушинский машиностроительный завод для ремонта. Хотя самолёт-аналог в дальнейшем и отремонтировали, однако этот полёт на ТМЗ так и остался для МиГ-105.11 последним.

После официального закрытия проекта оставалась надежда на использования для старта орбитального корабля самолётов из других проектов, более всего на эту роль подходил проект Т-4 ОКБ Сухого, история которого по своему интересна. Так как у СССР не было возможности создать столь большое число авианосных группировок сколько было у США, для борьбы с ними требовалось найти какой-то другой способ. Обычное ядерное оружие для этих целей не подходило, так как за время между получением информации о место положении авианосца и подлётом ракеты он мог выйти из радиуса поражения. Поэтому было предложено для этой цели создание небольшой группировки стратегических бомбардировщиков с ядерным ракетным вооружением.

Расчёты показывали, что для прорыва ПВО авианосного соединения они должны были иметь весьма высокую скорость - порядка 3М. В конкурсе участвовало 3 конструкторских бюро: ОКБ Туполева с проектом Ту-135, ОКБ Яковлева с проектом Як-35 и ОКБ Сухого с проектом Т-4 . В итоге выиграл проект ОКБ Сухого, а сам Сухой и Туполев при этом поссорились, что привело к их знаменитому разговору при обсуждении будущего данного проекта:

Туполев: «Сухой - мой ученик, я его знаю - он с темой не справится.»
Сухой: «Именно потому, Андрей Николаевич, что я ваш ученик, я с ней справлюсь.»
В итоге один экземпляр Т-4 всё-таки был построен и проходил испытания вплоть до перехода на сверхзвук, но из-за того, что Туполев в итоге смог добиться того чтобы новые образцы Т-4 не стали производить на Казанском авиационном заводе - проект в итоге затормозился и вскоре был закрыт.

Для дальнейших испытаний орбитального корабля уже были изготовлен МиГ-105.12 (для испытаний на сверхзвуке) и приступили к строительству МиГ-105.13 (уже для испытаний на гиперзвуке). Оба этих аналога не были закончены до конца к моменту начала строительства «Бурана», когда их строительство полностью было свёрнуто, при этом третий аналог всё же проходил испытания в термобарокамере в то время как второй просто простоял на ТМЗ до конца 70-х. Сейчас единственный летавший экземпляр МиГ-105.11 стоит в Центральном музее военно-воздушных сил в Монино, бок о бок с Т-4 и со сверхзвуковым пассажирским Ту-144 (история которого была немногим удачливее).

Ещё один весьма интересный момент: Гагарин защитил свой диплом 17 февраля 1968 года, темой его дипломной работы стал космический корабль с решётчатыми рулями (как те которые сейчас применяются на многоразовых версиях ракет семейства Falcon 9). В дальнейшем это направление должно было стать темой его кандидатской работы. Юрий Алексеевич погиб 27 марта того же года в своём выпускном полёте с инструктором, в котором он после продолжительного перерыва в полётах должен был снова получить право самостоятельно летать…

Проект предусматривающий старт с АН-325 (увеличенной версии АН-225 , построенный для перевозки «Бурана», центрального бака ракета-носителя «Энергия» и других негабаритных грузов весом до 250 тонн которых он может нести внутри фюзеляжа или на внешней подвеске). Конструкция общим весом в 275 тонн включающая бак, орбитальный корабль и 7 тонн полезной нагрузки должны были выходить на орбиту благодаря уникальному в своём роде двухкамерному двигателю РД-701 работавший на компонентах топлива керосин+водород/кислород. Двигатель имел два режима: в первом из них для увеличения тяги в обе камеры подавалась значительная доля керосина (что обеспечивала в 2,5 раза большую тягу), при этом в дальнейшем двигатель переходил на второй режим в котором подача керосина полностью прекращалась (обеспечивая на 10% больший удельный импульс):
Проект имел широкую известность, но так и не получил должного финансирования. Несмотря на свой уникальный двигатель проект наследует все технические недостатки дозвукового носителя, а также имеет свой собственный - это трёхкомпонентный бак, в котором надо обеспечивать теплоизоляцию трёх компонентов топлива (водород, кислород, керосин) которые должны храниться при разных температурах (около 20К, 50К и 300К соответственно). Намного более перспективным в данном плане (по моему личному мнению конечно) мог бы стать полный отказ от самолёта-носителя в пользу наземного старта, с использованием сбрасываемых баков и сохранением одноступенчатой схемы - это позволило бы решить проблему теплоизоляции стандартными системами дренажа (когда разогреты компоненты топлива сбрасываются, а баки подпитываются за счёт наземных систем до момента пуска).

Европейских проектов было сразу несколько:

Проект RT-8 немецкой фирмы «Юнкерс» - предусматривал старт двухступенчатой крылатой ракеты с 3-километровой тележки с разгоном до 900 км/ч, также рассматривался воздушный старт. Обе ступени предполагали посадку на землю, вторая ступень предполагала вывод чуть менее 3 тонн на орбиту, также предусматривался перелив топлива водород/кислород из 1-й ступени во 2-ю. Проект завершился с закрытием фирмы в 1969 году.

Также именуемый просто как DC-X, этот проект стал первой попыткой продемонстрировать жизнеспособность идеи SSTO «в металле», и первой ракетой которая села на реактивной тяге 18 августа 1993 года (став тем самым основой для «Кузнечика» от SpaceX). По программе было осуществлено 5 полётов последний из которых закончился жёсткой посадкой, повредившей корпус ракеты. Данный испытательный образец решено было не восстанавливать, а изготовить новый (DC-XA) который на свой 3-й полёт смог подняться на высоту в 3140 метров (в 4 раза выше полётов «Кузнечика»), но посадке после следующего полёта одна из опорных ног не вышла из-за чего ракета упала и загорелась (что усугубилось утечкой из бака кислорода). Хотя затраты на проект на тот момент составляли всего 110 млн $ (в пересчёте на текущие цены) - от проекта было решено отказаться в пользу следующего в списке:


Сравнение размеров X-33, VentureStar и Шаттла

Американский проект VentureStar - стартовавший в 1992 году, был весьма немалых размеров как можно судить по схеме: при стартовой массе в тысячу тонн 20 из них должны приходиться на полезную нагрузку. По проекту должен был быть построен и испытан его уменьшенный аналог - X-33 , после чего к 2004 году должен был быть построен уже полноразмерный корабль. Из-за проблем с композитным баком жидкого водорода и другими техническими проблемами X-33 так и не был достроен, что вызвало отмену всего проекта. В дальнейшем NASA удалось решить проблему с композитными баками и ряд других проблем - но было уже поздно. На основе наработок этих проектов сейчас разрабатывается проект XS-1 под эгидой

Российские специалисты пришли к выводу, что на основе технологий дальней перспективы может создаваться двухступенчатая, полностью многоразовая авиационно-космическая система (МИГ АКС) горизонтального старта, состоящая из гиперзвукового самолета-разгонщика с комбинированной двигательной установкой и ракетной разгонно-орбитальной ступенью. Двухместный орбитальный аппарат при спуске может совершать аэродинамический маневр с боковым отклонением до 2000 км с приземлением на ВПП длиной от 3500 м. Проект как-бы продолжает многоразовый вариант «Спирали».
На МАКС ’99 группой, объединяющей АНПК «МиГ» им. Микояна, ИВТАН и ЦАГИ, была представлена оригинальная концепция. Эта группа предлагает технику электромагнитной левитации для движения высокоскоростных железнодорожных экспрессов, а также для запуска и возвращения различных ЛА - от беспилотных аппаратов до космических кораблей типа МТКК «Спейс шаттл», не говоря уже о межконтинентальном гиперзвуковом самолете. Эти ЛА должны садиться и взлетать с «электромагнитной ВПП», позволяющей ускорить разгон при взлете и обеспечить торможение при посадке с помощью известного принципа взаимодействия движущегося тела с магнитным полем. Идея была уже испытана в лаборатории на алюминиевых макетах «электромагнитного беспилотного моноплана» массой от 2 до 10 кг, который разгоняли и тормозили с помощью методики «ЭТОЛ» на полосе длиной 5 м.
ВКС, представленный этой группой в Жуковском, базируется на той же методике, позволяющей создать многоразовый одноступенчатый аэрокосмический транспортный аппарат, не загрязняющий окружающую среду и предназначенный для наблюдений, исследований, а также для транспортировки грузов. Такой ЛА позволил бы повысить надежность запусков и снизить удельную стоимость выведения полезных нагрузок на низкие околоземные орбиты или их возвращения на Землю. По словам авторов этого проекта, АНПК «МиГ» им. Микояна и ИВТАН уже несколько лет ведут разработки и эксперименты в этой области и, в частности, на ВПП с электромагнитным разгоном, использующей линейные двигатели со сверхпроводящими магнитами. Судя по результатам этой работы, разгонная ВПП (заменяющая первую ступень ракеты-носителя) формируется из 40 компонентов мощностью 10 10 Дж, которые позволят за 10-15 с осуществить взлет с полосы длиной 3-4 км носителя массой 200-700 т. При этом ускорение составит 2-30, а скорость достигнет 300-500 м/с. Не исключается возможность разгона до 100 м/с аппарата без шасси массой от 50 до 150 т. Та же методика электромагнитных запусков предложена и для многоцелевого беспилотного самолета (противолавинные и противоградовые меры, геологоразведка, наблюдение за экологией и состоянием лесов), а также для самолета для спасения на море массой от 15 до 40 т, который будет взлетать (и совершать посадку туда же) с палубы авианосца, имеющего электромагнитную ВПП длиной от 150 до 200 м.
Российские и европейские проекты МКТС предполагают снижение удельной стоимости выведения полезного груза по сравнению с уровнем традиционных одноразовых РН в 5 - 7 раз при эксплуатации полностью многоразовых МКТС, повышение вероятности выполнения задач полета и безопасности экипажа не менее чем в 5 раз, максимальное сокращение, вплоть до полной ликвидации, зон отчуждения по трассам пусков, применение нетоксичных компонентов топлива, выведение КА на орбиты без сопутствующих фрагментов отработавших конструкций носителя, значительное снижение трудоемкости межполетного обслуживания и подготовки к пуску, повышение автономности управления полетом.

Описание
Разработчик РСК МиГ
Обозначение МИГ АКС
Тип двухступенчатая многоразовая авиационно-космическая система
Экипаж, чел. 1 ступень 2
2 ступень 2
Геометрические и массовые характеристики
Длина, м 74,5
Размах крыла, м 42
Высота, м 19
Стартовая масса, кг системы 420000
1 ступень 254000
2 ступень 166000
H=200 км 12300
H=400 км 7000
Возвращаемый полезный груз, кг 7000
Силовая установка
Двигатели 1 ступень турбо-прямоточные
2 ступень ЖРД
Летные данные
Скорость разделения 1 и 2 ступеней ускорителя, м/с (М=) (6)
Паралакс, км 620/5000
«Боковая» дальность полета 2 ступени, км 2000
Потребная длина ВПП, м более 3500


Запуск спутников в космос с воздушного носителя давно рассматривался как способ облегчения доступа человека в ближний космос. В России давно велись разработки так называемой аэрокосмической системы (АКС). И если раньше воздушный старт рассматривался исключительно с точки зрения боевого применения, то сегодня он рассматривается как способ вывода на орбиту и гражданских спутников. Самолётом-носителем для этого выбран надёжный военно-транспортный Ил-76.

Идею использовать воздушный старт для изучения ракет на гиперзвуковых скоростях подхватили после войны. Несмотря на то, что первые успешные эксперименты прошли в США, в России также велись разработки гиперзвукового самолёта-разгонника, который на высоте до 30 км отделялся от самолёта-носителя. Однако начатый в 1964 году проект был закрыт в 1969 году.

В дальнейшем уникальный авиационный ракетный комплекс космического назначения получил своё развитие в Акционерном обществе «Государственный ракетный центр имени академика В.П. Макеева». Разработка велась по заказу корпорации «Воздушный старт» ведущими предприятиями авиационно-космической отрасли России и Украины.

Этот проект был предназначен для доставки полезных грузов на различные околоземные орбиты, включая геостационарную. Ракета размещалась на самолёте-носителе АН-124-100ВС и по расчётам могла выводить спутник массой 3,9 тонны на низкую орбиту, массой 1,5 кг на геопереходную орбиту и 650 кг - на геостационарную орбиту.

Однако по расчётам инженеров компании «Лин Индастриал», грузоподъёмность самолета АН-124-100ВС «Руслан» является избыточной для данного проекта, поэтому инженеры решили рассмотреть другие самолёты для воздушного старта.

Проект двойного назначения

Компания «Лин Индастриал» разработала свой проект многоразовой двухступенчатой авиационно-космической системы (АКС) двойного назначения. Генеральным конструктором проекта является Александр Ильин.

Заказчиком, которого в компании не называют, была поставлена задача разработать систему, которая позволяла использовать АКС «Вьюга» для проведения технологических и общебиологических исследований на коммерческой основе, а также для получения новых материалов в условиях космического полёта. Кроме того, система может применяться для запуска микроспутников массой до 450 кг.

Для военных эта система может быть крайне полезной. Так как воздушный старт даёт возможность запуска на орбиты в широком диапазоне наклонений, с её помощью возможна инспекция и перехват космических аппаратов. Более того, такой спутник мог бы вполне нести высокоточное оружие.

Основными преимуществами авиационно-космической системы является многоразовость, использование в качестве самолёта-носителя доступного и надёжного Ил-76, возможность запусков на орбиты в широком диапазоне наклонений, экологическая безопасность. Мобильность системы давала возможность запусков космических аппаратов с территорий стран-заказчиков, что также является сильным преимуществом для коммерческих стартов.

Как пояснил телеканалу «Звезда» гендиректор компании «Лин Индастриал» Алексей Калтушкин, данный проект будет интересен учёным, которые исследуют различные слои атмосферы и испытывают в этой среде оборудование.

По его словам, данная система проигрывает по стоимости классическому ракетному подходу, но выигрывает в плане удобства для отдельных заказчиков.

«Иногда возникает ситуация, когда нет подходящих пусковых систем для запуска суборбитального оборудования. Все-таки ракета имеет определенный цикл производства, время подготовки, и в этом случае ожидание выходит порой дороже чем сам старт. Учёные могут ждать год или два, чтобы запустить свой прибор в космос. Вся работа может встать. Например, прежде чем запустить большой спутник, они могут проверить часть оборудования на каком-нибудь кубсате (малом спутнике). Поэтому им в некоторых случаях выгоднее использовать авиакосмическую систему и переплатить сейчас, чем ждать несколько лет запуска большого аппарата», - пояснил Калтушкин.

Почему Ил-76?

Стоит отметить, что инженеры компании не сразу выбрали Ил-76 в качестве самолёта носителя, рассматривались и М-55Х «Геофизика» и МиГ-31.

Как рассказали в «Лин Индастриал», высокий практический потолок самолёта М-55Х «Геофизика» (20,4 км) позволял получить значительный выигрыш характеристической скорости АКС, необходимой для выведения на орбиту за счёт уменьшения аэродинамических потерь. Но малая целевая нагрузка (3,5 т) не позволяла создать многоразовую авиационно-космической систему. Единственный возможный в данном случае вариант - это одноразовая кислородно-водородная ракета с полезной нагрузкой порядка 10–50 кг.

Высокий практический потолок МиГ-31 (20,6 км) и большая, чем у М-55Х грузоподъёмность (5-6 тонн), делали данный самолёт весьма реальным кандидатом на роль носителя АКС. Но основное преимущество МиГ-31, его высокая скорость, могло быть реализовано только с малогабаритным грузом.

Схема авиационно-космической системы "Вьюга"

Размещение груза «на спине» не позволило бы использовать МиГ-31 как сверхзвуковой разгонщик. Создание полностью многоразовой системы на базе МиГ-31 если и возможно, то с полезной нагрузкой не более 30-60 кг.

Вариант с использованием широко распространенного военно-транспортного самолёта Ил-76 проигрывает двум предыдущим вариантам по высоте подъёма (12 км), но значительно опережает их по массе полезной нагрузки (43,4–47 т).

В случае крепления АКС «на спине» необходимо предусмотреть не только специальные крепёжные конструкции, но и укрепляющие конструкции внутри самолёта. У первой ступени АКС необходимо предусмотреть крылья, создающие подъёмную силу для отделения от самолёта. Возможность реализации подобного разделения доказывает сброс корабля «Энтерпрайз» (типа «шаттл») во время испытаний с самолёта B-747.


Масса АКС с учётом оборудования для крепления - 35 т, высота разделения - 10 км. При этом, для передачи нагрузок на самолёт-носитель используется специальная внутренняя ферма, габаритные размеры которой позволяют разместить её в грузовом отсеке Ил-76.


Схема вывода спутника в космос

Как работает авиакосмическая система

  1. Взлёт Ил-76 с закреплённой "на спине" первой и орбитальной ступенями с аэродрома базирования.
  2. Набор высоты 10 000 метров.
  3. Отделение первой ступени с орбитальным блоком от самолёта-носителя.
  4. Возвращение Ил-76 на аэродром базирования.
  5. Работа двигателей первой ступени в течение 185 сек, выход в ближний космос.
  6. Отделение орбитальной ступени на высоте 96 км.
  7. Работа двигателя орбитальной ступени в течение 334 сек.
  8. Выход орбитальной ступени на орбиту на высоте 200 км.
  9. Вход первой ступени в атмосферу Земли.
  10. Полёт первой ступени до аэродрома посадки.
  11. Посадка первой ступени.
  12. Работа двигателей орбитальной ступени, выдача тормозного импульса.
  13. Вход орбитальной ступени в атмосферу Земли.
  14. Раскрытие парашюта орбитальной ступени и спуск на парашюте.
  15. Посадка орбитальной ступени.

С учётом пока ещё редких коммерческих стартов ракет-носителей для вывода на орбиту стаи спутников, аэрокосмические системы могут стать вполне эффективной альтернативой. Использование же самолёта Ил-76 будет определённо весьма эффективной авиационной составляющей этого проекта, поскольку самолёт давно доказал свою надёжность.

Основные параметры АКС

  • Высота отделения от самолета-носителя Ил-76 ~10 км
  • Масса космического летательного аппарата - 35 т
  • Топливо - жидкий кислород + керосин (скорость истечения газов - 3400 м/с)
  • Массовое отношение компонентов топлива - 2,726
  • Характеристическая скорость АКС - 8900 м/c

Первая ступень

  • Снабжена крылом, масса со второй ступенью или военной полезной нагрузкой (ПН) - 35 т
  • Характеристическая скорость ступени - 4717 м/c
  • Масса горючего (керосин) - 7050 кг
  • Масса окислителя (кислород) - 19210 кг
  • Окислитель размещен в цилиндрическом баке. Масса бака с теплозащитой ~1200 кг.
  • Горючее размещено внутри фюзеляжа, масса ~450 кг.
  • Масса носового конуса с теплозащитным покрытием ~75 кг.
  • Масса крыла, килей, пилонов, механизации ~1550 кг.
  • Масса двигательной установки ~350 кг.
  • Масса шасси ~210 кг.
  • Масса систем управления ~100 кг
  • Итого (с запасом ~5 кг): масса сухой ступени - 3940 кг, масса заправленной ступени - 30200 кг.

Орбитальная ступень

  • Характеристическая скорость - 4183 м/c
  • Масса горючего (керосин) - 914 кг
  • Масса окислителя (кислород) - 2486 кг
  • Масса корпуса орбитальной ступени ~220 кг
  • Масса баков окислителя ~190 кг
  • Масса баков горючего ~75 кг
  • Масса шар-баллонов ~20 кг
  • Масса теплозащиты днища ~120 кг
  • Масса теплозащиты «спины» ~60 кг
  • Масса маршевой двигательной установки ~60 кг
  • Масса парашютного контейнера ~100 кг
  • Масса системы управления ~45 кг
  • Масса двигателей ориентации ~60 кг
  • Сухая масса вместе с ПН - 1400 кг
  • Масса заправленной ступени с ПН - 4800 кг