Технология спекания порошков SLS (Selective Laser Sintering). SLS — детали из высокотемпературных пластиков и сплавов

SLS (Selective Laser Sintering) – селективное лазерное спекание, одна из наиболее широко применяемых аддитивных технологий . Принцип действия SLS заключается в точечном спекании пластиковых порошков с разными компонентами лазерным лучом. Также существуют машины, которые спекают порошковый металл – эта технология 3D-печати металлом устарела, но еще применяется. Мощность луча в производственных 3D-принтерах варьируется от 30 до 200 ватт.

Метод был создан в середине 1980-х в Техасском университете в Остине Карлом Декардом и Джо Биманом. В 1989 году изобретение запатентовала основанная Декардом фирма DTM Corporation, которую впоследствии приобрела компания . В недрах последней была создана еще одна фундаментальная аддитивная технология – это лазерная стереолитография (SLA-печать). Этот факт, несомненно, сыграл свою роль в укреплении лидирующих позиций компании в индустрии трехмерной печати. SLS-установки, выпускаемые 3D Systems, представляют собой наиболее передовые решения на рынке.


Процесс селективного лазерного спекания

  1. Технологический процесс начинается с разогревания материала до температуры, близкой к температуре плавления, что обеспечивает более быструю работу порошкового 3D-принтера .
  2. Порошок подается в камеру построения и разравнивается валиком на толщину минимального слоя материала.
  3. Лазерный луч спекает слои порошка в необходимых участках, совпадающих с сечением 3D-модели.
  4. Подается следующий слой порошка, камера построения опускается на уровень ниже.
  5. Процедура повторяется, пока не получится готовое изделие.

Работающие по технологии SLS, имеют гибкие настройки. В зависимости от поставленных задач регулируются такие параметры, как температура, глубина и время воздействия. Также пользователь может задать работу либо только с переходными границами, либо спекание по всей глубине модели.

По завершении процесса построения может потребоваться финишная обработка. Для придания изделию идеально ровной формы выполняют полировку или шлифовку. Однако по мере усовершенствования технологий потребность в постобработке изделий, изготовленных на SLS-принтерах, становится все менее актуальной.

Технология 3D-печати по технологии SLS широко применяется в следующих отраслях:

  • авиакосмическая промышленность;
  • машиностроение;
  • строительство;
  • архитектура, искусство, дизайн;
  • инженерная отрасль.

Селективное лазерное спекание используется при изготовлении:

Специфика и преимущества SLS-технологии

Особенность селективного лазерного спекания – в том, что для построения геометрически сложных деталей не используется материал поддержки . В роли поддерживающей структуры выступает порошок, не подвергшийся воздействию лазерного луча.

Материалы для 3D-печати по технологии SLS – пластиковые порошки с примесями, обладающие разными механическими свойствами. Широкий выбор материалов дает предприятиям, внедрившим SLS-технологию, дополнительную гибкость (подробнее – в разделе «Материалы для SLS-печати»).

Детали, созданные на SLS-установках 3D Systems

Отсутствие поддержек дает возможность моделировать сложнейшую геометрию (как внутренних элементов, так и целого изделия), которой нельзя добиться при создании изделий традиционными методами. Кроме того, исключается риск повреждения напечатанной детали. Как результат – значительная экономия времени на сборку и средств на материалы.

Еще одна важная выгода, которую дает технология, – большой объем камер построения . Это дает возможность напечатать достаточно крупные объекты или небольшую партию за одну сессию. Максимальный размер камеры, реализованный в 3D-принтере 3D Systems sPro 230, – 550 х 550 х 750 мм.

Технология обеспечивает высокую скорость печати . Поскольку она не предполагает полное расплавление частиц материала, SLS-установки более производительны, чем другие 3D-принтеры, работающие с порошками.

Модели и прототипы, созданные методом SLS, имеют превосходные механические характеристики : они отличаются прочностью, гибкостью, хорошей детализацией и термической стабильностью. не имеет себе равных, когда стоит задача изготовить долговечные пластиковые продукты. В плане прочности полученных изделий селективное лазерное спекание конкурирует с традиционными способами производства, такими как литье под давлением.

Как и у всех аддитивных технологий, у SLS-метода есть минусы. Во-первых, выращенные модели, как правило, требуют последующей обработки из-за шероховатой или пористой структуры. Во-вторых, предъявляются особые требования к помещению и условиям эксплуатации (главное – это фильтрация воздуха при кондиционировании, так как порошок вреден) . Наконец, как и в случае со всеми технологиями 3D-печати , это необходимость в крупных первоначальных инвестициях из-за высокой стоимости материалов и оборудования.

Материалы для SLS-печати

Благодаря широкому ассортименту технология SLS достаточно универсальна. Сюда входят однокомпонентные порошки или порошковые смеси из различных материалов, таких как:

  • полимеры (в том числе , нейлон);
  • металлы и сплавы (сталь, титан, драгоценные металлы, сплавы кобальта и хрома);
  • композитные материалы;
  • керамика;
  • стекло;
  • песчаные составы.

В 3D-принтерах 3D Systems используются материалы серии DuraForm, характеризующиеся высокой прочностью и долговечностью.

Перспективы развития технологии

Технология SLS изначально использовалась для быстрого прототипирования, но постепенно сфера ее применения расширялась. Селективное лазерное спекание показало отличные результаты при мелкосерийном изготовлении готовых изделий, мастер-моделей для литья и т.д.

Не так давно еще одним интересным направлением применения технологии стало изготовление предметов искусства. Технология продолжает развиваться: внедряются новые материалы, повышается мощность лазерного излучения, проводятся разработки по использованию нескольких материалов в одном технологическом процессе.

Профессиональные SLS-принтеры становятся производительнее, компактнее, проще в эксплуатации, при этом на рынке уже появились настольные модели, ориентированные на домашнее использование. Потенциал селективного лазерного спекания огромен, ведь этот метод открывает простор для реализации самых перспективных технических и творческих идей.


SLS (Selective Laser Sintering)

Порошкообразный материал в рабочей камере разогревается до температуры, близкой к плавлению, разравнивается и лучом лазера на нем прорисовывается необходимый контур слоя.

В месте контакта луча и порошки частицы плавятся и спекаются друг с другом и с предыдущим слоем. Затем платформа опускается на толщину одного слоя, в камеру насыпается новый слой порошка, разравнивается, и процесс повторяется. В итоге печати получается готовая модель с пористой шероховатой поверхностью.

Металлические изделия после изъятия из рабочей камеры помещают в специальную печь, где пластик выгорает, а поры заполняются легкоплавкой бронзой.

Порошки на основе керамики или стекла позволяют изготавливать также модели, обладающие высокой химической и термической стойкостью.

Метод был придуман группой студентов во главе с доктором Карлом Декартом в Университете Остина, штат Техас. Впервые он был запатентован в 1989 году фирмой DTM Corporation, которая в 2001 году была куплена компанией 3D Systems.

На сегодняшний день разнообразие материалов, применяемых в качестве порошка, поистине велико: частицы пластика, стекла, нейлона, керамики, металла.

Как и следует ожидать, существует много вариантов на каждом этапе такого производства. Существует два алгоритма запекания: в одном случае плавят только те участки, которые соответствуют границе перехода, в другом — плавят по всей глубине модели. Кроме того, само запекание может варьироваться по силе, температуре и длительности.

Важная особенность выборочного (селективного) лазерного спекания — отсутствие необходимости в поддерживающих структурах, так как излишек окружающего порошка по всему объему не дает модели разрушиться, пока окончательная форма еще не обретена и не достигнута прочность целевого объекта.

Последний этап — финишная обработка. Например, погружение в специальную печь для выжигания технологических полимеров, которые нужны на этапе спекания, если использовались порошки композитных металлов. Также возможна полировка для удаления видимых переходов между слоями. Технологии и материалы непрерывно совершенствуются и, благодаря этому, этап финишной обработки минимизируется.

Сфера применения 3D печати методом SLS обширна: детали силовых установок, авиастроение, машиностроение, космонавтика. В последнее время технология добралась и до предметов искусства и дизайна.

Технология SLS

SLS прототипирование позволяет исследовать аэродинамические характеристики гоночных автомобилей

Выборочное лазерное спекание (SLS) – метод аддитивного производства , используемый для создания функциональных прототипов и мелких партий готовых изделий. Технология основана на последовательном спекании слоев порошкового материала с помощью лазеров высокой мощности. SLS зачастую ошибочно принимают за схожий процесс, называемый выборочной лазерной плавкой (SLM) .. Разница заключается в том, что SLS обеспечивает лишь частичную плавку, необходимую для спекания материала, в то время как выборочная лазерная плавка подразумевает полную плавку, необходимую для построения монолитных моделей.

История


Принцип работы SLS принтеров

Технология выборочного лазерного спекания (SLS) была разработана Карлом Декардом и Джозефом Биманом из Университета Техаса в Остине в середине 1980-х. Исследования финансировались Агентством передовых оборонных исследовательских проектов США (DARPA). Впоследствии, Декард и Биман были вовлечены в компанию DTM, образованную для продвижения технологии SLS на рынок. В 2001 году DTM была выкуплена конкурирующей компанией . Последний из патентов по технологии SLS был заявлен 28 января 1997 года. Его срок действия истек 28 января 2014 года, что делает технологию общедоступной.
Аналогичный метод был запатентован Р. Ф. Хаусхолдером в 1979 году, но не получил коммерческого распространения.

Технология

Технология (SLS) подразумевает использование одного или нескольких лазеров (как правило, углекислотных) для спекания частиц порошкообразного материала до образования трехмерного физического объекта. В качестве расходных материалов используются пластики, металлы (см. ), керамика или стекло. Спекание производится за счет вычерчивания контуров, заложенных в цифровой модели (т.н. «сканирования») с помощью одного или нескольких лазеров. По завершении сканирования рабочая платформа опускается, и наносится новый слой материала. Процесс повторяется до образования полной модели.


Специфика технологии позволяет создавать детали практически неограниченной сложности из различных материалов

Так как плотность изделия зависит не от продолжительности облучения, а от максимальной энергии лазера, в основном используются пульсирующие излучатели. Перед началом печати расходный материал подогревается до температуры чуть ниже точки плавления, чтобы облегчить процесс спекания.

В отличие от таких методов аддитивного производства, как Стереолитография (SLA) или моделирования методом послойного наплавления (FDM) , SLS не требует построения опорных структур. Навесные части модели поддерживаются неизрасходованным материалом. Такой подход позволяет добиться практически неограниченной геометрической сложности изготовляемых моделей.

Материалы и применение

Компания New Balance использует технологию SLS при создании обуви для профессиональных атлетов

Некоторые SLS устройства используют однородный порошок (см. Прямое лазерное спекание металлов (DMLS)), производимый с помощью барабанно-шаровых мельниц, но в большинстве случаев используются композитные гранулы с тугоплавким ядром и оболочкой из материала с пониженной температурой плавления.

В сравнении с другими методами аддитивного производства, SLS отличается высокой универсальностью в плане выбора расходных материалов. Сюда входят различные полимеры (например, нейлон или полистирол), металлы и сплавы (сталь, титан, драгоценные металлы, кобальт-хромовые сплавы и др.), а также композиты и песчаные смеси.

Технология SLS получила широкое распространение по всему миру благодаря способности производить функциональные детали сложной геометрической формы. Хотя изначально технология создавалась для быстрого прототипирования, в последнее время SLS применяется для мелкосерийного производства готовых изделий. Достаточно неожиданным, но интересным применением SLS стало использование технологии в создании предметов искусства.

Друзья, небольшое вступление!
Перед прочтением новости, позвольте пригласить вас в крупнейшее сообщество владельцев 3D-принтеров. Да, да, оно уже существует, на страницах нашего проекта!

В начале этого месяца компания Norge Systems сообщила, что скоро представит на Kickstarter два недорогих 3D-принтера Ice1 и , работающих по технологии селективного лазерного спекания (SLS), стоимость которых начинается от 13000 долларов. Вам может показаться, что такую сумму никак нельзя назвать небольшой, однако на фоне шестизначных и семизначных цифр, в которые оцениваются другие SLS 3D-принтеры, Norge Systems представляется настоящим реформатором. Однако эта компания не единственная такая на рынке. Молодая швейцарская компания Sintratec тоже работает над SLS 3D-принтером, стоимость которого будет значительно ниже заявленной Norge Systems.

Sintratec была основана Джошей Зелтнером, Кристианом фон Бургом и Домиником Соленики. Вот уже два года они трудятся над 3D-принтером, работающим по технологии селективного лазерного спекания. В октябре на Indiegogo стартует кампания по сбору средств на запатентованную технологию Sintratec. Ниже приведены основные характеристики будущего 3D-принтера (дополнительная информация будет выложена ближе к дате запуска краудфандинговой кампании):

  • Рабочий объем: 130 мм x 130 мм x 130 мм
  • Габаритные размеры: 500 мм x 500 мм x 300 мм
  • Толщина слоя: зависит от спекаемого порошка. У большинства порошков размер гранул составляет 40-80 микрон. От этого и зависит минимальная толщина слоя. Максимальная толщина может достигать 150 микрон
  • Скорость печати: для достижения идеальных результатов скорость печати не должна превышать 70 мм/сек

Для печати используется порошок, преимущественно нейлоновый. Лазер сплавляет его слой за слоем, при этом платформа понемногу опускается вниз. При таком методе печати поддерживающий материал не требуется, так как порошок, который остается на платформе вокруг изделия, сам выполняет функцию поддержки. Когда люди слышат «лазерное спекание», они сразу же представляют себе процесс сплавления металлов. Однако 3D-принтер Sintratec не печатает металлическими порошками. Как объясняет Доминик Соленски:

«Печать металлами - это нечто невероятное. Однако она очень опасна, требует инертной атмосферы и соблюдения техники безопасности, что сразу же скажется на конечной стоимости 3D-принтера».

В Sintratec надеются, что комплекты для самостоятельной сборки 3D-принтеров обойдутся спонсорам на Indiegogo в приемлемые 3999 евро (5277 долларов) или около того, правда для этого компании придется продать как минимум 60 3D-принтеров на Indiegogo или собрать 240000 евро.

Ниже можно посмотреть видео, в котором 3D-принтер Sintratec представлен в действии: