Оценка называется эффективной если. Несмещенные и эффективные оценки характеристики. Смотреть что такое "Эффективная оценка" в других словарях

Параметрические методы оценивания параметра 0 предполагают соответствие вида предполагаемого распределения g(x, 0) неизвестному истинному. Получаемая при этом по выборке независимых значений

максимально правдоподобная оценка в виде векторазначений параметров (аргумента), обеспечивающего максимальное значение функции правдоподобия

обладает минимально возможной дисперсией, т.е. является эффективной оценкой параметра 0 при условии равенства предполагаемого распределения истинному. Отличиеотобусловливает снижение эффективности оценок. Это отличие, в частности, может быть обусловлено присутствием в выборке "посторонних включений" – наблюдений из совокупности, описываемой другими законами распределения. Оценки максимального правдоподобия могут быть менее эффективными по сравнению с оценками, не лучшими в идеальных условиях, но выигрывающими в эффективности в реальных ситуациях статистического оценивания. Такие оценки благодаря Хыоберу получили название робастных.

Мерой относительной эффективности оценок выступает отношение их погрешностей. В качестве погрешности как меры точности измерения широко используются средняя абсолютная ошибка

и средняя квадратическая ошибка

где – г-е значение случайной величины; – среднее значение случайной величины.

Выбор этих и других мер погрешности относится к категории предпочтений того или иного критерия точности оценивания. При выборе достаточно общего байесовского критерия минимума среднего риска ошибок мера погрешности (7.6) соответствует линейной функции стоимости ошибки, а мера (7.7) – квадратичной.

Робастность в широком смысле можно трактовать как устойчивость оценок в условиях отклонения истинного закона распределения от предполагаемого. Робастность в узком смысле можно трактовать как устойчивость при наличии грубых ошибок, или "засорений", выборки экстремальными наблюдениями. Последний подход хорошо прослеживается на примере оценивания параметра сдвига симметричного распределения.

Задача оценивания параметра сдвига симметричного распределения является одной из важнейших статистических задач, имеющих прикладное значение. Примерами таких распределений могут служить распределение Лапласа

и нормальное распределение

где– параметр сдвига распределения относительно нуля, определяющий положение центра симметрии.

Зависимость симметричного распределения от параметра сдвига можно представить в виде

Оценку максимального правдоподобия (7.5) для параметра сдвига для случая нормального распределения признака (7.8) можно получить путем дифференцирования плотности вероятности функции правдоподобия или монотонно связанного с ней ее логарифма (что намного удобнее)

по параметру сдвига р и приравнивания результата к нулю. В результате для распределения (7.8) с точностью до постоянного множителя, не зависящего от р, получаем уравнение

левая часть которого представляет собой сумму так называемых оценочных функций (score functions)

Оценочная функция может иметь вид, отличный от выражения (7.10).

Оценочную функцию можно использовать для определения весовой функции , если она существует:

Выразив оценочную функцию через весовую из формулы (7.11) и подставив ее в уравнение (7.9), убедимся в том, что весовая функция соответствует своему названию в смысле определения веса каждого наблюдения в формировании оценки параметра сдвига:

Для оценочной функции (7.10) все наблюдения х, равноправны в формировании оценки Д. Для случая отсутствия в выборке "посторонних" объектов это логично. Однако наличие аномальных наблюдений может существенно исказить оценку параметра сдвига нормальной совокупности. Избежать этого можно путем выявления аномалий и их исключения из выборки подобно извлечению одного или нескольких лезвий из складного ножа (jackknife ). Этот принцип лежит в основе джекнайф- процедур оценивания. Их недостатком является отсечение в явном или неявном виде не истинно аномальных наблюдений, а наблюдений, признаваемых аномальными или "подозрительными" на основе выбранного решающего правила, что может привести к искажениям и информационным потерям.

Более общий и часто менее радикальный метод оценки при наличии "засорений" выборки предполагает такую трансформацию оценочной функции, при которой обеспечивается как уменьшение искажающего влияния аномальных наблюдений, так и достаточно полное использование информации, содержащейся в выборке.

Для нормально распределенной генеральной совокупности с плотностью вероятности (7.8) средняя арифметическая величина является несмещенной, состоятельной и эффективной оценкой параметра сдвига в виде математического ожидания р. Однако эффективность ее падает с утяжелением "хвостов" распределения, т.е. наличием достаточно большого числа наблюдений, значительно удаленных от среднего значения. Дж. Тыоки исследовал влияние выбросов на эффективность оценки генерального среднего (параметра сдвига). В качестве модели распределения, полагаемого при оценивании нормальным, он использовал смесь двух нормальных распределений, в которой к основному распределению добавлено с весомраспределение с тем же параметром сдвига, но втрое большей дисперсией :

Величина е определяет вероятность попадания аномальных наблюдений в нормальную выборку с единичной дисперсией, и она, как правило, невелика. "Гьюки показал, что при таком засорении оценки методом максимального правдоподобия неустойчивы: их эффективность резко снижается и оказывается худшей, чем оценка усеченного среднего

где – наблюдения , для которых модуль отклонения от р меньше некоторого порога k. Функция веса всех наблюдений при определении среднего значения приведена на рис. 7.6.

Рис. 7.6.

Прием обнуления наблюдений за пределами некоторого диапазона и приписывания одинаковых положительных весов остальным ("хвостовым") значениям называют цензурированием выборки. Недостатком оценки Тьюки, как и многих других устойчивых оценок, является ее зависимость от оцениваемого параметра, влияющего на диапазон, за пределами которого данные подвергаются "цензуре", т.е. удаляются как ненадежные.

Хьюбер в качестве функции, описывающей "засорения", рассматривал произвольную симметричную функциюс нулевым математическим ожиданием. Оценочную функцию необходимо выбрать таким образом, чтобы при наихудшем засорении оценка обладала минимальным средним квадратом отклонения от истинного значения параметра сдвига:

Разложив в ряд Тейлора оценочную функцию и ограничившись линейным членом, получим приближенное равенство

где – производная оценочной функции по параметру сдвига ц.

Правая часть этого равенства представляет собой отношение средних значений оценочной функции и ее производной.

Асимптотическая дисперсия оценкисоставит

Согласно теореме Хыобера D(x).

Поэтому, чтобы получить несмещенную оценку теоретической дисперсии D(x) надо эмпирическую дисперсию S 2 (x) умножить на n/(n – 1) , т.е.

S 2 (x) = (x i - ) 2 f i / n n /(n – 1) = (x i - ) 2 f i /(n – 1) .

Практически эту поправку вносят при вычислении оценки дисперсии в тех случаях, когда n < 30 .

Состоятельных несмещенных оценок может быть несколько. Например, для оценки центра рассеивания нормального распределения наряду со средней арифметической , может быть взята медиана . Медиана так же, как и является несмещенной состоятельной оценкой центра группирования. Из двух состоятельных несмещенных оценок для одного и того же параметра естественно отдать пред­почтение той, у которой дисперсия меньше.


Такая оценка, у которой дисперсия будет наименьшей относительно оцениваемого параметра, называется эффективной . Например, из двух оценок центра рассеивания нормального распределения М(x) эффективной оценкой является , а не , так как дисперсия меньше дисперсии . Сравнительная эффективность этих оценок при большой выборке приближенно равна: D() / D= 2/ = 0,6366.

Практически это означает, что центр распределения генеральной совокупности (назовем его 0) определяется по с той же точностью при n наблюдениях, как и при 0,6366 n наблюдениях по средней арифметической .

4.4. Свойства выборочных средних и дисперсий.

1. Если объем выборки достаточно велик, то на основе закона больших чисел с вероятностью близкой к единице, можно утверждать, что средняя арифметическая и дисперсия S 2 будут как угодно мало отличаться от М(x) и D(x ), т.е.

М(x) , S 2 (x) D(x ),

Распределение случайной величины (распределение генеральной совокупности) характеризуется обычно рядом числовых характеристик:

  • для нормального распределения N(a, σ) - это математическое ожидание a и среднее квадратическое отклонение σ ;
  • для равномерного распределения R(a,b) - это границы интервала , в котором наблюдаются значения этой случайной величины.
Такие числовые характеристики, как правило, неизвестные, называются параметрами генеральной совокупности . Оценка параметра - соответствующая числовая характеристика, рассчитанная по выборке. Оценки параметров генеральной совокупности делятся на два класса: точечные и интервальные .

Когда оценка определяется одним числом, она называется точечной оценкой . Точечная оценка, как функция от выборки, является случайной величиной и меняется от выборки к выборке при повторном эксперименте.
К точечным оценкам предъявляют требования, которым они должны удовлетворять, чтобы хоть в каком-то смысле быть «доброкачественными». Это несмещённость , эффективность и состоятельность .

Интервальные оценки определяются двумя числами – концами интервала, который накрывает оцениваемый параметр. В отличие от точечных оценок, которые не дают представления о том, как далеко от них может находиться оцениваемый параметр, интервальные оценки позволяют установить точность и надёжность оценок.

В качестве точечных оценок математического ожидания, дисперсии и среднего квадратического отклонения используют выборочные характеристики соответственно выборочное среднее, выборочная дисперсия и выборочное среднее квадратическое отклонение.

Свойство несмещенности оценки .
Желательным требованием к оценке является отсутствие систематической ошибки, т.е. при многократном использовании вместо параметра θ его оценки среднее значение ошибки приближения равно нулю - это свойство несмещенности оценки .

Определение . Оценка называется несмещенной , если ее математическое ожидание равно истинному значению оцениваемого параметра:

Выборочное среднее арифметическое является несмещенной оценкой математического ожидания, а выборочная дисперсия - смещенная оценка генеральной дисперсии D . Несмещенной оценкой генеральной дисперсии является оценка

Свойство состоятельности оценки .
Второе требование к оценке - ее состоятельность - означает улучшение оценки с увеличением объема выборки.

Определение . Оценка называется состоятельной , если она сходится по вероятности к оцениваемому параметру θ при n→∞.


Сходимость по вероятности означает, что при большом объеме выборки вероятность больших отклонений оценки от истинного значения мала.

Свойство эффективной оценки .
Третье требование позволяет выбрать лучшую оценку из нескольких оценок одного и того же параметра.

Определение . Несмещенная оценка является эффективной , если она имеет наименьшую среди всех несмещенных оценок дисперсию.

Это означает, что эффективная оценка обладает минимальным рассеиванием относительно истинного значения параметра. Заметим, что эффективная оценка существует не всегда, но из двух оценок обычно можно выбрать более эффективную, т.е. с меньшей дисперсией. Например, для неизвестного параметра a нормальной генеральной совокупности N(a,σ) в качестве несмещенной оценки можно взять и выборочное среднее арифметическое, и выборочную медиану. Но дисперсия выборочной медианы примерно в 1.6 раза больше, чем дисперсия среднего арифметического. Поэтому более эффективной оценкой является выборочное среднее арифметическое.

Пример №1 . Найдите несмещенную оценку дисперсии измерений некоторой случайной величины одним прибором (без систематических ошибок), результаты измерения которой (в мм): 13,15,17.
Решение. Таблица для расчета показателей.

x |x - x ср | (x - x ср) 2
13 2 4
15 0 0
17 2 4
45 4 8

Простая средняя арифметическая (несмещенная оценка математического ожидания)


Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего - смещенная оценка).


Несмещенная оценка дисперсии - состоятельная оценка дисперсии (исправленная дисперсия).

Пример №2 . Найдите несмещенную оценку математического ожидания измерений некоторой случайной величины одним прибором (без систематических ошибок), результаты измерения которой (в мм): 4,5,8,9,11.
Решение. m = (4+5+8+9+11)/5 = 7.4

Пример №3 . Найдите исправленную дисперсию S 2 для выборки объема n=10, если выборочная диспресия равна D = 180.
Решение. S 2 = n*D/(n-1) = 10*180/(10-1) = 200

Одним из основных требований при построении оценок является получение оценок с минимальной дисперсией или минимальным рассеянием (если они существуют). В связи с этим в математической статистике введено понятие эффективных оценок ,

Применительно к смещенным оценкам параметра сигнала оценка называется эффективной, если среднее значение квадрата отклонения оценки от истинного значения оцениваемого параметра I не превышает среднее значение квадрата отклонения любой другой оценки у, т. е. выполняется неравенство

Для несмещенной оценки рассеяние оценки совпадает с ее дисперсией следовательно, эффективная несмещенная оценка определяется как оценка с минимальной дисперсией.

С. Рао и Крамер независимо друг от друга получили выражения для нижних границ условных дисперсий и рассеяний оценок, которые являются дисперсиями и рассеяниями эффективных оценок при условии, что таковые существуют для данных параметров.

Приведем вывод этого выражения, полагая, что необходимые допущения справедливы.

Оценку параметра у представим в сокращенной записи где X - многомерная выборка из реализации на интервале времени

Усредним выражение

по всевозможным значениям многомерной выборки X, которая описывается условной плотностью вероятности Учитывая известное соотношение для производной натурального логарифма после усреднения получаем

В силу свойства нормировки плотности вероятности последнее слагаемое в (1.3.3) равно нулю. Интеграл от первого слагаемого представляет среднее значение оценки

С учетом последнего усредненное значение можно записать в виде

Левая часть этого выражения представляет собой среднее значение произведения двух случайных величин с конечными значениями первых двух моментов. При этих условиях для случайных величин справедливо известное из математической статистики неравенство Буняковского - Шварца

которое переходит в равенство, если случайные величины связаны детерминированной зависимостью . С учетом (1.3.6) из выражения (1.3.5) можно получить

Для несмещенных оценок и оценок с постоянным смещением дисперсия оценки удовлетворяет неравенству Рао-Крамера

Необходимо отметить, что во всех соотношениях усреднение производится по многомерной выборке наблюдаемых данных X (при непрерывной обработке - по всевозможным реализациям а

произшодные берутся в точке истинного значения оцениваемого параметра.

Знак равенства в выражениях (1,3.7) и (1-3.8) достигается только для эффективных оценок.

Применительно к выражению (1.3.7) рассмотрим условия, при которых неравенство обращается в равенство, т. е. оценка параметра является эффективной смещенной оценкойю Согласно (1.3.6) для этого необходимо, чтобы коэффициент взаимной корреляции между был равен единице, т. е. чтобы эти случайные функции были связаны детерминированной линейной зависимостью.

Действительно, представим производную логарифма функции правдоподобия в виде

где функция, которая не зависит от оценки у и выборки наблюдаемых данных, но может зависеть от оцениваемого параметра При подстановке (1.3.5) и (1.3.9) в неравенство (1.3.7) оно переходит в равенство. Однако представление производной логарифма функции правдоподобия в виде (1.3.9) возможно, если для оценки у выполняется условие достаточности (1.2.9), из которого следует, что

и, следовательно, если производная логарифма отношения правдоподобия линейно зависит от достаточной оценки, то коэффициент пропорциональности не зависит от выборки

Таким образом, для существования смещенной эффективной оценки необходимо выполнение двух условий: оценка должна быть достаточной (1.2.9) и должно выполняться соотношение (1.3.9). Аналогичные ограничения налагаются на существование эффективных несмещенных оценок, при которых в выражении (1.3.8) знак неравенства переходит в равенство.

Полученное выше выражение для нижней границы дисперсии смещенной оценки справедливо и для нижней границы рассеяния смещенной оценки, так как т. е.

Последнее неравенство переходит в равенство, если кроме условия достаточности оценки справедливо соотношение

где имеет тот же смысл, что и в выражении (1.3.9).

Формула (1.3.10) выводится аналогично (1.3.7), если в исходном выражении (1.3.2) вместо рассматривать

Из характера условий (1.2.9) и (1.3.9) видно, что эффективные оценки существуют только в весьма специфических случаях. Также следует отметить, что эффективная оценка обязательно принадлежит к классу достаточных оценок, в то время как достаточная оценка не обязательно будет эффективной.

Анализ выражения для дисперсии эффективной смешенной оценки 1.3.7) показывает, что могут существовать смещенные оценки, которые обеспечивают меньшую дисперсию оценки, чем несмещенные. Для этого необходимо, чтобы производная от смещения имела отрицательное значение и по абсолютной величине в точке истинного значения параметра была близка к единице.

Поскольку в большинстве случаев интерес представляет средний квадрат результирующей ошибки оценки (рассеяние), имеет смысл говорить и о среднем квадрате ошибки оценки, который для любой оценки ограничен снизу:

При этом для эффективных оценок имеет место знак равенства.

Нетрудно показать, что соотношения (1.3.10) и (1.3.12) совпадают, если выполняются соответственно условия (1.3.11) и (1.3.9). Действительно, подставив в числитель и знаменатель (1.3.10) значения, выраженные через функции получим (1.3.12).

Используя рассмотренные выше свойства эффективных оценок уточним их определение. Будем называть оценку у эффективной, если для нее либо выполняются условия (1.2.9) и (1.3.11), либо при заданном смещении она обладает дисперсией

или рассеянием

либо при нулевом смещении эта оценка имеет дисперсию

Отметим, что характеристики эффективной оценки (1.3.13) - (1.3.15) могут быть вычислены и для тех параметров, для которых эффективной оценки не существует. В этом случае величины (1.3.13) -(1.3.15) определяют нижнюю границу (недостижимую) для соответствующих характеристик оценки.

Для сравнения реальных оценок с эффективными в математической статистике введено понятие относительной эффективности оценок, представляющее отношение среднего квадрата отклонения эффективной оценки относительно истинного значения параметра к среднему квадрату отклонения реальной оценки относительно истинного значения параметра:

Здесь у - реальная оценка, эффективность которой равна эффективная оценка.

Из определения дисперсии эффективной оценки (1.3.1) видно, что относительная эффективность оценки изменяется в пределах

Кроме понятия эффективных оценок существует понятие асимптотически эффективных оценок. При этом предполагается, что для достаточно большого времени наблюдения или неограниченного увеличения отношения сигнал/помеха предельное значение относительной эффективности реальной оценки равно единице. Это означает, что при асимптотически эффективной оценке дисперсия оценки для заданного смещения определяется выражением (1.3.13), а при отсутствии смещения - выражением (1.3.15).

) задач математической статистики .

Предположим, что имеется параметрическое семейство распределений вероятностей (для простоты будем рассматривать распределение случайных величин и случай одного параметра). Здесь - числовой параметр, значение которого неизвестно. Требуется оценить его по имеющейся выборке значений, порожденной данным распределением.

Различают два основных типа оценок: точечные оценки и доверительные интервалы .

Точечное оценивание

Точечное оценивание - это вид статистического оценивания, при котором значение неизвестного параметра приближается отдельным числом. То есть необходимо указать функцию от выборки (статистику)

,

значение которой будет рассматриваться в качестве приближения к неизвестному истинному значению .

К общим методам построения точечных оценок параметров относятся: метод максимального правдоподобия , метод моментов , метод квантилей .

Ниже приводятся некоторые свойства, которыми могут обладать или не обладать точечные оценки.

Состоятельность

Одно из самых очевидных требований к точечной оценке заключается в том, чтобы можно было ожидать достаточно хорошего приближения к истинному значению параметра при достаточно больших значениях объема выборки . Это означает, что оценка должна сходиться к истинному значению при . Это свойство оценки и называется состоятельностью . Поскольку речь идет о случайных величинах, для которых имеются разные виды сходимости, то и данное свойство может быть точно сформулировано по-разному:

Когда употребляют просто термин состоятельность , то обычно имеется в виду слабая состоятельность, т.е. сходимость по вероятности.

Условие состоятельности является практически обязательным для всех используемых на практике оценок. Несостоятельные оценки используются крайне редко.

Несмещенность и асимптотическая несмещенность

Оценка параметра называется несмещенной , если ее математическое ожидание равно истинному значению оцениваемого параметра:

.

Более слабым условием является асимптотическая несмещенность , которая означает, что математическое ожидание оценки сходится к истинному значению параметра с ростом объема выборки:

.

Несмещенность является рекомендуемым свойством оценок. Однако не следует слишком переоценивать его значимость. Чаще всего несмещенные оценки параметров существуют и тогда стараются рассматривать только их. Однако могут быть такие статистические задачи, в которых несмещенных оценок не существует. Наиболее известным примером является следующий: рассмотрим распределение Пуассона с параметром и поставим задачу оценки параметра . Можно доказать, что для этой задачи не существует несмещенной оценки.

Сравнение оценок и эффективность

Для сравнения между собой различных оценок одного и того же параметра применяют следующий метод: выбирают некоторую функцию риска , которая измеряет отклонение оценки от истинного значения параметра, и лучшей считают ту, для которой эта функция принимает меньшее значение.

Чаще всего в качестве функции риска рассматривают математическое ожидание квадрата отклонения оценки от истинного значения

Для несмещенных оценок это есть просто дисперсия .

Существует нижняя граница на данную функцию риска, называемая неравенство Крамера-Рао .

(Несмещенные) оценки, для которых достигается эта нижняя граница (т.е. имеющие минимально возможную дисперсию), называются эффективными . Однако существование эффективной оценки есть довольно сильное требование на задачу, которое имеет место далеко не всегда.

Более слабым является условие асимптотической эффективности , которое означает, что отношение дисперсии несмещенной оценки к нижней границе Крамера-Рао стремится к единице при .

Заметим, что при достаточно широких предположениях относительно исследуемого распределения, метод максимального правдоподобия дает асимптотически эффективную оценку параметра, а если существует эффективная оценка - тогда он дает эффективную оценку.

Достаточные статистики

Статистика назвается достаточной для параметра , если условное распределение выборки при условии того, что , не зависит от параметра для всех .

Важность понятия достаточной статистики обуславливается следующим утверждением . Если - достаточная статистика, а - несмещенная оценка параметра , тогда условное математическое ожидание является также несмещенной оценкой параметра , причем ее дисперсия меньше или равна дисперсии исходной оценки .

Напомним, что условное математическое ожидание есть случайная величина, являющаяся функцией от . Таким образом, в классе несмещенных оценок достаточно рассматривать только такие, которые являются функциями от достаточной статистики (при условии, что такая существует для данной задачи).

(Несмещенная) эффективная оценка параметра всегда является достаточной статистикой.

Можно сказать, что достаточная статистика содержит в себе всю информацию об оцениваемом параметре, которая содержится в выборке .