Горные породы и их многообразие. Происхождение, классификация горных пород. Когда-то пальмы росли везде

Органогенные осадочные горные породы

1. Осадочные органогенные горные породы

На поверхности Земли в результате действия различных экзогенных факторов образуются осадки, которые в дальнейшем уплотняются, претерпевают различные физико-химические изменения - диагенез, и превращаются в осадочные горные породы. Среди осадочных пород выделяют три группы:) обломочные породы, возникающие в результате механического разрушения каких-либо пород и накопления образовавшихся обломков;) глинистые породы, являющиеся продуктом преимущественно химического разрушения пород и накопления возникших при этом глинистых минералов;) химические (хемогенные) породы, образовавшиеся в результате химических процессов;) органогенные породы, образовавшиеся в результате биологических процессов.

Об осадочных органогенных породах и будет идти разговор. Органогенные горные породы - это осадочные горные породы, образующиеся из скопления продуктов жизнедеятельности и неразложившихся останков живых организмов: известняки ракушечники, ископаемые угли, гуано - разложившийся помет морских птиц и др.

При описании осадочных органогенных горных пород следует обращать внимание на их минеральный состав, который является определяющим признаком, и на строение. Также важнейшим признаком, характеризующим строение осадочных пород, является их слоистая текстура. Образование слоистости связано с условиями накопления осадков. Любые перемены этих условий вызывают либо изменение состава отлагающегося материала, либо остановку в его поступлении. В разрезе это приводит к появлению слоев, разделенных поверхностями напластования и часто различающихся составом и строением. Слои представляют собой более или менее плоские тела, горизонтальные размеры которых во много раз превышают их толщину (мощность). Мощность же слоев может, достигать десятков метров или не превышать долей сантиметра.

1.1 Происхождение

Образование осадков, из которых возникают осадочные горные породы, происходит на поверхности земли, в её приповерхностной части и в водных бассейнах.

Процесс формирования осадочной горной породы называется литогенезом и состоит из нескольких стадий:

) образование осадочного материала;

) перенос осадочного материала;

) седиментогенез - накопление осадка;

) диагенез - преобразование осадка в осадочную горную породу;

) катагенез - стадия существования осадочной породы в зоне стратисферы;

) метагенез - стадия глубокого преобразования осадочной породы в глубинных зонах земной коры.

Основная масса органогенных пород возникла в различных по солености, глубине и размерам морских и континентальных водоемах, а также в результате действия химических процессов и жизнедеятельности организмов на суше и море. Все породы хемогенного и органогенного происхождения связаны взаимными переходами и имеют смешанное хемогенно-органогенное происхождение. Классификация пород хемогенного и органогенного генезиса осуществляется по химическому составу.

Рассмотрим образование некоторых органогенных горных пород. Например, известняка. Огромные залежи известняков, образовавшиеся миллионы лет назад из скелетов морских животных, составляют примерно 20% от общего количества осадочных пород. Образовались известняки в результате длительных геохимических процессов. Реки ежегодно выносят в моря многие миллионы тонн извести в виде взвеси и в растворенном виде. При встрече речной воды с соленой морской образуется своеобразный «геохимический барьер», на котором растворимые соединения, в том числе и известь, выпадают в осадок, смешиваясь с илом. Часть бикарбоната кальция остается в растворенном состоянии и постепенно поглощается морскими растениями и животными. В результате в течение миллионов лет огромное множество раковин погибших моллюсков и кораллов образовало колоссальные скопления углекислого кальция. Так возникли различные известняки, среди которых по породообразующим организмам различают коралловые, ракушечные, нуммулитовые, мшанковые, водорослевые и др.

Рис. 1. Образование нефтяной залежи

Или образование другой органогенной породы, такой как нефть. (Рис. 1) Основные условия развития процесса формирования нефти, носящего название термокатализ - это опускание осадочных пород, вмещающих органические остатки, на большие глубины, воздействие господствующих на этих глубинах высоких температур и давлений и каталитическая роль самих вмещающих пород, ускоряющая реакции распада и химической переработки органических веществ. При окислении на поверхности нефть переходит в киры и асфальты.

Ещё один пример - это образование горючих сланцев. Образование начинается с момента накопления органических остатков. «Родители» сланцев - это мельчайшие водоросли, перемещаемые волнами или (фитопланктон), иногда водоросли подводных лугов (фитобентоз) или низшие представители животного мира (фианктон). Начали образовываться горючие сланцы 130-140 млн. лет назад в нижневолжский век юрского периода. Юрские моря были мелководны, хорошо прогревались и были густо заселены водорослями, служившими местом обитания многочисленных беспозвоночных и позвоночных организмов. После гибели организмы опускались на дно в иловато-глинистый осадок, который послужил основой для образования горючих сланцев. Если отколоть кусок горючего сланца, то можно увидеть большое количество отпечатков водорослей, ходов червей, аммонитов, белемнитов, двустворчатых моллюсков, чешую ископаемых рыб, позвонки ихтиозавров, плезиозавров и других организмов.

Рис. 2. Образования угля

Разнообразие типов растительности, произраставшей на Земле в различные геологические эпохи и в различных климатических зонах, условия захоронения и преобразования в торфяных залежах определили широчайший спектр свойств органической массы, которая явилась исходным материалом, а впоследствии стала непосредственно углем. Формирование торфяных залежей происходило (и происходит сейчас) в болотах различного типа: в прибрежно-морских, озёрных, речных долинах. Торфяники периодически заливались водами с которыми привносилось то или иное количество минеральных примесей как во взвешенном, так и в химически растворённом состоянии. Интенсивность их привноса и состав пород, окружающих торфяники, определили зольность угля и присутствие в его составе вредных и полезных химических элементов, таких, как сера, фосфор, германий, аллий и др. Далее торфяники за счёт прогибания Земной коры перекрывались толщей так называемых осадочных пород и погружались на различные глубины, где в условиях значительных давлений и температур исходное органическое вещество приобретало свойства, присущие той или иной марке угля.

1.2 Классификация

Органогенные горные породы (биогенные породы) - состоят из остатков животных и растительных организмов или продуктов их жизнедеятельности.

Организмы обладают способностью концентрировать определённые соединения, образуя скелеты или ткани, которые сохраняются в ископаемом состоянии. По вещественному составу среди органогенных горных пород можно выделить:

) карбонатные;

) кремнистые;

) фосфатные;

) горючие сланцы;

Я предлагаю рассмотреть каждую группу в отдельности.

Органогенные карбонатные породы (известняки) состоят из раковин фораминифер, кораллов, мшанок, брахиопод, моллюсков, водорослей и др. организмов. Своеобразными их представителями являются рифовые известняки, слагающие атоллы, барьерные рифы и др., а также мел.) Рифовые известняки - В настоящее время большая часть рифов построена кораллами, но сотни миллионов лет назад главными строителями рифов были мшанки (колониальные водные, преимущественно морские, животные, ведущие прикреплённый образ жизни) и водоросли.) Мел-мягкий известняк с очень тонкой текстурой, которая, как правило, белого или светло-серого цвета. Она формируется в основном из известковой скорлупой остается микроскопических морских организмов, таких как фораминифер или известковыми останков из многочисленных видов морских водорослей.

Кремнистые породы состоят из водного кремнезема (опала). Среди них выделяют:) Диатомит - образован из панцирей диатомовых водорослей и отчасти из скелетов радиолярий и губок, между которыми осаждались тончайший ил и глина. Состоит в основном из аморфного кремнезема в виде минерала опала.) Спонголиты - породы, содержащие обычно более 50% спикул кремнёвых губок. Цемент у них кремнистый, из опаловых округлых телец, или глинистый, слегка известковистый, нередко включает вторичный халцедон.) Радиоляриты - кремнистые породы, более чем на 30% состоящие из скелетов радиолярии, которые в современных океанах образуют радиоляриевый ил. Помимо радиолярий, в них входят единичные спикулы губок, редкие скорлупки диатомовых водорослей, кокколитофориды, опаловые и глинистые частицы. При перекристаллизации радиоляриты переходят в яшмы.) трепел - горная порода преимущественно коллоидно-хемогенного происхождения, состоящая из мельчайших зернышек опала;) опока - твердая кремнистая порода, образованная в результате перекристаллизации и цементации диатомита или трепела.

Органогенные фосфатные породы не имеют большого распространения. К ним относятся ракушечники из фосфатных раковин силурийских брахиопод - оболид, скопления костей ископаемых позвоночных, известные в отложениях разного возраста, а также гуано - продукты разложения помёта птиц, толщи которого накапливаются обычно на островах в условиях сухого климата.

Уголь формирует из накопления и сохранения растительных материалов, как правило, в болотах. Уголь является горючей породой и вместе с нефтью и природным газом является одним из трех самых важных ископаемых топлива. Уголь имеет широкий спектр применения, наиболее важным является использование для производства электроэнергии.

В зависимости от стадии метаморфизма в России различают такие виды угля. (Табл.1)

Таблица 1. Стадии метаморфизма угля

Свойства

Торф - исходный продукт для образования угля. Содержит 50-60% углерода. Накапливается в болотах из остатков отмерших растений, подвергшихся неполному разложению в условиях повышенной влажности и затрудненного доступа воздуха. Слой торфа в болотах не менее 30 см, (если меньше, то это заболоченные земли).

Бурый уголь

Бурые угли являют собой твердые ископаемые угли, которые образовались из торфа и на 65-70% состоят из углерода. Данный вид бурого цвета наиболее молодой среди всех ископаемых углей. Формируется под воздействиями высокой нагрузки и повышенной температуры из органических отмерших остатков на глубинах около 1 километра.

Каменный уголь

Каменные угли представляют собой осадочную породу, образовавшуюся из глубоко разложения различных остатков растений (хвощей, первых голосеменных растений, древовидных папоротников и плаунов). Химический состав этого угля являет собой смесь полициклических высокомолекулярных ароматических соединений с большой концентрацией углерода и меньшей - воды, летучих веществ и минеральных примесей, которые образуют золу при сжигании угля. Некоторые органические вещества, входящие в состав такого угля, являются канцерогенными. Каменные угли образуются из бурых на глубинах около трех километров. Имеет высокую теплоту сгорания из-за содержания 8-20% влаги и в зависимости от сорта - от 75% до 95% углерода.

Антрацит

Антрациты являются углями самой высокой степени углефикации. Отличаются высокой плотностью и блеском. Углерода содержат 95%. Формируются под действием температуры и давления из каменного угля на глубинах около 6 километров. Применяются в качестве твердого высококалорийного топлива, поскольку имеют наивысшую степень теплоты сгорания, но при этом плохо воспламеняются.


Горючий сланец-полезное ископаемое, залегающее на сравнительно небольших глубинах, относится к группе твердых каустобиолитов и состоит из органического вещества (10-50% по массе) и минеральной части. Промышленную ценность представляет как органическая, так и минеральная части сланцев, основными компонентами которой являются карбонаты и алюмосиликаты. Горючие сланцы тонкослоисты, обладают темно-серым или бурым цветом, при горении выделяют запах битума.

Нефть - органогенная горная порода. Исходным материалом для образования нефти является гнилостный ил, или сапропель, накапливающийся на дне застойных водоемов: озер, морских заливов, лагун, иногда также в прибрежных участках дна открытых морских бассейнов в результате гибели различных низших растений и животных, преимущественно планктонных микроорганизмов, населяющих воды морей и океанов.

Также органогенные горные породы можно разделить по структуре. В этих породах большое значение имеет форма составных частей, которая обусловливается характером организмов. Среди пород этой группы различают структуры: криноидные, коралловые, пелециподовые, мшанковые, фораминиферовые, водорослевые, смешанные и т.д. В зависимости от сохранности обломков в породе выделяют структуры:

Биоморфная - хорошая сохранность органических остатков. По размеру компонентов они могут быть очень различными в зависимости от организмов - от очень крупных (например, кораллы) до мельчайших (например диатомеи);

Детритусовая (детритовая) - порода сложена обломками скелетов организмов.

В свою очередь среди пород с детритусовой структурой различают:) крупнодетритусовые породы слагаются не окатанными обломками, часто хорошо заметными простым глазом и легко определимыми под микроскопом. Размеры обломков чаще всего от нескольких миллиметров примерно до 0,05 мм.) мелкодетритусовые. слагаются мельчайшими обломками организмов (обычно от 0,05 мм и мельче), неразличимыми простым глазом и в большей части не определимыми под микроскопом в шлифе.

Органогенно-обломочная структура отличается тем, что обломки раковин большей частью хорошо окатаны и почти одинаковой величины (0,5 -0,1 мм).

2 . Распространение органогенных горных пород в Краснодарском крае

В недрах края открыто более 60 видов полезных ископаемых. В основном они залегают в предгорных и горных районах. Имеются запасы нефти, природного газа, мергеля, йодо-бромных вод, мрамора, известняка, песчаника, гравия, кварцевого песка, железных и апатитовых руд, каменной соли и других полезных ископаемых. Министерством природных ресурсов РФ утвержден перечень общераспространенных полезных ископаемых Краснодарского края, ниже представлен список некоторых из них:

Диатомит;

Известняки;

Мергель;

Ракушечник;

Сланцы (кроме горючих);

Торф (кроме используемого в лечебных целях).

2.1 Месторождения в Краснодарском крае

Углеводородное и энергетическое сырье

Углеводородное и энергетическое сырье. На территории края выявлено 280 месторождений нефти (Рис. 3) и газа. Залежи нефти находятся в толще осадочных пород и расположены на глубине от 700 до 5200 м. По данным геологических служб, к 1995 г. в крае добыто 218 млн. т нефти. Из более чем 70 разведанных месторождений нефти с запасом 41,8 млн. т, в эксплуатации находится 66. Прогнозная оценка запасов нефти выше разведанных примерно в три раза.


Примером одного из самых крупных нефтяных месторождений может служить Новодмитриевское (Северский район): оно имеет длину примерно 10 км, ширину - 2,5 км, а мощность нефтесодержащих пород (этаж нефтеносности) - 450 м. Нефть залегает здесь на глубине 2400-2800 м.

Месторождения каменного угля обнаружены в горных районах в бассейнах рек Белой, Малой и Большой Лабы. Уголь встречается в виде пластов мощностью 0.5-0.9 м. Но в связи с низкой теплотворной способностью добыча кубанского угля не рентабельна.

Обнаружены проявления горючих сланцев невысокого и среднего качества в междуречье Большой и Малой Лабы. По прогнозам геологов, запасы сланцев составляют 136,25 млн. т. Месторождения торфа обнаружены в нижнем течении Кубани (Гривенское), в Новокубанском районе по р. Уруп, а также у устья рек Мзымта и Псоу на Черноморском побережье. Разработка месторождений горючих сланцев и торфа также нерентабельна из-за их низкой энергетической ценности и небольших запасов.

Известняки

Известняки и мел широко применяются в химической промышленности для производства соды, карбида кальция, едкого калия, едкого натра, в производстве минеральных удобрений и других продуктов. На территории Краснодарского края известно одно (Правобережное) месторождение известняков. Оно расположено в Лабинском районе, на правом берегу р. Малая Лаба, в 4 км к востоку от ж.-д. станции Шедок. Полезной толщей являются известняки туронского и коньякского ярусов верхнего мела, мощность которых колеблется от 0 до 73 м. Химический состав известняков продуктивной толщи (в %): CaO - 54,2; MgO - 0,3; SiO 2 - 1,4; R 2 O 3 - 0,7; Na 2 O - 0,04; K 2 O - 0,07; SO 3 - 0,1; P - 0,024. По своим свойствам известняки пригодны для содового производства, а также могут быть использованы в сахарной промышленности и для производства извести и цемента. Запасы сырья составляют 244314 тыс. т.

Морская ракушка

Месторождения морской ракушки в Краснодарском крае приурочены к побережью Азовского моря и его лиманов и в меньшей степени лиманов Таманского полуострова. Генетически они представляют собой современные морские осадки, намытые морскими течениями и прибоями вдоль береговой линии в виде валов и кос. Подобные скопления морской ракуши имеют ширину и длину несколько километров и мощность несколько метров. Основным компонентом в составе месторождений морской ракушки являются известковые раковины (целые или обломки) современных моллюсков, содержащих в качестве примесей небольшие количества песка, глины, органических остатков и др. В зависимости от гранулометрического состава и загрязненности морская ракушка может быть использована для балластировки железнодорожного полотна, для обжига на известь, для получения стеновых блоков и для приготовления кормовой муки и крупы.

В Краснодарском крае описано 33 месторождения морской ракушки. Из них на балансе запасов состоит только 6 месторождений (Кирпильское, западный участок; Слободкинское, Ханское, Должанское; Забойское и Черноерковское) с общими запасами, равными 4220 тыс. м 3 . Из них разрабатываются Кирпильское, Забойское и Черноерковское месторождения. Они расположены на территории Ейского и Приморско-Ахтарского районов. Сырье всех перечисленных месторождений пригодно для использования в качестве кормовой муки и крупы.

Наиболее крупным в Краснодарском крае является Должанское месторождение морской ракушки. Оно расположено в Ейскомрайоне, в 3 км к северо-западу от станицы Должанской и в 45 км к западу от г. Ейска, на косе Долгой. Полезная толща сложена среднечетвертичными и современными морскими отложениями, представленными целой и дробленой морской ракушкой, с примесью песка. Ракушечные скопления залегают пластообразно в виде косы длиной 4 км и шириной от 30 до 1200 м; мощность полезной толщи 2,65-6,1 м. Ракушечные отложения пригодны для подкормки птиц. Месторождение составляет резерв.

Строительный камень.

В Краснодарском крае известно 41 месторождение строительного камня. 25 месторождений разрабатываются, 7 - подготавливаются к освоению, одно разведывается и 8 составляют резерв. Известны такие месторождения как: Медвежьегорское (6 км от Дербентской), Северная гора (4 км от Ильской), Правобережное (4 км от Шедока), Ходжохское (12 км от Каменномосткого). Общие запасы строительного камня составляют 213,15 млн. м³, при этом запасы известняков, используемых для получения щебня и бутового камня - 118,886 млн. м³; запасы песчаников, пригодных для получения щебня - 39,123 млн. м³. Также известняки применяются для нужд сахарного производства.

2.2 Добыча основных органогенных горных пород в Краснодарском крае

Краснодарский край является родиной отечественной нефтяной промышленности. Из недр края ежегодно извлекается 1,7 - 1,9 млн. т. нефти, добыча природного газа доведена до 3 млрд. м³. В приведенной таблице видно, как добыча нефти на Кубани неуклонно росла, за исключением военных лет и периода экономического кризиса 90-х годов XX столетия.

Таблица 2. Темпы роста добычи нефти на Кубани


Все разрабатываемые в настоящее время месторождения нефти Краснодарского края располагаются на суше. Добыча нефти в крае по мелким месторождениям составила 74%, а из Анастасиевско-Троицкого крупного месторождения - 26% от годового объема. За последние годы наибольший прирост запасов и добычи нефти (и газа) обеспечивается за счет опоискования и разведки Прибрежно-Сладковско-Морозовской группы месторождений (33,8% годового объема добычи нефти). Средняя обеспеченность запасами нефти в крае, при современном уровне добычи, составляет около 22 лет.

Подготовка новых промышленных запасов углеводородов в крае, на современном этапе, осложняется тем, что поиски ведутся преимущественно на небольшие и сложно построенные месторождения, с выходом на значительные глубины, в районах с тяжелыми горно-техническими условиями.

Основные разведанные на территории края месторождения находятся на окончательной стадии разработки. Краснодарский край относится к самым старым нефтегазодобывающим регионам России. Большая часть его месторождений с основными запасами сырья была введена в строй более 30-40 лет назад и продолжает эксплуатироваться до сих пор.

Главный район угольной промышленности - восточное крыло Донбасса в Ростовской обл. (Шахты, Новошахтинск и др.). Добыча угля составляет около 7 млн. т. (2% общероссийской добычи)». Уголь (коксующийся и энергетический) добывается на большой глубине в условиях малой мощности пластов, что обусловливает высокую себестоимость и ограниченный (югом России) рынок сбыта этих углей. Дальнейшее падение добычи вряд ли можно будет остановить, так как условия добычи сложны, а богатые залежи уже выработаны.

Нежелательная добыча известняка ведется на восточном склоне

Рис. 4. Добыча известняка

Дзыхринского карстового массива, в 24 квартале Сочинского национального парка (Рис. 4), который входит в особо охраняемую зону. Здесь, на скалах Шахгинского ущелья, произрастают несколько видов растений, внесенных в Красную книгу России и Краснодарского края. Разработка карьера ведется с помощью экскаваторов, камень загружают на самосвалы и вывозят на расположенную выше Ермоловки дробилку.

3 . Применение в промышленности, строительстве и сельском хозяйстве

Осадочные породы имеют исключительно важное практическое и теоретическое значение. В этом отношении с ними не могут сравниться никакие другие горные породы.

Осадочные породы самые важные в практическом отношении: это и полезные ископаемые, и основания для сооружений, и почвы.

Исключительно велико научно-практическое значение углей и горючих сланцев: они и их компоненты используются для периодизации истории Земли, в стратиграфических исследованиях (корреляция разрезов и определение возраста), фациальном анализе и палеогеографии, в стадиальном анализе по отражательной способности витринита и т.д.

Практическое значение угля нельзя переоценить. Это прежде вceгo основной источник энергии. Лишь с середины 50-x годов угли уступили первое место нефти, но уже наметилась тенденция повторного выхода в лидеры, и тaкая перспектива обеспечена огромными ресурсами угля на Земле (почти 15 или даже 30 трлн. т), на порядок превышающими ресурсы нефти и газа, вместе взятых (Голицын, Голицын, 1989, с. 42). При скором сокращении добычи нефти ее заменителем выступят горючие сланцы (ГC), «общие мировые запасы которых 450 трлн. т» (ООН, 1967), что на порядок больше запасов угля и нефти (92 млрд. т), хотя в это число вошла и преобладающая в их составе неорганическая часть. В ГС содержится от 26 до 53 трлн. т сланцевой смолы (по разным подсчетам; Голицын, Прокофьева 1990, с. 15), если за нижний предел coдержания смолы принимать 4% (а верхний достигает 35% в кукерситах Прибалтики и в месторождении Глен-Девис в Австралии). Больше половины (53%) ресурсов ГС сосредоточено в США, особенно в самом богатом бассейне Грин-Ривер (Скалистые гopы). Только из угля, если он будет добыт весь, можно построить куб с ребром в 21 км (объем более 10 тыс. км3, что почти в 3 раза выше Эвереста (Голицын, Голицын, 1989, с. 42). Ресурсы каменных углей подсчитаны до глубины 1800 м (иногда до 2000 м), бурых - 600, лигнитов - 300 м.

Горючие сланцы используются как топливо по крайней мере с 1694 г. Как источник энергии они надежда человечества. Теплота cгoрания их от 4-5 до 20-25 МДж/кг (Голицын, Прокофьева, 1990, с. 7). По теплоте сгорания (более 15 мДж/кг), выходу смолы (до 25-30%), малой сернистости (менее 1%), низким зольности и влажности лучшие в мире прибалтийские кукерситы. Ограничивают сжигание сланцев их сернистость, дoстигающая 10% (отравление природы серной кислотой), и высокие зольность и влажность (до 30%). Сланцы - ценное химическое сырье, особенно из-за большого содержания фенолов, трудно получаемых из нефти. Диктионемовые сланцы Прибалтики интересны содержанием молибдена, ванадия, серебра, свинца, меди и других редких и рассеянных элементов (Голицын, Прокофьева, 1990, с. 25 и др.).

Торф - уникальный материал. Несмотря на то, что он известен многие сотен лет и активно использовался человечеством в промышленности в качестве топлива и сельском хозяйстве как удобрение, только в последнее время были обнаружены уникальные свойства торфа. Торф оказался непревзойденным натуральным антисептиком и фантастически отличным сырьем для производства натуральных тканей.

Его огромные и постоянно возобновляемые запасы могут рассматриваться как гигантские залежи уникального сорбирующего материала.

Торф может в большом количестве перерабатывать нефть в безвредное вещество. Во время трагедии в Мексиканском заливе надо было просто засыпать пятно в большом количестве торфом, который мог превратится в ил, который стимулировал бы рост водорослей.

Торфа практически не применяется для очистки сточных вод от металлов и органических веществ, хотя его низкая стоимость и высокая степень очистки могут сделать его самым востребованным материалом в мире. Причем, спектр сорбции им металлов очень широкий от лития до урана. Практически все токсические органические вещества могут быть уловлены торфом.

Практическое значение карбонатолитов состоит в том, что все они - полезные ископаемые. Известняк, мел и доломит, используются в черной и цветной металлургии, химической промышленности, в производстве цемента и других вяжущих материалов, для выпуска резины, стекла, сахара, получения известняковой муки для мелиорации кислых почв, минеральной подкормки в животноводстве и птицеводстве, а также в других отраслях промышленности, где требования к карбонатному сырью определяются в основном его химическим и минеральным составом. Благодаря значительному распространению и разнообразию свойств карбонатные породы используются в больших объемах в различных отраслях промышленности и сельского хозяйства. Также, одним из главных потребителей карбонатных пород выступает строительная отрасль. Используется для отделки фасадов (Рис. 5), для изготовления разнообразных герметиков, шпаклевочных и штукатурных смесей. Общее количество разведанных запасов карбонатного сырья, учтенных различными балансами запасов России, в настоящее время превышает 60 млрд. т, разведано более 1900 месторождений, разрабатывается около 570.

Кремнистые породы (диатомиты, трепелы, опоки) благодаря наличию в их составе аморфной активной кремнекислоты обладают рядом очень ценных свойств: тонкопористой структурой, сравнительно малой объемной массой и теплопроводностью. Совокупность указанных свойств предопределяет их эффективное использование в производстве строительных материалов (Рис. 6) и в частности при производстве керамических изделий. Опыт показывает, что использование кремнистых и глинистых пород в смеси с углесодержащими отходами позволяет значительно улучшить физико-механические свойства керамики за счет создания в процессе обжига восстановительной среды и перехода трехвалентного железа в более легкоплавкое двухвалентное, что обеспечивает более интенсивное спекание при снижении температуры на 100 - 1500С.

Заключение

Цель данной курсовой работы заключалась в том, чтобы исследовать такой вид осадочных горных пород, как органогенный. Поставленная цель достигнута - рассмотрены происхождение, состав и особенности, а так же главные месторождения в Краснодарском крае.

Не смотря на многообразие органогенных горных пород в работе присутствуют самые распространенные и наиболее важные.

Более трёх четвертей площади материков покрыто осадочными породами, поэтому с ними наиболее часто приходится иметь дело при геологических работах. Кроме того, с осадочными породами связана подавляющая часть разрабатываемых месторождений полезных ископаемых, в том числе нефти и газа. В них хорошо сохранились остатки вымерших организмов, по которым можно проследить историю развития Земли. Также органогенные горные породы нашли широкое применение во многих отраслях промышленности, строительстве и сельском хозяйстве.

На основе проделанной работы можно подвести итог, что органогенные горные породы используемые человеком обладают уникальными и полезными свойствами, которые делают эти породы актуальными и на сегодняшний день.

Список литературы

осадочный горный нефтяной органогенный

1. Кузнецов В.Г. Литология. Осадочные горные породы и их изучение. - М.: Недрабизнесцентр, 2007.

2. Соколовский А.К., Корсаков А.К., Федчук В.Я. и др. Общая геология. М.:КДУ, 2006.

3. Красильщиков Я.С. Основы геологии, поисков и разведки месторождений полезных ископаемых. - М.: Недра, 1987.

4. Шванов В.Н., Фролов В.Т., Сергеева Э.И. и др. Систематика и классификации осадочных пород и их аналогов. СПб.: Недра, 1998.

Химические осадочные породы образуются путем выпадения из водных растворов химических осадков. К этим породам относятся: различные известняки, известковый туф, доломит, ангидрит, гипс, каменная соль и др. Общей особенностью являются их растворимость в воде и трещиноватость.

Органогенные осадочные породы образуются в результате накопления и преобразования остатков животного мира и растений, отличаются значительной пористостью, растворяются в воде. К органогенным породам относятся: известняк-ракушечник, диатомит и др.

Подавляющее большинство пород этих двух групп имеют смешанное (биохимическое) происхождение.

Группы химических и органогенных пород обычно делятся на подгруппы по составу:

    карбонатные,

    кремнистые,

    железистые,

    галоидные,

    сернокислые,

    фосфатные и др.

Особо выделяются горючие породы, или каустобиолиты .

Карбонатные породы

Известняк – порода, состоящая из минерала кальцита. Он определяется по бурно протекающей реакции с HСl. Цвет белый, желтоватый, серый, черный. Известняки бывают органогенного и химического происхождения.

Органогенные известняки состоят из остатков организмов, которые редко сохраняются полностью, чаще они раздроблены а также изменены последующими процессами. Если известняк состоит из целых раковин, его называют известняк-ракушечник, а если из битых – детритусовый известняк.

Разновидностью органогенного известняка является мел , состоящий главным образом из мельчайших раковин фораминифер, порошковатого кальцита и панцирей простейших микроскопических морских водорослей. Мел – белая землистая порода, широко использующаяся в качестве сырья для портландцемента, побелочного материала и пишущего мела.

Известняки химического происхождения встречаются в виде плотных тонкозернистых масс:

    оолитовые известняки – скопления мелких шариков скорлуповатого или радиально-лучистого строения, соединенных известковым цементом;

    известковый туф (травертин) – сильнопористая порода, образующаяся в местах выхода на земную поверхность богатых растворенной двууглекислой известью подземных вод, из которых при улетучивании углекислоты или при остывании воды быстро выпадает избыток растворенного углекислого кальция;

Натечные образования кальцита – сталактиты, сталагмиты (рис. 9).

Известняки применяются в качестве строительного материала, удобрения, в цементной промышленности, в металлургии (в качестве флюса).

Доломит CaMg(CO 3) 2 состоит из минерала того же названия. Внешне похож на известняк, отличается от него реакцией с соляной кислотой (реагирует в порошке), желтовато-белым, иногда буроватым цветом, большей твердостью (3,4–4). Доломиты образуются в морских бассейнах главным образом как вторичные продукты за счет известняков: растворенный в воде магний взаимодействует и вступает в соединение с кальцитом известняка. Этот процесс, называемый доломитизацией, ведет к полному уничтожению органических остатков. Для доломитов не типична тонкая слоистость; они часто слагают мощные скальные утесы. Доломиты применяются в качестве флюса, огнеупора и для удобрений.

Мергель – известково-глинистая порода, состоящая из кальцита и глинистых частиц (30–50 %). Цвет ее палево-желтый, коричневато-желтый, белый, серый. Внешне мергель мало отличим от известняка; распознается он по характеру реакции с соляной кислотой, от капли которой на поверхности мергеля остается грязно-сырое или обеленное пятно, обусловленное концентрацией на ме­сте реакции глинистых частиц. Образуется мергель в морях и озерах (рис. 10).

Kpe мнистые породы

Они могут быть и химического (кремнистый туф), и органогенного происхождения (кремень, диатомит, опока).

Кремнистый туф (гейзерит) состоит из пористой (реже плотной) массы опала. Цвет породы светлый, иногда пестрый. Образуется туф при выходе на поверхность горячих источников, в воде которых растворен кремнезем.

Кремень – тонкозернистый пятнистый или полосчатый агрегат халцедона, скрытокристаллической разновидности кварца. Образуется из распавшихся скелетных остатков кремневых организмов, то есть из геля кремнезема, который, постепенно теряя воду и уплотняясь, превращается в опал и затем в халцедон. Часто содержит включения органических остатков. Цвет преимущественно серый до черного или бурый, встречается в виде конкреций (желваков) в меловых известняках, никогда не образуя связных пластов . В каменном веке кремень благодаря высокой твердости (равной 7) служил важным материалом для изготовления оружия и орудий труда. В настоящее время используется как шлифовальный и полировальный материал.

Диатомит – пористая, легкая, белая, светло-желтая рыхлая или сцементированная порода, легко растирается в тонкий порошок, жадно поглощает воду. Состоит из мельчайших опаловых скорлупок диатомовых водорослей, скелетов радиолярий и игл губок, встречаются зерна кварца, глауконита, глинистых минералов. Применяется как фильтрующий материал и для получения жидкого стекла. Образуется диатомит из диатомового ила, находящегося на дне озер и морей.

Опока кремнистая, пористая порода белого, серого, черного цвета, обладающая часто раковистым изломом. Наиболее твердые ее разновидности при ударе раскалываются с характерным звенящим звуком. Она состоит из зернышек опала и незначительной примеси остатков кремневых скелетов организмов, сцементированных кремнистым веществом.

Железистые породы

Среди пород этой подгруппы наиболее распространены сидерит (FeCO 3 – железный шпат) и лимонит.

Лимонит – механическая смесь гидроокисла железа с песчаным или глинистым материалом. По внешнему виду это чаще всего бобовые (оолитовые) или натечные массы. Цвет желтый, бурый, накапливается в болотах и озерах, поэтому часто называется болотной или озерной рудой.

Галоидные породы

Из галоидных пород наиболее распространена каменная соль , состоящая из минерала галита (NaCl), в природе она обычно окрашена в серый, рыже-желтоватый или красноватый цвет. Каменная соль обычно залегает слоями, имеет крупнозернистую структуру и блестит на солнце. Треть всей добываемой соли идет в пищу людям и животным, остальная часть используется в промышленности, для технических целей. В месторождении слои каменной соли нередко чередуются со слоями сильвина (KCl).

Сернокислые породы

Наиболее широко распространены гипс и ангидрит . Они образуются при выпадении из водных растворов в мелководных озерах, лагунах засушливых зон, где благодаря интенсивному испарению возникают перенасыщенные растворы.

Галоидные и сернокислые соли залегают обычно в виде пластов среди глинистых пород; последние их предохраняют от растворения подземными водами.

Гипс (CaSO 4 ∙ 2H 2 O) белого цвета или слегка тонированный; крупнозернистый или волокнистый, с шелковистым блеском. От сходного ангидрита, имеющего твердость 3–4, отличается более низкой твердостью, равной 1,5–2. Широко применяется в строительстве. Путем обжига гипса из него удаляется 75 % кристаллизационной воды, но если к обожженному строительному гипсу добавить воду, то он быстро вновь поглощает ее, восстанавливая свое первоначальное водосодержание, что сопровождается увеличением объема. На этом основывается техническое использование гипса в качестве цемента и вяжущего материала.

Ангидрит (CaSO 4) – так называется как сама соляная порода, так и минерал, слагающий ее, похожа на каменную соль, белесовато-серого, желтоватого, голубоватого цвета, но имеет мелкозернистую структуру и не обладает соленым вкусом. Применяется в производстве минеральных удобрений и в строительстве. Ангидритовые слои представляют опасность при строительстве туннелей, так как при поступлении воды они чрезвычайно сильно разбухают и вследствие этого могут сдавить стены туннеля.

Фосфатные породы

К ним относятся многие осадочные породы, обогащенные кальциевыми солями фосфорной кислоты с содержанием Р 2 О 5 до 12–40 % и более. Фосфаты кальция представлены чаще апатитом .

В составе фосфоритов наблюдаются примеси кварца, кальцита, глауконита, остатки радиолярий, диатомей и других органических веществ. Фосфатные породы встречаются в виде конкреций и пластов. Образуются они как хемогенным, так и биогенным путем в морях и на континентах (в озерах, болотах, пещерах). В морях фосфориты возникают при выпадении химического осадка на глубинах от 50 до 150 м. Цвет фосфоритов серый, темно-серый, черный. Применяются как сырье для удобрения (суперфосфат) и получения фосфора.

Каустобиолиты

Это большая группа горючих углеродистых пород органического состава и органогенного происхождения, и потому, согласно строгому определению, не являются настоящими горными породами. Но, с другой стороны, они представляют собой составную часть твердой земной коры и частично бывают изменены в такой степени, что их органическую природу уже невозможно установить, а потому их причисляют к осадочным породам.

Каустобиолиты возникают путем углефикации скоплений растительного материала. Процесс углефикации состоит в постепенном повышении относительного содержания углерода в органическом веществе вследствие его обеднения кислородом (и в меньшей мере водородом). Повышенные давления и температуры, связанные с горообразующими и вулканическими процессами, вызывают диагенетические и метаморфические преобразования углей.

Каустобиолиты бывают твердыми (торф, бурый уголь, каменный уголь, антрацит, графит, горючие сланцы, асфальт, озокерит), жидкими (нефть) и газообразными (горючие газы). Свойства твердых каустобиолитов приведены в табл. 8.

Таблица 8

Свойства твердых каустобиолитов

Каустобиолиты

Плотность, г/см 3

Теплотворная

способность

(без блеска)

1500–2000 кал

(6280–8374 Дж)

Бурый уголь

Буровато-черный

2000–7000 кал

(8374–29 308 Дж)

Каменный уголь

7000–8500 кал

(29308–35588 Дж)

Антрацит

металловидный

8500–9000 кал

(35588–37681 Дж)

Металлический

Торф состоит из полуразложившихся болотных и древесных растительных остатков, содержащих в своем составе углерод (35–59 %), водород (6 %), кислород (33 %), азот (2,3 %). Торф – рыхлая, буровато-коричневая или черная порода. В зависимости от того, из каких растительных остатков состоит торф, различают сфагновый, осоковый и тростниковый торф. В сыром виде торф содержит до 85–90 % воды, при высушивании его до воздушно-сухого состояния в нем остается еще до 25 % воды. Торф используется для приготовления удобрений и технического воска.

Бурый уголь содержит 67–78 % углерода, 5 % водорода и 17–26 % кислорода. Это плотная темно-бурая или черная масса с землистым изломом, матовым блеском, черта темно-бурая. Твердость 1–1,5; плотность 1,2 г/см 3 . В составе бурых углей имеются примеси глинистых минералов, обусловливающие их высокую зольность.

Каменный уголь содержит углерода до 82–85 %. Порода черного цвета, плотная, блеск матовый, черта черная. Твердость от 0,5 до 2,5; плотность 1,1–1,8 г/см 3 .

Антрацит содержит углерода 92–97 %. Это твердая хрупкая порода серовато-черного цвета с сильным полуметаллическим блеском. Излом зернистый, раковистый. Твердость 2,0–2,5; плотность антрацита 1,3–1,7 г/см 3 . Цвет черты светло-черный. Образуется при высоких давлении и температуре (не ниже 300 °С).

Графит – кристаллический углерод; это высокометаморфизованный уголь, но он может иметь и неорганическое происхождение.

Горючие сланцы – сланцеватые, глинистые или мергелистые породы, в состав которых входит органическое вещество в виде рассеянного сапропеля (гнилостного ила). Горючие сланцы тонкослоисты, обладают темно-серым или бурым цветом; образовались они в процессе накопления отмерших микроводорослей и планктона. Применяются в качестве местного топлива и для получения жидких и газообразных летучих веществ, из которых получают нефтепродукты, газ, серу, олифу, дубильные экстракты, краски, ядохимикаты для защиты растений.

Нефть представляет собой смесь жидких и газообразных углеводородов. На долю других элементов (азота, кислорода, серы и др.) приходится 1–2 %. По внешнему виду это маслянистая жидкость, цвет изменяется от почти белого, желтого до темно-коричневого; соответственно меняется и плотность – от 0,76 до 1,0 г/см 3 . Лишь асфальтовые нефти имеют несколько большую плотность.

Янтарь (C 10 H 16 О) – затвердевшая смола хвойных деревьев, произраставших 25–30 млн. лет назад. Янтарь аморфен. Цвет его белый, желтый, коричневатый. Твердость 2–2,5. Прозрачен или просвечивает. Блеск жирный или матовый. Плотность 1,05–1,1 г/см 3 , плавится при температуре 300 °С. Горит, выделяя приятный запах. При трении легко электризуется. Встречается в виде глыб среди песчаных пород. Применяется в ювелирной промышленности и в отдельных медицинских препарата.

Основные осадочные породы органического и химического происхождения приведены в табл. 9.

Таблица 9

Основные породы органического и химического происхождения

Название

подгрупп

Органогенные породы

Хемогенные породы

Карбонатные

известняк коралловый, изве­стняк-ракушечник, известняк детритусовый, мел, мергель

известняк плотный, известняк оолитовый, известковый туф, натечный известняк, доломит, сидерит, мергель

Кремнистые

диатомит, опока

трепел, кремнистые туфы, кремень

Железистые

Галоидные

каменная соль

Сернокислые

гипс, ангидрит

Алюминиевые

Фосфатные

фосфориты

Каустобиолиты

торф, ископаемые угли, горючие сланцы, нефть, асфальт, озокерит, янтарь

Главнейшие осадочные породы органического и химического происхождения

Классификация осадочных обломочных (терригенных) пород

Тема лекции: Cтроение и состав Земли. Земля в космическом пространстве. Форма и размеры Земли. Внутреннее строение Земли. Химический и минœеральный состав недр Земли. Физические поля Земли. Строение и состав земной коры. Вещественный состав земной коры. Минœералы. Горные породы.

Земля является одним из бесчисленных небесных тел, рассеянных в безграничном пространстве Вселœенной. Общее представление о положении Земли в мировом пространстве и отношении ее с другими космическими телами необходимы и для курса геологии, так как многие процессы, совершающиеся на поверхности и в глубоких недрах земного шара, тесным образом связаны с влиянием внешней среды, окружающей нашу планету. Познание Вселœенной, изучение состояния различных тел и протекающих на них процессов проливает свет на проблемы происхождения Земли и ранние стадии ее развития. Вселœенная - ϶ᴛᴏ весь мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в своем развитии. Вселœенная состоит из бесчисленного множества тел, весьма различных по своему строению и размеру. Различают следующие основные формы космических тел: звезды, планеты, межзвездная материя. Звезды представляет собой крупные активны.е космические тела. Радиус крупных звезд может достигать миллиарда километров, а температура даже на поверхности – многих десятков тысяч градусов. Планеты – сравнительно небольшие по размеру космические тела, как правило, холодные и обычно являющийся спутниками звезд. Пространство между космическими телами заполнены межзвездной материей (газы, пыль). Космические тела группируется в системы, в пределах которых они связаны между собой силами тяготения. Простейшая система – Земля со своим спутником Луной, образует систему более высокого порядка – Солнечную систему. Еще более сложным строением характеризуется скопления космических тел высшего порядка – галактики. Примером такой системы может служить галактика Млечный путь, в состав который входит Солнечная система. По форме наша галактика напоминает двояковыпуклую линзу, а в плане представляет собой яркое сгущение звезд в ядре со спиралевидными звездными потоками.

Строение Солнечной системы. Наша Солнечная система включает, кроме центрального светила – Солнца, девять планет, их спутники, астероиды и кометы. Солнце – звезда, раскаленный плазменный шар, типичный ʼʼжелтый карликʼʼ, находящийся на средней стадии звездной эволюции. Расположено Солнце в пределах одной из спиральных ветвей нашей Галактики и обращается вокруг центра Галактик с периодом около 200 миллион лет. Температура внутри Солнца достигает нескольких миллионов лет. Источником энергии Солнца является термоядерные превращения водорода в гелий. Спектральное изучение Солнца позволило выделить в его составе 70 элементов, известных на Земле. Солнце состоит на 70 % из водорода, 27% из гелия, на долю остальных элементов остается около 3 %. В Солнце сосредоточено 99,886 % всœей массы Солнечней системы. Солнце оказывает огромное влияние на Землю, на земную жизнь, ее геологическое развитие. Наша планета – Земля отстоит от Солнца на 149600000 км. Планеты вокруг Солнца располагаются в следующем порядке: четыре внутренних - Меркурий, Венера, Земля и Марс (планеты земной группы) и пять внешних – Юпитер, Сатурн, Уран, Нептун, Плутон. Между Марсом и Юпитером находится пояс астероидов – несколько тысяч мелких твердых тел. Для геологов представляют интерес четыре внутренние планеты, которые характеризуются небольшими размерами, высокой плотностью, небольшой массой. Эти планеты по размерам, составу и внутреннему строению наиболее близки нашей Земле. По современным представлениям тела Солнечной системы формировались из первично холодной космической твердой и газообразной материи путем уплотнения и сгущения до образования Солнца из центральной части. Из частиц окружающей газово-пылевой материи в результате аккреции сформировались планеты обращающиеся по орбитам вокруг Солнца.

Общая характеристика Земли. Форма и размеры Земли. Под фигурой, или формой Земли, понимают форму ее твердого тела, образованную поверхностью материков и дном морей и океанов Геодезические измерения показали, что упрощенная форма Земли приближается к эллипсоиду вращения (сфероиду). Действительное форма Земли является более сложной, так как на ее поверхности имеется много неровностей. Наиболее близкой к современной фигуре Земли является фигура, по отношению к поверхности которой сила тяжести повсœеместно направлено перпендикулярно. Она названа геоидом, что дословно означает ʼʼземлеподобныйʼʼ. Поверхность геоида в морях и океанах соответствует поверхности воды, а на континœентах – уровню воды в воображаемых каналах, пересекающих всœе материки и сообщающихся с Мировым океаном. Поверхность геоида приближается к поверхности сфероида, отклонясь от него примерно на 100м, на материках она немного повышается по отношению к поверхности сфероида, а в океанах - понижается. Измерения размеров Земли показали следующее: экваториальный радиус-6378,2км; полярный радиус-6356,8км; средний радиус Земли-6371км; полярное сжатие- 1/298; площадь поверхности- 510 млн. км кв; объём Земли-1, 083млрд. км куб; масса Земли-6*10 21 т; средняя плотность-5, 52 г/см 3

Физические свойства Земли. Земля обладает определœенными физическими свойствами. В результате их изучения выявлены общие особенности строения Земли и можно установить в ее недрах наличие полезных ископаемых. К физическим свойствам Земли относятся сила тяжести, плотность, давление, магнитные, тепловые, упругие, электрические и другие свойства. Сила тяжести, плотность, давление. На Земле постоянно действуют сила притяжения и центробежная сила. Равнодействующая этих сил определяет силу тяжести. Сила тяжести меняется как по горизонтали, увеличиваясь от экватора к полюсам, так и по вертикали, уменьшаясь с высотой. В связи с неравномерным распределœением вещества земной коре действительное значение силы тяжести отклоняются от нормальной. Эти отклонения получали название аномалий силы тяжести. Οʜᴎ бывают положительными (при наличии более плотных горных пород) или отрицательными (при распространении менее плотных пород). Изучение аномалий сил тяжести ведется с помощью гравиметров. Отрасль прикладной геофизики, которая изучает аномалии силы тяжести с целью выявления в недрах полезных ископаемых или благоприятных геологических структур принято называть гравиразведкой. По гравиметрическим данным, средняя плотность Земли составляет 5,52 г/см 3 .Плотность пород, слагающих земную кору, от 2,0 до 3,0 г/см 3 .Средняя плотность земной коры 2,8 г/см 3 . Различие между средней плотностью Земли и земной коры указывает на более плотное состояние вещества во внутренних частях Земли, достигая в ядре порядка 12,0 г/см 3 . Одновременно с увеличением плотности в направлении к центру Земли возрастает и давление. В центре Земли давление достигает 3,5 млн.атм. Магнетизм Земли. Земля представляет собой гигантский магнит с силовым полем вокруᴦ. Магнитные полюса Земли в настоящее время расположены вблизи географических полюсов, но не совпадает с ними. Различают магнитное склонение и магнитное наклонение. Магнитным склонением принято называть угол отклонения магнитной стрелки компаса от географического меридиана. Склонение должна быть западным и восточным. Магнитное наклонение определяется углом наклона магнитной стрелки к горизонту. Наибольшее наклонение наблюдается в районе магнитных полюсов. На общий фон магнитного поля накладывается влияние горных пород, содержащих ферромагнитные минœералы (магнетит и некоторые другие), благодаря чему на поверхности Земли возникают магнитные аномалии. Выявлением таких аномалий с целью поисков желœезных руд занимается магниторазведка. Исследования показали, что горные породы содержащие ферромагнитные минœералы, обладают остаточный намагниченностью сохраняющей направление магнитного поля времени и места их образования. Палеомагнитные данные используются для восстановления особенностей магнитного поля древних эпох, а также для решения задач геохронологии, стратиграфии, палеогеографии. Οʜᴎ оказали большое влияние на разработку теории тектоники литосферных плит.

Тепло Земли. Тепловой режим Земли обусловлены двумя источниками: тепло, полученное от Солнца; тепло, выделяемое из недр Земли. На поверхности Земли основным источником тепла является Солнце. Прогревание Солнцем распространяется на незначительную глубину не превышающую 30 м. На некоторой глубинœе от поверхности располагается пояс постоянной температуры, равный среднегодовой температуре данной местности. В окрестностях Москвы на глубинœе 20 м от поверхности наблюдается постоянная температура, равная +4,2 0 . Ниже пояса постоянной температуры установлено увеличение температуры с глубиной, связанное с тепловым потоком, поступающим из внутренних частей Земли. Нарастание температуры в градусах Цельсия на единицу глубины принято называть геотермическим градиентом, а интервал глубины в метрах, на котором температура повышается на 1 0 , принято называть геотермической ступенью. Величина геотермической ступени меняется в широких пределах: на Кавказе 12 м, в Эмбенском районе 33м, Карагандинском бассейне 62 м, на Камчатке 2-3 м. В среднем геотермический градиент принимается около 30 0 С на 1км и соответствующее ему геотермическая ступень около 33м. Считают, что геотермическая ступень сохраняется до глубины 20км. Ниже рост температуры замедляется. По расчетом ученых на глубинœе 100 км температура, видимо достигает 1300 0 С. На глубинœе 400км – 1700 0 С, 2900км – 3500 0 С. Источниками внутреннего тепла Земли считают радиоактивный распад элементов, в процессе которого выделяется огромное количество тепла, энергию гравитационной дифференциации вещества, а также остаточное тепло, сохранившееся со времен формирования планеты.

Строение Земли. Земля характеризуется оболочным строением. Оболочки Земли, или геосферы, различаются составом, физическими свойствами, состоянием вещества и подразделяются на внешние, доступные для непосредственного изучения, и внутренние, исследуемые главным образом косвенными методами (геологическими, геофизическими, геохимическими). Внешние сферы Земли – атмосфера, гидросфера и биосфера составляют характерную особенность строения нашей планеты и играют важную роль в формировании и развитии земной коры.Атмосфера – газовая оболочка Земли, играет одну из главных ролей в развитии жизни на Земле и определяет интенсивность геологических процессов на поверхности планеты. Воздушная оболочка нашей планеты, общая масса которой оценивается в 5,3*10 15 m представляет смесь различных газов: азота (78,09%) , кислорода (20,95%), аргона (0,93%) . Вместе с тем, присутствует углекислый газ (0,03%) , водород, гелий, неон и другие газы, а также водяной пар (до 4%) , частицы вулканической, эоловой и космической пыли. Кислород воздуха обеспечивает процессы окисления различных веществ, а также дыхание организмов. В атмосфере имеется озон на высоте 20-30 км. Наличие озона обеспечивает защиту Земли от губительного для жизни воздействия ультрафиолетовых и других излучении Солнце. Углекислый газ и водяные пары служат регулятором температуры, так как конденсирует получаемое Землей тепло. Углекислый газ поступает в воздух в результате разложения организмов и их дыхания, а также при вулканических процессах, расходуется же для питания растений. Воздушные массы атмосферы находятся в постоянном движении под воздействием неравномерного нагревания поверхности Земли в различных широтах, неравномерного нагревания материков и океанов. Воздушные потоки переносят влагу, твердые частицы - пыль, существенно влияют на температуру различных областей Земли. Атмосферу подразделяют на пять базовых слоев: тропосферу, стратосферу, мезосферу, ионосферу и экзосферу. Для геологии наибольшей интерес представляет тропосфера, непосредственно соприкасающаяся с земной поверхностью и оказывающая на нее существенное влияние. Тропосфера характеризуется большой плотностью, постоянным присутствием водяного пара, углекислоты и пыли, постепенным понижением температуры с высотой и существованием вертикальной и горизонтальной циркуляции воздуха.

Гидросфера - прерывистая оболочка Земли, включающая воды океанов, морей, озер и рек, подземные воды и воды, собранные в виде вечных снегов и льда. Основная часть гидросферы-Мировой океан, объединяющий всœе океаны, окраинные и связанные с ними внутриконтинœентальные моря. Количество океанических вод суши 4млн.км 3 , материковых льдов около 22 млн.км 3 , подземных вод 196 млн. км 3 . Гидросфера занимает 70,8% земной поверхности (361 млн.км 2).средняя глубина составляет 3750 м, максимальная глубина приурочена к Марианскому желобу(11022м). Океанические и морские воды характеризуются определœенным химическим составом и соленостью. Нормальная соленость вод Мирового океана составляет 3,5% (35 г солей на 1 л воды). Воды океана содержат почти всœе известные химические элементы. Подсчитано, что общее количество солей растворенных в воде Мирового океана, составляет 5*10 16 m. Карбонаты, кремнезем широко извлекаются из воды морскими организмами на построение скелœетных частей. По этой причине солевой состав океанических вод резко отличается от состава речных вод. В океанических водах преобладают хлориды (88,7%) - NaCl, MgCl 2 и сульфаты (10,8%) , а в речных водах карбонаты (60,1%) - CaCO 3 и сульфаты(9,9%). Кроме солей в воде растворены и некоторые газы –главным образом азот, кислород, углекислый газ. Воды гидросферы совместно с растворенными в ней веществами активно участвует в химических реакциях, протекающих в гидросфере, а также при взаимодействии с атмосферой, земной корой и биосферой. Гидросфера, как и атмосфера, является действующей силой и средой экзогенных геологических процессов. Мировой океан играет огромную роль в жизни, как всœей планеты, так и человечества. В океане и в его недрах находятся огромные запасы минœеральных ресурсов, которые во всœе большем объёме привлекаются для нужд человечества (нефть, химическое сырье и др). Воды океанов подвергаются загрязнению нефтью и нефтепродуктами, радиоактивными и бытовыми отходами. Это обстоятельство приобретает угрожающие размеры и требует безотлагательного решения.

Биосфера. Биосферой называют область распространения жизни на Земле. Современная биосфера включает в себе всю гидросферу, верхнюю часть атмосферы (тропосферу). Ниже почвенного слоя живые организмы встречаются в глубоких трещинах, подземных водах, иногда в нефтеносных слоях на глубинœе в тысячи метров. В состав живых организмов входят не менее 60 элементов и главными из них являются C, O, H, S, P, K, Fe и некоторые другие. Живая масса биосферы в пересчете на сухое вещество составляет около 10 15 т. Основная масса живого вещества сосредоточена в зелœеных растениях, способных аккумулировать солнечную энергию благодаря фотосинтезу. С химической точки зрения фотосинтез – окислительно- восстановительная реакция CO 2 + H 2 O->CH 2 O + O 2 , в результате который за счёт поглощения углекислоты и воды синтезируется органическое вещество и выделяется свободный кислород. Биосфере принадлежит большая роль в энергетике Земли. За миллионы лет биосфера накопила в недрах колоссальные запасы энергии – в толщах углей, нефть, скопления горючего газа. Организмы являются важными породообразовательными земной коры.

Внутренние строение Земли. Изучение глубинного строения Земли - одно из главных задач современной геологии. Непосредственному наблюдению доступны лишь самые верхние (до глубин 12 – 15км) горизонты земной коры, выходящие на поверхность или вскрытые рудниками шахтами и буровыми скважинами.

Представления о строении более глубоких зон Земли, основывается главным образом на данных комплексах геофизических методов. Из них особое значение имеет сейсмический (греч. ʼʼсейсмаʼʼ - сотрясения) метод, основанный на регистрации скорости распространения в телœе Земли волн, вызываемых землетрясениями или искусственным взрывами. В очагах землетрясений возникают продольные сейсмические волны, которые рассматриваются как реакция среды на изменения объёма, и поперечные волны, представляющие собой реакцию среды на изменения формы и в связи с этим распространяющиеся только в твердых телах. Сегодня имеющиеся данные подтверждают сферически – симметричное строение недр Земли. Еще в 1897 ᴦ. профессор Геттингенского университета Э. Вихерт высказал мысль об оболочечном строением Земли, которая состоит из желœезного ядра, каменной мантии и земной коры. В 1910 ᴦ. югославский геофизик А. Мохоровичич, изучая особенности распространения сейсмических волн при землетрясении в районе города Загреб, установил на глубинœе 50 км поверхность раздела между корой и мантией. В дальнейшем эта поверхность была выявлена на различных глубинах, но всœегда прослеживались четко. Ей дали название ʼʼповерхность Мохоровичичаʼʼ, или Мохо (М). 1914 г немецкий геофизик Б. Гуттенберг установил границу раздела ядра и мантии на глубинœе 2900км. Она получила название поверхности Вихерта – Гуттенберга. Датский ученный И. Леман в 1936ᴦ. обосновала существование внутреннего ядра Земли радиусом 1250км. Весь комплекс современных геолого-геофизических данных подтверждает идею об оболочечном строением Земли. Чтобы правильно понять главнейшие особенности этого строения, геофизики строят специальные модели. Известный геофизик В.Н. Жарков характеризует модель Земли: это ʼʼкак бы разрез нашей планеты, на котором показано, как меняется с глубиной такие важнейшие ее параметры, как плотность, давление, ускорение силы тяжести, скорости сейсмических волн, температура, электропроводность и другиеʼʼ (Жарков, 1983, с. 153). Наиболее распространена модель Буллена – Гуттенберга.

Земная кора – твердая верхняя оболочка Земли. Ее толщина изменяется от 5-12 км под водами океанов, до 30-40 км в равнинных областях и до 50-750км в горных районах. Мантия Земли распространяется до глубины 2900 км. Она подразделяется на две части: верхнюю до глубины 670 км и нижнюю до 2900 км. Сейсмическим методом в верхней мантии установлен слой в катором наблюдается понижение скорости сейсмических волн, особенно поперечных, и повышение электропроводности, что свидетельствует о состоянии вещества, отличающегося от выше- и нижелœежащих слоев. Особенности этого слоя, получившего название астеносфера (греч.астянос-слабый) объясняется его плавлением в пределах 1-2 до 10%, происходящим в результате более быстрого повышения температуры с глубиной, чем повышения давления. Астеносферный слой расположен блихе всœего к поверхности под океанами, от 10-20 км до 80-200км, от 80 до 400 км под континœентами. Земная кора и часть верхней мантии над астеносферой носит название литосфера. Литосфера холодная, в связи с этим она жесткая и может выдержать большие нагрузки. Нижняя мантия характеризуется дальнейшим увеличением плотности вещества и плавным нарастанием скорости сейсмических волн. Ядро занимает центральную часть Земли. В его составе выделяют внешнее ядро, переходную оболочку и внутреннее ядро. Внешнее ядро состоит из вещества нахлдящегося в расплавлено-жидком состоянии. Внутреннее ядро занимает сердцевину нашей планеты. В пределах внутреннего ядра скорости продольных и поперечных волн возрастает, что свидетельствует о твердом состоянии вещества. Внутреннее ядро состоит из сплава желœеза с никелœем.

Состав и строение земной коры. Наиболее достоверные сведения имеются о химическом составе самой верхней части земной коры, доступной для непосредственного анализа(до глубины 16-20 км). Первые цифры о химическом составе земной коры были опубликованы в 1889 ᴦ. американским ученым Ф.Кларком. Впоследствии А.Е.Ферсман предложил называть процентное содержание элемента в земной коре кларком этого элемента. По данным А.Б.Ронова и А.А.Ярошевского (1976 ᴦ.), в составе земной коры наиболее распространены восœемь элементов (в весовых %), составляющих в сумме свыше 98 %: кислород-46,50; кремний-25,70; алюминий-7,65; желœезо-6,24; кальций-5,79; магний-3,23; натрий-1,81; калий-1,34. По особеннстям геологического строения, геофизической характеристике и составу земная кора делится на три базовых типа: континœентальную, океанскую и промежуточную. Континœентальная состоит из осадочного слоя толщиной 20-25 км, гранитного (гранитно-метаморфического) толщиной до 30 км и базальтового толщиной до 40 км. Океанская кора состоит из первого осадочного слоя толщиной до 1 км, второй-базальтовый толщиной 1,5-2,0 км и третий-габбро-серпентинитовый толщиной 5-6 км. Вещество земной коры состоит из минœералов и горных пород. Горные породы состоят из минœералов или продуктов их разрушения. Горные породы, содержащие полезные компоненты и отдельные минœералы, извлечениекоторых экономически целœесообразно, называют полезными ископаемыми.

Основная литература: 1

Контрольные вопросы:

1 Происхождение Солнечной системы.

2 Форма и размеры Земли.

3 Физические поля Земли.

4 Внутреннее строение Земли.

5 Строение и состав земной коры.

3 Тема лекции: Горные породы как вместилище нефти и газа . Горная порода - ϶ᴛᴏ природное, чаще всœего, твердое тело, состоящее из одного (известняк, ангидрит) или нескольких минœералов (песчаник полимиктовый, гранит). Иными словами это естественная природная ассоциация минœералов. Все горные породы по происхождению (генезису) подразделяются на три больших класса: магматические, метаморфические и осадочные.

Магматические горные породы образовались в результате внедрения магмы (силикатного расплава) в земную кору и затвердевания последней в ней (интрузивные магматические горные породы) или излияния лавы (силикатного расплава) на дно морей, океанов или земную поверхность (эффузивные магматические горные породы). И лава и магма изначально - ϶ᴛᴏ силикатные расплавы внутренних сфер Земли. Магма, внедрясь в земную кору, затвердевает в ней неизмененной, а лава, изливаясь на поверхность Земли или на дно морей и океанов, теряет растворенные в ней газы, пары воды и некоторые другие компоненты. В силу этого интрузивные магматические горные породы по своему составу, структуре и текстуре резко отличаются от эффузивных. Примером наиболее распространенных магматических горных пород могут служить гранит (интрузивная порода) и базальт (эффузивная порода).

Метаморфические горные породы образовались в результате коренного преобразования (метаморфизма) всœех других ранее существовавших горных пород под влиянием высоких температур, давлений и нередко с привносом в них или выносом из них отдельных химических элементов. Типичными представителями метаморфических горных пород являются мрамор (образовавшийся из известняка), различные сланцы и гнейсы (образовавшиеся из глинистых осадочных пород).

Осадочные горные породы образовались за счёт разрушения других, ранее слагавших земную поверхность, пород и осаждения этих минœеральных веществ в основном в водной, реже воздушной среде в результате проявления экзогенных (поверхностных) геологических процессов. Осадочные горные породы по способу (условиям) их образования подразделяются на три группы: осадочные обломочные (терригенные), органогенные и хемогенные.

Осадочные обломочные (терригенные) горные породы сложены обломками ранее существовавших минœералов и горных пород (таблица 1). Органогенные горные породы состоят из остатков (скелœетов) живых организмов и продуктов их жизнедеятельности (биологический путь образования) Хемогенные осадочные горные породы сформировались в результате выпадения химических элементов или минœералов из водных растворов (таблица 2). Типичными представителями осадочных обломочных пород являются песчаники и алевролиты, осадочных органогенных - различного типа органогенные известняки, мел, угли, горючие сланцы, нефть, осадочных хемогенных - каменная соль, гипс, ангидрит. Для геолога-нефтяника осадочные горные породы выступают главенствующими, так как они не только вмещают 99,9% мировых запасов нефти и газа, а и согласно органической теории происхождения нефти и газа, являются генераторами этих углеводородов. Осадочные горные породы слагают верхний осадочный слой земной коры, который распространен по площади Земли не повсœеместно, а только в пределах, так называемых, плит, которые входят в состав платформ – крупных стабильных участков земной коры, межгорных впадин и предгорных прогибов. Толщина осадочных пород колеблется в широких пределах от первых метров до 22-24 км в центре Прикаспийской впадины, расположенной в Западном Казахстане. Осадочный слой в нефтяной геологии принято называть осадочным чехлом. Под осадочным чехлом располагается нижний структурный этаж, именуемый фундаментом. Фундамент сложен магматическими и метаморфическими горными породами. Породы фундамента содержат всœего 0,1 % мировых запасов нефти и газа. Нефть и газ в земной коре заполняют мельчайшие и мелкие поры, трещины, каверны горной породы, подобно тому как вода насыщает губку. Следовательно, чтобы порода содержала нефть, газ и воду она должна быть качественно отличной от пород не содержащих флюидов, ᴛ.ᴇ. она должна иметь поры, трещины или каверны, должна быть пористой. Сегодня чаще всœего промышленные скопления нефти и газа содержат осадочные обломочные (терригенные) горные породы, затем идут карбонатные породы органогенного генезиса и, наконец, карбонаты хемогенные (оолитовые и трещиноватые известняки и мергели). В земной коре пористые горные породы, вмещающие нефть и газ, должны переслаиваться с качественно иными породами, которые не содержат флюидов, а выполняют функцию изоляторов нефтегазонасыщенных тел. В таблицах 1 и 2 показаны литофации горных пород, вмещающих нефть и газ и служащих флюидоупорами.

Таблица 1

Группа пород Размеры обломков, мм Рыхлые породы Сцементированные породы
Окатанные Обломки Неокатанные обломки Окатанные обломки Неокатанные обломки
Грубообломочные (псефиты) Крупные > 200 Валуны глыбы валунные конгломераты глыбовые брекчии
Средние 200-10 галька (галечник) щебень галечный конгломерат брекчия
Мелкие 10-2 Гравий бывает нефтегазонасы-щенным дресва бывает нефтегазонасы-щенной гравелиты бывают нефтегазонасыщенные (гравийные конгломераты)
Песчаные (псаммиты) 2-1 Пески грубозернистые очень часто бывают нефтегазонасыщенные Песчаники грубозернистые очень часто бывают нефтегазонасыщенные
1-0,5 Пески крупнозернистые очень часто бывают нефтегазонасыщенные Песчаники крупнозернистые очень часто бывают нефтегазонасыщенные
0,5-0,25 Пески среднезернистые очень часто бывают нефтегазонасыщенные Песчаники среднезернистые очень часто бывают нефтегазонасыщенные
0,25-0,1 Пески мелкозернистые очень часто бывают нефтегазонасыщенные Песчаники мелкозернистые очень часто бывают нефтегазонасыщенные
Алевритовые породы (алевриты) 0,1-0,01 алеврит (лесс, супесь, суглинок) часто бывает нефтегазонасыщенный алевролит часто нефтегазонасыщенный
Глинистые породы (Пелиты) < 0,01 глина (физическая) не бывает нефтегазонасыщенной (флюидоупор) аргиллит не бывает нефтегазонасыщенный (флюидоупор)

Таблица 2.

Группа пород Органогенные породы Хемогенные породы
Карбонатные известняк коралловый – (СaCO 3) (очень часто нефтегазонасыщенный) известняк-ракушечник – (СaCO 3) (очень часто нефтегазонасыщенный) известяк детритусовый – (СaCO 3) (очень часто нефтегазонасыщенный) Мел (как правило, не бывает очень часто нефтегазонасыщенным) Мергель (редко трещиноватый нефтегазонасыщенный) известняк плотный известняк оолитовый (очень часто бывает нефтегазонасыщенным) известковый туф натечный известняк доломит – (СaMgCO 3) 2 (очень часто бывает нефтегазонасыщенным) сидерит мергель (редко трещиноватый бывает нефтегазонасыщенным)
Кремнистые диатомит опока кремнистый туф кремень
Желœезистые - лимонит
Галоидные - каменная соль (самый качественный флюидоупор)
Сернокислые - Гипс CaSO 4 *H 2 O, ангидрит CaSO 4 (как правило флюидоупоры)
Алюминиевые - Боксит
Фосфатные - Фосфорит

Анализ таблицы 1 и 2 показывает, что большинство терригенных пород в природе бывают нефтегазонасыщенными. Следовательно, не случайно то, что впервые нефть и газ были обнаружены в указанных породах и длительный исторический период они добывались из этих пород. И только последние десятилетия двадцатого столетия во многих регионах были обнаружены огромные запасы нефти и газа и в карбонатных толщах. Это, в первую очередь, в коралловых, детритусовых и оолитовых известняках и доломитах. Итак, нефтегазовмещающими породами очень часто бывают следующие литофации обломочных осадочных пород: пески и песчаники, алевролиты и алевриты, гравелиты и гравий. Из группы карбонатных пород нефтегазовмещающими породами служат следующие литофации: известняк коралловый, известняк-ракучешник, детритусовый и оолитовый известняки и доломиты.

Не содержат нефти и газа, а выполняют функцию изоляторов следующие литофации осадочных пород: соль каменная – наиболее качественный флюидоупор, глина, аргиллит (нетрещиноватый), мергель (не трещиноватый), гипс и ангидрит плотные, известняк плотный пелитоморфный, мел и другие крепкие и не трещиноватые горные породы. Отдельные пористые осадочные породы могут содержать промышленные скопления углеводородов только тогда, когда они переслаиваются с породами-изоляторами не содержащими нефти и газа.

Основная литература: 4, 5

Дополнительная литература 11

Контрольные вопросы:

1. Определœение горной породы.

2. На какие группы подразделяются осадочные породы?

3. Какие литофации осадочных пород бывают коллекторами?

4. Какие литофации осадочных пород бывают флюидоупорами?

Главнейшие осадочные породы органического и химического происхождения - понятие и виды. Классификация и особенности категории "Главнейшие осадочные породы органического и химического происхождения" 2017, 2018.

В класс карбонатных пород входят известняки, доломиты, мергели и сидиритовые породы. Между первыми двумя типами существует сравнительно небольшое количество переходных пород.

Классификация пород, переходных между чистыми известняками и доломитами, производится по содержанию в них кальцита и доломита. К группе известняков или доломитов относятся породы, сложенные более чем на 50% одним из этих минералов.

Среди пород, переходных между чистыми известняками и доломитами, выделяют доломитистые и доломитовые известняки, известковые и известковистые доломиты.

В карбонатных породах обычно наблюдается значительная примесь песчаных и глинистых частиц. Чистые известняки и доломиты содержат примесь других минералов в количестве не более 5%.

Некоторые доломиты содержат значительную примесь гипса и ангидрита. Такие породы обычно называются сульфатно-доломитовыми. Наблюдается также переходы между карбонатными и кремнистыми породами.

Породы промежуточные между глинами и чистыми карбонатными породами, называются мергелями.

Схема классификации карбонатно-глинистых пород по С.Г Вишнякову иллюстрируется рисунком.

Глины: 1- некарбонатные, 2- известковисто-доломитистые (или доломитисто-известковистые).

Глинистые мергели: 3 - глинистый мергель, 4 - доломитистый глинистый мергель, 5 - известковисто-доломитовый глинистый мергель, 6 - доломитовый глинистый мергель.

Мергели: 7 - типичный, 8 - доломитистый, 9 - известковисто-доломитовый, 10 - доломитовый.

Известняки: 11 - глинистый, 12 - доломитисто-глинистый, 13 - доломитово-глинистый, 14 - чистый, 15 - доломитистый, 16 - доломитовый.

Доломиты: 17 - известково-глинистый, 18 - известковисто-глинистый, 19 - глинистый, 20 - известковый, 21 - известковистый, 22 - чистый.

Минералогический и химический состав

Главными минералами, слагающими карбонатные породы, являются: кальцит, кристаллизующийся в тригональной сингонии, арагонит - ромбическая разновидность СаСО3 и доломит, представляющий собой двойную углекислотную соль кальция и магния (СаСО 3 *MgCO 3). В современных осадках встречаются также порошковатые и коллоидальные разновидности кальцита (дрюит или надсонит, бюглеит и др.).

Определение минерального и химического состава карбонатных пород производится в шлифах, а также при помощи термического и химического анализов и по методу Щербины.

В полевых условиях определяется по реакции с разбавленной HCl. Доломиты вскипают только в порошке.

Теоретический химический состав кальцита и известняка ~ СаО - 56%, СО 2 - 44%, в доломитах - 22-30% СаО и 14-21% MgO.

Естественно, что если в породах присутствует обломочный материал, то резко будет увеличиваться содержание SiO 2 (иногда до 26%).

Главные типы пород

Известняки - окраска известняков разнообразна и определяется, в первую очередь, характером примесей. Чистые известняки окрашены в белый, желтоватый, серый, темно-серый, а иногда и черный цвета.

Важной особенностью известняков является их излом, характер которого определяется строением породы. Очень мелкозернистые известковые породы при слабой связности зерен (например - мел) обладают землистым изломом. Крупнокристаллические - обладают сверкающим изломом, м/з породы - сахаровидным изломом и т.д.

Для известняков можно выделить следующие главные типы структур:

Кристаллическая зернистая структура, среди которой различают несколько разновидностей в зависимости от поперечников зерен: крупнозернистые (размер зерен в поперечнике 0,5мм), среднезернистые (от 0,5 до 0,1мм), мелкозернистые (от 0,10 до 0,05мм), тонкозернистые (от0,05 до 0,01мм) и микрозернистую (меньше 0,01мм) структуры.

Органогенная структура, в которой выделяют три наиболее существенные разновидности:

а). собственно органогенная, когда порода состоит из известковых органических остатков (без признаков их переноса), вкрапленных в т/з карбонатный материал;

б). органогенно-обломочная, когда в породе присутствуют раздробленные и часто окатанные органические остатки, находящиеся среди т/з карбонатного материала;

в). детритусовая, когда порода сложена только раздробленными органическими остатками без заметного количества т/з карбонатных частиц.

Обломочная структура, наблюдается в известняках, образованных путем скопления обломков, возникающих за счет разрушения более древних карбонатных пород. Здесь, также как и в некоторых органических известняках, кроме обломков отчетливо видна известковая цементирующая масса.

Оолитовая структура, характеризующаяся наличием концентрически сложенных оолитов, обычно часто присутствуют обломочные зерна.

Иногда оолиты приобретают радиально-лучистое строение.

Наблюдаются также инкрустационная и крустификационная структуры. В первом случае характерно наличие корок концентрического строения, заполняющих прежние крупные пустоты. Во втором случае наблюдаются нарастания удлиненных кристаллов карбонатов, радиально расположенных относительно обломков или органических остатков, слагающих породу.

В процессе перехода из осадка в породу и окаменения многие известняки подвергаются существенным изменениям. Эти изменения проявляются, в частности, в перекристаллизации, окаменении, доломитизации, ожелезнении и частичном растворении с образованием стиллолитов.

Разновидности известняков

Органогенные известняки

Это одна из наиболее широко распространенных разновидностей. Они сложены раковинами бентонных криноидей, водорослей, кораллов и других донных организмов. Значительно реже известняки возникают за счет скопления раковинок планктонных форм.

Типичными представителями органогенных известняков являются рифовые (биогермные), известняки, состоящие в значительной части из остатков рифообразующих организмов и живущих в сообществе других форм.

Писчий мел.

Является одним из весьма своеобразных представителей известковых пород, резко выделяющихся по своему внешнему виду. Он характеризуется белым цветом, однородностью строения, малой твердостью и мелкозернистостью. Сложен - главным образом карбонатом кальция (доломит отсутствует) при незначительной примеси глинистых и песчаных частиц.

Органические остатки слагают большую часть мела. Среди них особенно распространены остатки кокколитофорид - одноклеточных известковых водорослей, слагающих мел и мелоподобные мергели на 10-75% в виде мелких (0,002-0,005мм) пластинок, дисков и трубок. Фораминиферы содержатся в мелу обычно в количестве 5-6% (иногда до 40%). Встречаются также раковины моллюсков (главным образом иноцерамов, реже - устриц и пектинид) и немногочисленные белемниты, а местами также раковины аммонитов. Остатки мшанок, морских лилий, ежей, кораллов и трубчатых червей, хотя и наблюдаются, но не служат породообразующими элементами мела.

Известняки химического происхождения.

Этот тип известняков условно отделяется от других типов, т.к. в большинстве известняков всегда присутствует в том или ином количестве кальцит, выпавших из воды чисто химическим путем. Легко и быстро купить чемодан в Москве вы сможете на сайте caseplus.ru. Также здесь вы найдете множество различных сумок и рюкзаков, различные изделия из кожи и просто необходимые аксессуары.

Типичные известняки химического происхождения микрозернисты, лишены органических остатков и залегают в виде пластов, а иногда скоплений конкреций. Часто в них наблюдается система мелких кальцитовых жилок, образующих при уменьшении объема первоначально коллоидных осадков. Нередко присутствуют жеоды с крупными и хорошо образованными кристаллами кальцита.

Обломочные известняки.

Этот вид известняков содержит значительную примесь кварцевых зерен, и обычно ассоциируются с песчаными породами. Обломочным известнякам свойственна косая слоистость.

Обломочные известняки сложены, карбонатными зернами различного размера, поперечник которых измеряется десятыми долями миллиметра, реже несколькими миллиметрами. Встречаются и конгломератовидные известняки, состоящие из крупных обломков. Обломочные карбонатные зерна, как правило, хорошо округлены и близки по размеру.

Вторичные известняки.

К этой группе относятся известняки, залегающие в верхней части соляных куполов, и известняки, возникающие в процессе преобразования доломитов при их выветривании (раздоломичивание или дедоломитизация).

Раздоломиченные породы представляют собой среднее - или крупнозернистые известняки, плотные, но иногда ноздреватые или кавернозные. Залегают они в виде сплошных масс. В некоторых случаях в них встречаются линзовидные включения мелко- и тонкозернистых доломитов, иногда рыхлых и пачкающих пальцы. Реже они образуют включения и ветвящиеся жилы в толще доломитов.

Доломиты

Представляют собой карбонатные породы, состоящие в основном из минерала - доломита. Чистый доломит соответствует формуле CaMg(CO 3) 2 и содержит 30,4% - CaO, 21,8% - MgO и 47,8% - СО 2 или 54,3% СаСО 3 и 45,7% MgCO 3 . Весовое соотношение СаО:Mg - 1,39.

В доломитах обычно присутствует меньшее количество примесей обломочных частиц, чем в известняках. Характерно также присутствие минералов выпавших чисто химическим путем во время образования осадка или возникших во время его диагенеза (кальцит, гипс, ангидрит, целестин, родохрозит, магнезит, окислы железа, реже кремнезем в виде опала и халцедона, органическое вещество и пр.). В некоторых случаях наблюдается присутствие псевдоморфоз по кристаллам разнообразных солей.

По внешнему виду многие доломиты очень похожи на известняки, с которыми их сближают цвет и невозможность невооруженным глазом отличить кальцит от доломита в мелкокристаллическом состоянии.

Среди доломитов встречаются совершенно однородные разновидности от микрозернистых (фарфоровидных), иногда пачкающих руки и обладающих раковистым изломом, до мелко- и крупнозернистых разновидностей, сложенных из ромбоидов доломита примерно одной и той же величины (обычно 0,25-0,05 мм). Выщелоченные разновидности этих пород по своему внешнему виду несколько напоминают песчаники.

Для доломитов иногда типична кавернозность, в частности за счет выщелачивания раковин, пористость (в особенности в естественных обнажениях) и трещиноватость. Некоторые доломиты обладают способностью к самопроизвольному растрескиванию. Хорошо сохранившиеся органические остатки в доломитах встречаются редко. Окрашены доломиты большей частью в светлые оттенки желтоватого, розоватого, красноватого, зеленоватого и других тонов. Некоторые доломиты по своей окраске и блеску несколько напоминают перламутр.

Для доломитов характерна кристаллическая зернистая (мозаичная) структура, обычная также для известняков, и разного рода реликтовые структуры, вызванные замещением известковых органических остатков, оолитов или карбонатных обломков во время доломитизации. Наблюдается иногда оолитовая, а также инкрустационная структура, образованная в результате разнообразных полостей, обычно в рифовых массивах.

Для пород, переходных от известняков к доломитам, типична порфирообразная структура, когда на фоне мелкокристаллической кальцитовой массы присутствуют отдельные крупные ромбоэдры доломита.

Разновидности доломитов

По происхождению доломиты подразделяются на первично-осадочные, сингенетические, диагенетические и эпигенетические. Три первых типа часто объединены под названием первичных доломитов, а эпигенетические доломиты называют также вторичными.

Первично-осадочные доломиты.

Эти доломиты возникали в морских заливах и лагунах с водой повышенной солености за счет непосредственного выпадения доломита из воды. Эти породы залегают в виде хорошо выдержанных пластов, в пределах которых иногда ясно выражена тонкая слоистость. Первичная кавернозность и пористость, так же как и органические остатки, отсутствуют. Часто наблюдается переслаивание подобных доломитов с гипсом. Контакты слоев ровные, слабоволнистые или постепенные. Иногда встречаются включения гипса или ангидрита.

Структура первично-осадочных доломитов равномерно микрозернистая. Преобладающий размер зерен ~ 0,01 мм. Кальцит встречается лишь в виде незначительной примеси. Иногда наблюдается окаменение, местами интенсивное.

Сингенетические и диагенетические доломиты.

К их числу относится преобладающая часть доломитов. Различить их можно не всегда. Они возникают за счет преобразования известкового ила.

Эти доломиты залегают в виде пластов и линзовидных залежей. Представляют собой крепкие с неровными, шероховатым изломом породы, обычно с неясной слоистостью. Структура сингенетических доломитов чаще равномерно микрозернистая. Для диагенетических более типична неравномерно зернистая (поперечники зерен их меняются от 0,1 до 0,01 мм). Характерна для диагенетических доломитов и неправильно ромбоэдрическая, или овальная форма зерен доломита, часто имеющих концентрически зональное строение. В центральной части зерен имеются темные пылевидные скопления.

В некоторых случаях происходит огипсование породы. При этом замещению гипсом легче всего подвергались наиболее проницаемые для растворов участки карбонатной породы (в частности, органические остатки), а также скопления пелитоморфного доломита.

Вторичные (эпигенетические) доломиты.

Этот тип доломитов образуется в процессе замещения при помощи растворов уже твердых известняков, вполне сформировавшихся как горные породы. Эпигенетические доломиты залегают обычно в виде линз среди неизменных известняков или содержат в себе участки остаточного известняка.

Эпигенетические доломиты характеризуются массивностью или неясной слоистостью, неравномерно-зернистой и неоднородной структурой. Они крупно- и неоднородно пористые. Рядом с участками, полностью доломитизированными, присутствуют участки, почти не затронутые этим процессом. Граница между такими участками извилистая, неровная и проходит иногда посредине раковин.

Мергели

Под мергелями понимаются породы, переходные между карбонатными и глинистыми, содержащие 25-95% CaCO 3 . Наиболее карбонатные их разновидности (75-95% CaCO 3), в случае значительного уплотнения породы, называются глинистыми известняками.

Мергели подразделяются на три основные группы:

1. Собственно мергели, с содержанием CaCO 3 50-70%,

2. Известковые мергели, у которых содержание CaCO 3 изменяется в пределах 75-95%,

3. Глинистые мергели с содержанием CaCO 3 от 25 до 50%.

Типичные мергели представляют собой однородную по структуре очень м/з породу, состоящую из смеси глинистых и карбонатных частиц и часто обладающую во влажном состоянии известной пластичностью. Обычно мергели окрашены в светлые тона, но встречаются и ярко окрашенные разновидности - красные, коричневого, фиолетового цвета (особенно в красноцветных толщах). Тонкая слоистость для мергелей не типична, но многие из них залегают в виде тонких слоев. Некоторые мергели образуют закономерные ритмичные переслаивания с тонкими глинистыми и песчаными прослоями.

В качестве примеси в мергелях присутствуют органические остатки, обломочные зерна кварца и других минералов, сульфаты, окислы железа, глауконит и др.

Сидеритовые породы

Химическая формула сидерита FeCO 3 , при чем железа содержится 48,2%. Само название минерала происходит от греческого "сидерос" - железо.

Сидеритовые породы представляют собой скопление зернистых или землистых агрегатов, плотных, иногда представляющих собой шаровидные конкреции (сферосидерит).

Цвет их буровато-желтый, бурый. Сидерит легко разлагается в HCl, капля при этом желтеет от образования FeCl 3 .

Происхождение.

1. Гидротермальное - встречается в полиметаллических месторождениях как жильный минерал. 2. При замещении известняков образует метасоматические залежи. 3. Сидериты могут быть и осадочного происхождения, они имеют, как правило, оолитовое строение. 4. Встречается сидерит метаморфического происхождения, образующийся при метаморфизме осадочных месторождений железа. В зоне окисления он легко разлагается и переходит в гидраты окислов железа, образуя железные шляпы.


На протяжении своего существования Земля прошла длинный ряд непрерывных изменений. Они вызываются процессами различными по скорости, по масштабности и по источникам энергии. Эти процессы перемещения вещества, видоизменяющие земную кору и поверхность Земли, называются геологическими или геодинамическими.

Эндогенными процессами называются такие геологические процессы, происхождение которых связано с глубокими недрами Земли. В недрах Земли под внешними ее оболочками происходят сложные физико-механические и физико-химические преобразования вещества, в результате которых возникают мощные силы, воздействующие на земную кору, за счет которых они преобразуют ее. Эндогенные процессы коренным образом меняют характер земной коры и, в частности, ее поверхности; они приводят к созданию основных форм рельефа поверхности Земли – горных стран и отдельных возвышенностей, огромных впадин – вместилищ океанической и морской воды и др. Основными внутренними источниками энергии Земли являются: гравитационная дифференциация, ротационные (вращательные) силы, радиоактивный распад, химические и фазовые превращения, происходящие в недрах. Процессы, вызванные этими источниками энергии, называются эндогеннымиили процессами внутренней динамики . К ним относят:

1. тектонические движения (колебательные и горообразовательные);

2. магматизм;

3. метаморфизм;

4. землетрясения;

Вторая группа процессов вызвана внешними источниками энергии и проявляется на поверхности Земли и их называют экзогенными . Это солнечная энергия и гравитация, перемещения водных и воздушных масс, влияние различных растительных и животных организмов, их воздействие на горные породы и минералы. Такие процессы называются экзогеннымиилипроцессами внешней динамики . К ним относят:

1. выветривание;

2. влияние текучих поверхностных и подземных вод;

3. влияние ледников и водно-ледниковых потоков;

4. процессы в мерзлой зоне литосферы;

5. влияние морей и океанов, озер и болот;

6. гравитационные процессы;

7. деятельность человека (техногенез).

Эндогенные и экзогенные процессы действуют одновременно и тесно связаны друг с другом (рис. 2.5)

Горные породы – природная совокупность минералов более или менее постоянного минералогического состава, образующая самостоятельное тело в земной коре

Горные породы формируются при различных процессах, протекающих как в недрах Земли, так и на ее поверхности, образуя сплавы, механические смеси, состоящие из одного (мрамор) или нескольких минералов (гранит) (рис. 2.5).

Рис. 2.5. Происхождение горных пород.

Горные породы классифицируют по происхождению (по генезису) и химическому составу. По происхождению выделяют магматические, осадочные и метаморфические породы (рис. 2.6).

Рисунок 2.6. Классификация горных пород по типу образования

Магматические и метаморфические горные породы слагают около 90 % объёма земной коры, однако, на поверхности материков области их распространения сравнительно невелики. Остальные 10 % приходятся на долю осадочных пород, занимающих 75 % площади земной поверхности.

Магматические горные породы подразделяют на интрузивные – глубинные и эффузивные – излившиеся.

Интрузивные горные породы образуются в недрах Земли в условиях высоких давлений и очень медленного остывания. Магма на глубине нескольких десятков километров от поверхности Земли находится под очень большим всесторонним гидростатическим давлением, достигающим нескольких тысяч атмосфер, и обладает высокой температурой. При внедрении магмы в вышележащие слои Земли физическая обстановка изменяется: магма встречается с твердыми и относительно холодными породами и начинает застывать и кристаллизоваться. Однако отдача тепла магмой в окружающую среду происходит очень медленно, так как теплопроводность горных пород низка. Температура магмы падает постепенно в течение миллионов лет. Примером может служить следующее наблюдение: на Северном Кавказе в районе Пятигорска интрузия магмы произошла в конце палеогенового периода (~30 млн. лет назад). Однако и в настоящее время разогретые массы магмы существуют на сравнительно небольшой глубине, на что указывают выходящие на поверхность земли горячие источники.

При медленном остывании магмы происходит постепенная и последовательная раздельная кристаллизация входящих в ее состав химических соединений, каждое из которых превращается в кристалл какого-либо минерала. Благодаря медленному росту кристаллы могут достигать относительно больших размеров, поэтому для многих интрузивных пород характерна крупно кристаллическая структура. В результате медленного остывания магмы происходит полная кристаллизация всего ее вещества, и в возникшей породе не остается аморфных участков.

Образующиеся в ходе кристаллизации минералы выпадают из расплава в определенной временной последовательности. Эту последовательность определяет степень тугоплавкости минералов, а также химический состав магмы. Большую роль в процессе кристаллизации играют летучие парообразные и газообразные вещества, способствующие и часто определяющие порядок и скорость кристаллизации минералов.

Поясним это на примере магмы гранитного состава, в результате кристаллизации которой на глубине образуется порода – гранит. В состав гранита входят такие породообразующие минералы, как полевые шпаты, кварц, из темноцветных силикатов – и реже роговая обманка (табл. 2.4). Температура плавления биотита и роговой обманки очень высокая (при 600 МПа 620–270 о С), поэтому их кристаллы образуются еще в жидкой магме.

Во вторую фазу кристаллизации возникают кристаллы полевых шпатов, температура плавления которых ниже, чем у темных силикатов (при 10 5 Па 1120 – 1250 о С). В отличие от условий первой фазы при кристаллизации полевых шпатов в жидкой массе магмы уже существуют твердые кристаллы темноцветных силикатов. Вследствие этого кристаллы полевых шпатов могут «обрастать» кристаллы биотита или роговой обманки и включать их в себя.

После кристаллизации темных и светлых силикатов порода окажется сформированной на 75-80% объема. Кремнезем, содержащийся в гранитной магме в избытке, начнет переходить в твердое кристаллическое состояние в последнюю очередь, превращаясь в кварц. Его кристаллы занимают свободное пространство между ранее образовавшимися кристаллами биотита, роговой обманки и полевого шпата и приобретать вид зерен неправильной формы, хотя внутреннее строение их кристаллической решетки вполне правильно. В итоге произойдет полная кристаллизация магмы, все ее вещество примет кристаллическое строение. Возникшая таким путем структура породы получила название полнокристаллической. Полнокристаллическая структура дает информацию о глубинных, или абиссальных , условия застывания магмы.

На больших глубинах в условиях всестороннего давления ориентировка осей и плоскостей растущих кристаллов ничем не контролируется, и расположение их в породе случайно. Подобную текстуру породы называют массивной, неориентированной; она характерна в основном для глубинных пород.

В ходе магматической интрузии возможно течение вязкой массы магмы, хотя и в ограниченных пределах. При этом кристаллы с удлиненными формами, например столбики роговых обманок и листочки слюды, ориентируются длинными осями параллельно направлению потоков в магме. Образуется так называемая флюидальная текстура . Встречаясь в интрузивных породах, она, однако, более типична для пород эффузивных.

Эффузивные горные породы образуются при излиянии на поверхность земли расплавленной магмы. При эффузии почти мгновенно, меняются температура окружающей среды и давление, снижающееся от нескольких тысяч атм. до 1 атм. В результате этого вначале начинается бурное выделение газов, растворенных в магме, сопровождающееся взрывами. Лава, выходящая из жерла вулкана, расплескивается, выбрасываясь вверх брызгами. Выделяющиеся из лавы газы могут ее вспенивать, образуя многочисленные пузыри, сохраняющиеся и при затвердевании вещества. Так образуется пузырчатая текстура. Порода подобного сложения получила название пемзы . Ее плотность настолько низка, что пемза плавает в воде.

Резко снижающаяся температура создает условия, при которых одновременно кристаллизуются многие минералы. Однако очень быстрое затвердевание вещества приводит к образованию мелких зачаточных форм кристаллов, которые можно обнаружить только под микроскопом. Значительная часть породы превращается в аморфную или стекловатую массу. Такая структура пород называется скрытокристаллической . При очень быстром остывании лавы процесс кристаллизации может и вовсе не начаться, в этом случае порода целиком будет состоять из вулканического стекла. Такая порода названа обсидианом. Это черная, темно-серая или темно-бурая порода с раковистым изломом, похожая на глыбу стекла. Полости газовых пузырей часто заполняются минералами, которые образуются вторично – в результате их кристаллизации из растворов горячих вод, проникших в застывшую лаву. При этом на фоне темно-серой породы, имеющей скрытокристаллическую структуру, выделяются округлые светлые пятна таких включений. Обычно они представлены такими минералами как кальцит и аморфный кремнезем – опал и халцедон .

С процессом извержения вулканов связано также образование группы пород, которые принято называть пиропластическими . Выделяющиеся из магмы газы часто скапливаются внутри жерла вулкана в таких больших количествах и под столь большим давлением, что возникают мощные взрывы, выбрасывающие высоко в атмосферу огромные массы лавы, состоящей из частиц самых разных размеров. Они остывают в воздухе и падают на землю в виде твердых пылинок, горошин и более крупных обломков. Их называют вулканическим пеплом . Массы этого вулканического материала покрывают окрестности извергающегося вулкана толстым рыхлым слоем. Дожди смачивают его, и он приходит в движение, образуя потоки вулканической грязи. Высыхая, грязь превращается в легкую пористую и твердую породу, называемую туфом . Подобная порода, образованная на дне моря или озера называется туффитом .

Классификация интрузивных и эффузивных пород строят на основе указанных выше особенностей структуры и текстуры, а также их химического и минералогического состава. По химическому составу магматические горные породы делят в зависимости от содержания в них окиси кремния SiO 2 (табл. 2.5). Кислые породы чаще бывают светлыми, иногда белыми. С уменьшением содержания кремнезема окраска породы изменяется от серой до темно-серой. Для ультраосновных пород характерна черная или темно-зеленая окраска, зависящая от увеличения содержания темноцветных минералов, богатых окислами железа и магния.

Таблица 2.5. Классификация магматических пород по содержанию окиси кремния.

Название группы Горные породы (примеры)
Низко и некремнеземнистые окатыши
Ультраосновные дунит, перидотит, пироксенит, кимберлит, оливинит
Основные габбро, лабродарит, базальт, диабаз, трахит
Средние сиенит, диорит, трахит, андезит, полевой шпат, порфирит
Кислые (кислотные) гранит, липарит, кварцевый порфир
Ультракислые пегматит, аляскит, пемзы, вулканическое стекло

В табл. 2.6. приведена краткая характеристика основных магматических горных пород.

Таблица 2.6. Характеристика основных магматических горных пород.

Горная порода

Минералогический

Структура

Интрузивные породы

Гранит красный, розовый, светло-серый Кварц, полевые шпаты (ортоклаз, микроклин), роговая обманка, слюды
Сиенит Полнокристаллическая, равномернозернистая и порфировидная
Габбро Плагиоклазы (от лабрадора до анортита), оливин Полнокристаллическая, равномернозернистая и порфировидная

Эффузивные породы

Пемза Пенистая, сильнопузырчатая
Вулканический туф Из различных минералов, обогащенных кремнием Пузырчатая
Вулканическое стекло (обсидиан) Кварц Стекловатая
Липарит (эффузивный аналог гранита) Кварц, полевые шпаты (ортоклаз, микроклин) Порфировая
Трахит (эффузивный аналог сиенита) Ортоклаз, микроклин, роговая обманка, биотит Порфировая, тонкопузырчатая
Базальт (эффузивный аналог габбро) Плагиоклазы, оливин, авгит Плотная, мелко-кристаллическая, скрытокристаллическая
Андезит Плагиоклазы, полевые шпаты, роговая обманка, биотит Неполнокристаллическая порфировая, мелкозернистая

Наибольшее распространение в земной коре имеют граниты (интрузивные породы), андезиты и базальты (эффузивные породы).

Граниты составляют ~30% массы земной коры. Граниты состоят в основном из трех минералов: кварца, полевого шпата и слюды (или роговой обманки).

Андезиты – породы с вкраплениями из полевых шпатов (альбита, анортита), роговой обманки, слюд и пироксена – составляют ~25% массы земной коры.

Базальты составляют ~ 20% массы земной коры, в их состав входят преимущественно полевые шпаты, пироксен, оливин. Остальное приходится на долю всех остальных горных пород.

Осадочные горные породы образуются при механическом и химическом разрушении магматических пород под действием воды, воздуха и органического вещества.

По признаку происхождения их делят на три группы: обломочные , химические и органические.

Обломочные горные породы образуются в процессах разрушения, переноса и отложения обломков горных пород. Это чаще всего каменистые осыпи, галечники, пески, суглинки, глины и лёссы. Обломочные породы разделяют по крупности:

· грубообломочные (> 2 мм); остроугольные обломки – дресва, щебень, сцементированные глинистыми сланцами, образуют брекчии , а окатанные – гравий, галька – конгломераты );

· среднеобломочные (от 2 до 0,5 мм) – образуют пески;

· мелкообломочные, или пылеватые – образуют лёссы;

· тонкообломочные, или глинистые (< 0,001 мм) – при уплотнении превращаются в глинистые сланцы.

Осадочные породы химического происхождения – соли и отложения, образующиеся из насыщенных водных растворов. Они имеют слоистое строение, состоят из галоидных, сернокислых и карбонатных минералов. К ним относятся каменная соль, гипс, карналлит, опоки, мергель, фосфориты, железо-марганцевые конкреции и т.д. (табл. 2.4). Они могут образовываться в смеси с обломочными и органическими отложениями.

Мергель образуется при вымывании из известняков карбоната кальция, содержит глинистые частицы, плотный, светлый.

Железо-марганцевые конкреции образуются из коллоидных растворов и под действием микроорганизмов и создают шариковидные залежи железных руд. Фосфориты образуются в форме шишковидных конкреций неправильной формы, при слиянии которых возникают фосфоритные плиты – залежи фосфоритовых руд серого и буроватого цветов.

Горные породы органического происхождения широко распространены в природе – это останки животных и растений: кораллы, известняки, ракушечники, радиоляриевые, диатомовые и различные черные органические илы, торф, каменные и бурые угли, нефть.

Осадочная толща земной коры формируется под воздействием климата, ледников, стока, почвообразования, жизнедеятельности организмов, и ей присуща зональность : зональные донные илы в Мировом океане и континентальные отложения на суше (ледниковые и водно-ледниковые в полярных областях, торф в тайге, соли в пустыне и т. д.). Осадочные толщи накапливались в течение многих миллионов лет. За это время картина зональности многократно менялась в связи с переменами в положении оси вращения Земли и другими астрономическими причинами. Для каждой конкретной геологической эпохи можно восстановить систему зон с соответствующей ей дифференциацией процессов осадконакопления. Строение современной осадочной оболочки – это результаты перекрытия множества разновременных зональных систем.

На большей части территории земного шара почвообразование идет на осадочных горных породах. В северной части Азии, Европы и Америки обширные пространства заняты породами, отложенными ледниками четвертичного периода (мореной) и продуктами размывания их талыми ледниковыми водами.

Моренные суглинки и супеси. Эти породы отличаются неоднородностью состава: они представляют сочетание глины, песка и валунов различного размера. Супесчаные почвы содержат больше Si0 2 и меньше других окислов. Окраска большей частью красно-бурая, иногда палевая или светло-бурая; сложение плотное. Более благоприятную среду для растений представляют моренные отложения, содержащие валуны известковых пород.

Покровные глины и суглинки - безвалунные, мелкоземистые породы. Состоят преимущественно из частиц меньше 0,05 мм в диаметре. Окраска буровато-желтая, большей частью обладают мелкой пористостью. Содержат больше элементов питания, чем описанные выше пески.

Лессовидные суглинки и лессы – безвалунные, мелкоземистые, карбонатные, палевые и желто-палевые, мелкопористые породы. Для типичных лессов характерно преобладание частиц диаметром 0,05-0,01 мм. Встречаются также разновидности с преобладанием частиц диаметром меньше 0,01 мм. Содержание углекислого кальция колеблется от 10 до 50%. Верхние слои лессовидных суглинков нередко бывают освобождены от углекислого кальция. В бескарбонатной части преобладают кварц, полевые шпаты, глинистые минералы.

Красноцветная кора выветривания. В странах с тропическим и субтропическим климатом широко распространены мелкоземистые отложения третичного возраста. Они отличаются красноватой окраской, сильно обогащены алюминием и железом и обеднены другими элементами.

Коренные породы. На значительных территориях на поверхность выходят морские и континентальные породы дочетвертичного возраста, объединяемые под названием «коренные породы». Названные породы особенно распространены в Поволжье, а также в предгорьях и горных странах. Среди коренных пород широко распространены карбонатные и мергелистые суглинки и глины, известняки, а также песчаные отложения. Следует отметить обогащенность многих песчаных коренных пород элементами питания. Кроме кварца эти пески содержат значительные количества других минералов: слюд, полевых шпатов, некоторых силикатов и т. д. В качестве материнской горной породы они резко отличаются от древнеаллювиальных кварцевых песков. Состав коренных пород очень разнообразен и недостаточно изучен.

Метаморфические горные породы – это магматические и осадочные горные породы, измененные температурой, давлением и химически активными веществами. Метаморфоза горных пород происходит под влиянием следующих факторов:

Давления, возникающего при горообразовательных процессах;

Повышения температуры, вызванного внедряющейся в литосферу магмой, горячих водных растворов и газов, несущих новые химически активные соединения;

Давления вышележащих горных пород.

Одна из последних классификаций метаморфизма приведена в табл. 2.6.

Таблица 2.6.Классификация метаморфизма горных пород

Тип метаморфизма Факторы метаморфизма
Метаморфизм погружения Увеличение давления, циркуляция водных растворов
Метаморфизм нагревания Рост температуры
Метаморфизм гидратации Взаимодействие горных пород с водными растворами
Дислокационный метаморфизм Тектонические деформации
Импактный (ударный) метаморфизм Падение крупных метеоритов, мощные эндогенные взрывы

Например, при накоплении осадочных горных пород мощностью 10 – 14 км нижние их слои испытывают огромное давление, сопровождающееся повышением температуры и перекристаллизацией всего материала. В результате этого процесса из глин образуются сначала сланцы, а затем гнейсы, напоминающие по составу гранит. Состав гнейсов различен. Из песков в присутствии соединений железа сначала образуются песчаники, очень легко рассыпающиеся при приложении небольших усилий, а затем кварциты, т.е. кристаллическая горная порода. Кварциты и гнейсы сохраняют слоистое строение, характерное для осадочных пород. Известняки при перекристаллизации образуют мрамор.

Таким образом, процессы метаморфизма как бы заключают цикл изменений, происходящих с горными породами.