Системный анализ создаваемых норм. При проведении системного анализа важное значение приобретает коллектив исполнителей. В состав группы по проведению системного анализа должны входить. На основе анализа и исследования делается прогноз и обоснование по из

Системный анализ - научный метод познания, представляющий собой последовательность действий по установлению структурных связей между элементами исследуемых сложных систем - технических, экономических и т.д. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов. Проводится с использованием современных средств вычислительной техники. Результатом системных исследований является, как правило, выбор вполне определенной альтернативы: плана развития, технической системы, региона, коммерческой структуры и т.д. Поэтому истоки системного анализа, его методические концепции лежат в тех дисциплинах, которые занимаются проблемами принятия решений: теории операций и общей теории управления и системном подходе.

Целью системного анализа является упорядочение последовательности действий при решении крупных проблем, основываясь на системном подходе. В системном анализе решение проблемы определяется как деятельность, которая сохраняет или улучшает характеристики системы. Приемы и методы системного анализа направлены на выдвижение альтернативных вариантов решения проблемы, выявление масштабов неопределенности по каждому варианту и сопоставление вариантов по их эффективности.

Системный анализ базируется на ряде общих принципов, среди которых:

    принцип дедуктивной последовательности - последовательного рассмотрения системы по этапам: от окружения и связей с целым до связей частей целого (см. этапы системного анализа подробнее ниже);

    принцип интегрированного рассмотрения - каждая система должна быть неразъемна как целое даже при рассмотрении лишь отдельных подсистем системы;

    принцип согласования ресурсов и целей рассмотрения, актуализации системы;

    принцип бесконфликтности - отсутствия конфликтов между частями целого, приводящих к конфликту целей целого и части.

2. Применение системного анализа

Область применения методов системного анализа весьма широка. Существует классификация, согласно которой все проблемы, к решению которых можно применить методы системного анализа, подразделяются на три класса:

    хорошо структурированные (well-structured), или количественно сформулированные проблемы, в которых существенные зависимости выяснены очень хорошо;

    неструктурированные (unstructured), или качественно выраженные проблемы, содержащие лишь описание важнейших ресурсов, признаков и характеристик, количественные зависимости между которыми совершенно неизвестны;

    слабо структурированные (ill-structured), или смешанные проблемы, которые содержат как качественные элементы, так и малоизвестные, неопределенные стороны, которые имеют тенденцию доминировать.

Для решения хорошо структурированных количественно выражаемых проблем используется известная методология исследования операций, которая состоит в построении адекватной математической модели (например, задачи линейного, нелинейного, динамического программирования, задачи теории массового обслуживания, теории игр и др.) и применении методов для отыскания оптимальной стратегии управления целенаправленными действиями.

Привлечение методов системного анализа для решения указанных проблем необходимо, прежде всего, потому, что в процессе принятия решений приходится осуществлять выбор в условиях неопределённости, которая обусловлена наличием факторов, не поддающихся строгой количественной оценке. В этом случае все процедуры и методы направлены именно на выдвижение альтернативных вариантов решения проблемы, выявление масштабов неопределённости по каждому из вариантов и сопоставление вариантов по тем или иным критериям эффективности. Специалисты только готовят или рекомендуют варианты решения, принятие же решения остаётся в компетенции соответствующего должностного лица (или органа).

Для решения слабо структурированных и неструктурированных проблем используются системы поддержки принятия решений.

Технология решения таких сложных задач может быть описана следующей процедурой:

    формулировка проблемной ситуации;

    определение целей;

    определение критериев достижения целей;

    построение моделей для обоснования решений;

    поиск оптимального (допустимого) варианта решения;

    согласование решения;

    подготовка решения к реализации;

    утверждение решения;

    управление ходом реализации решения;

    проверка эффективности решения.

Центральной процедурой в системном анализе является построение обобщённой модели (или моделей), отображающей все факторы и взаимосвязи реальной ситуации, которые могут проявиться в процессе осуществления решения. Полученная модель исследуется с целью выяснения близости результата применения того или иного из альтернативных вариантов действий к желаемому, сравнительных затрат ресурсов по каждому из вариантов, степени чувствительности модели к различным внешним воздействиям.

Исследования опираются на ряд прикладных математических дисциплин и методов, широко используемых в современной технической и экономической деятельности, связанной с управлением. К ним относятся:

    методы анализа и синтеза систем теории управления,

    метод экспертных оценок,

    метод критического пути,

    теория очередей и т. п.

Техническая основа системного анализа - современные вычислительные мощности и созданные на их основе информационные системы.

Методологические средства, применяемые при решении проблем с помощью системного анализа, определяются в зависимости от того, преследуется ли единственная цель или некоторая совокупность целей, принимает ли решение одно лицо или несколько и т. д. Когда имеется одна достаточно четко выраженная цель, степень достижения которой можно оценить на основе одного критерия, используются методы математического программирования. Если степень достижения цели должна оцениваться на основе нескольких критериев, применяют аппарат теории полезности, с помощью которого проводится упорядочение критериев и определение важности каждого из них. Когда развитие событий определяется взаимодействием нескольких лиц или систем, из которых каждая преследует свои цели и принимает свои решения, используются методы теории игр.

Несмотря на то, что диапазон применяемых в системном анализе методов моделирования и решения проблем непрерывно расширяется, он по своему характеру не тождествен научному исследованию: он не связан с задачами получения научного знания в собственном смысле, но представляет собой лишь применение методов науки к решению практических проблем управления и преследует цель рационализации процесса принятия решений, не исключая из этого процесса неизбежных в нём субъективных моментов.

СИСТЕМНЫЙ АНАЛИЗ – совокупность методов и средств, используемых при исследовании и конструировании сложных и сверхсложных объектов, прежде всего методов выработки, принятия и обоснования решений при проектировании, создании и управлении социальными, экономическими, человеко-машинными и техническими системами . В литературе понятие системного анализа иногда отождествляется с понятием системного подхода , но такая обобщенная трактовка системного анализа вряд ли оправдана. Системный анализ возник в 1960-х гг. как результат развития исследования операций и системотехники. Теоретическую и методологическую основу системного анализа составляют системный подход и общая теория систем . Системный анализ применяется гл.о. к исследованию искусственных (возникших при участии человека) систем, причем в таких системах важная роль принадлежит деятельности человека. Использование методов системного анализа для решения исследовательских и управленческих проблем необходимо прежде всего потому, что в процессе принятия решений приходится осуществлять выбор в условиях неопределенности, которая связана с наличием факторов, не поддающихся строгой количественной оценке. Процедуры и методы системного анализа направлены на выдвижение альтернативных вариантов решения проблемы, выявление масштабов неопределенности по каждому из вариантов и сопоставление вариантов по тем или иным критериям эффективности. Согласно принципам системного анализа, возникающая перед обществом та или иная сложная проблема (прежде всего проблема управления) должна быть рассмотрена как нечто целое, как система во взаимодействии всех ее компонентов. Для принятия решения об управлении этой системой необходимо определить ее цель, цели ее отдельных подсистем и множество альтернатив достижения этих целей, которые сопоставляются по определенным критериям эффективности, и в результате выбирается наиболее приемлемый для данной ситуации способ управления. Центральной процедурой в системном анализе является построение обобщенной модели (или моделей), отображающей все факторы и взаимосвязи реальной ситуации, которые могут проявиться в процессе осуществления решения. Полученная модель исследуется с целью выяснения близости результата применения того или иного из альтернативных вариантов действий к желаемому, сравнительных затрат ресурсов по каждому из вариантов, степени чувствительности модели к различным нежелательным внешним воздействиям. Системный анализ опирается на ряд прикладных математических дисциплин и методов, широко используемых в современной деятельности управления. Техническая основа системного анализа – современные компьютеры и информационные системы. В системном анализе широко используются методы системной динамики, теории игр, эвристического программирования, имитационного моделирования, программно-целевого управления и т.д. Важной особенностью системного анализа является единство используемых в нем формализованных и неформализованных средств и методов исследования.

Литература:

1. Гвишиани Д.M. Организация и управление. М., 1972;

2. Клиланд Д. , Кинг В. Системный анализ и целевое управление. М., 1974;

3. Наппельбаум Э.Л. Системный анализ как программа научных исследований – структура и ключевые понятия. – В кн.: Системные исследования. Методологические проблемы. Ежегодник 1979. М., 1980;

4. Ларичев О.И. Методологические проблемы практического применения системного анализа. – Там же; Блауберг И.В. , Мирский Э.М. , Садовский В.Н. Системный подход и системный анализ. – В кн.: Системные исследования. Методологические проблемы. Ежегодник 1982. М., 1982;

5. Блауберг И.В. Проблема целостности и системный подход. М., 1997;

6. Юдин Э.Г. Методология науки. Системность. Деятельность. М., 1997.

7. См. также лит. к ст. Система , Системный подход .

В.Н.Садовский

Щего права» (а нормы права тем более!) мы ставим права и свободы человека, гражданина или меры и формы свободы индивида, то нам, хотим мы того или не хотим, при анализе структуры нормы права (да и права!) никак не обойтись без этого человека, гражда­нина, индивида. В гипотезе, диспозиции и санкции его «не видно, он где-то там просто спрятан...», а тем более права и свободы.

Это, однако, плохо увязывается с идеями демократического, гу­манного общества и правового государства, не говоря о свободе че­ловека, личности. Более того, если придерживаться концепции ры­ночного правопонимания, то в качестве субъектов в структуре норм права могут выступать разные участники общественных отношений (и не только субъекты, о которых упоминает Г.О. Петров). Нужно иметь в виду и то, что правовая норма часто адресована кругу лиц, определенных видовыми признаками (граждане, родители, супруги, налоговая инспекция, судебный пристав и т.д.).

В отличие от распоряжения, адресованного точно обозначенным субъектам и действующего до его исполнения (решения о строи­тельстве здания, передаче точно определенного имущества, выплате премии, об увольнении), норма права не исчерпывается исполне­нием. Она обращена в будущее в том смысле, что рассчитана не только на данный, наличный случай, но и на вид, неопределенное число определенных в общей форме случаев и отношений (заклю­чение договора, передача имущества, вступление в брак, рождение ребенка) и реализуется каждый раз, когда возникают предусмот­ренные ею обстоятельства и ситуации.

Применительно к процессуальным нормам, как показала Р.В. Ша-гиева, очень важен субъект. Он характеризуется многими специфиче­скими чертами и моментами. В частности, процессуальное состояние может быть связано и с естественными свойствами неодушевлен­ных предметов. Опираясь на естественные свойства вещей, законо­датель строит нормирование связанного с этими вещами поведения субъектов. К таким состояниям относятся хранение вещественных источников доказательств и различных предметов, ценностей, де­нег. Аналогичное состояние возникает и в связи с избранием меры пресечения в виде залога: залог в денежном выражении или в виде ценностей вносится в депозит суда обвиняемым, подозреваемым или другим лицом и хранится судом, пока не отпадет надобность в этой мере пресечения. Оно встречается и при применении такой меры обеспечения иска, как наложение ареста на имущество или денежные суммы, принадлежащие ответчику.

Такой возможный элемент процессуально-правовой нормы, как указание на субъект, часто фигурирует в законодательстве потому, что процессуальные нормы почти всегда рассчитаны не на любых, а лишь на определенных лиц (субъектов), которые могут оказаться


в сфере юридического процесса. Это суд, избранный в порядке, ус­тановленном законом, прокурор, следователь, арбитраж, комиссия по трудовым спорам, администрация организации и т.д. Однако это касается и участников процесса (например, лица, владеющего язы­ками, знание которых необходимо по делу, и назначенного органом дознания, следователем, прокурором в качестве переводчика). При­чем большинство процессуальных норм адресованы не к каждому, а лишь к вполне определенному участнику регулируемых ими об­щественных отношений (суду, истцу, ответчику, защитнику и т.д.), потому указание в них на субъектный состав часто бывает необхо­димым. Содержанием субъектного состава процессуальных норм выступает обычно описание качества субъекта, приобретенного им в силу рождения или производного от каких-либо действий (граж­данство, брак, нетрудоспособность, стаж, родство, специальность).

В силу специфики деятельности те или иные лица не могут (а под­час и не хотят) реализовать свои процессуальные права и обязанно­сти без вмешательства специально на то уполномоченных предста­вителей власти, без проявления их властных полномочий. Так, лицо, которому преступлением причинен моральный, физический или имущественный вред, вовлекается в уголовный процесс лишь после того, как лицо, производящее дознание, следователь и судья вынесет постановление о признании его потерпевшим. Все это ска­зывается на структуре процессуальных норм, предполагая необхо­димость четкого указания на их субъектный состав.

Указание на адресатов уголовно-правовой нормы иногда фор­мулируются не только в положительной, но и в негативной форме. Процессуальный закон содержит большое число статей, посвящен­ных условиям, исключающим возможность и необходимость уча­стия субъектов в процессуальных действиях. Так, переводчик не только должен владеть требуемым языком, но и не иметь прямой или косвенный заинтересованности в исходе дела (по закону). Большую роль в определении субъектного состава играют институ­ты отвода, замены ненадлежащей стороны (в гражданском процессе) и т.д. Не очень часто в процессуальном законодательстве встречает­ся указание на непосредственную цель процессуальных действий. Известно, что следственный эксперимент проводится «в целях про­верки и уточнения данных, имеющих значение для дела».

Субъекты в современных условиях необходимо включать в струк­туру любой нормы права или во всяком случае их необходимо всегда иметь в виду, рассматривать, вводить в действие и т.д., а не отрицать или делать вид, что их просто нет. Причем в каждой норме, ситуации и т.д. субъект будет свой, со своим набором черт, прав, обязанностей, линией поведения и пр. Субъект - важнейший элемент нормы пра-

III. Проблемы теории права


Ва. Но как же быть с другими звеньями нормы права? С той же ги­потезой, диспозицией и санкцией? Без них мы тоже никогда не по­лучили бы полной нормы (при одном звене, двух или трех, не важ­но). Гипотеза, диспозиция и санкция составляют сердцевину любой нормы права, базу логического строения любой правовой нормы.

Гипотеза, как и прежде, выступает как часть нормы, указываю­щая на жизненные обстоятельства, наступление которых повлечет «включение» действия той или иной правовой нормы. Ими могут быть события (например, сильное наводнение), конкретный ре­зультат действия (сдача рукописи в издательство), возрастной факт (60 лет - у мужчин появляется возможность ставить вопрос о на­значении пенсии), время, место и т.п. Гипотезы будут либо про­стыми (одно условие, одно обстоятельство), либо сложными (не­сколько обстоятельств, необходимых для действия нормы).

Диспозиция выступает как «корневая» часть нормы права, со­держащая само правило поведения, которому должны следовать субъекты регулируемого этой нормой отношения. В диспозиции чаще всего указываются права и обязанности субъектов, содержать­ся предписания (указание), как должны действовать те, кто будет подпадать под него, т.е. дается эталон желательного поведения.

Санкция определяет вид и меру последствий, наступающих в ре­зультате соблюдения или несоблюдения диспозиции. С санкцией нормы права связываются прежде всего вид и мера принуждения, применяемого к субъектам - нарушителям этой нормы. Однако есть определенное число санкций, предусматривающих положительный результат (получение премии, благодарности, награды) за совершение каких-либо особых, значительных действий в соответствии с предпи­санием правовой нормы. При этом санкция будет выступать также как предусматривающая прежде всего вид и меру принудительных мер, отрицательных, не желательных для субъекта последствий.

В санкциях предусматриваются следующие возможности:

Лишение субъекта определенных материальных ценностей;

Лишение субъекта (физического или юридического) принад­
лежащих ему благ или непредоставление тех благ, которыми
пользуются другие субъекты права (тюремное заключение, за­
прещение выпуска нестандартной продукции, перевод в осо­
бый режим кредитования и т.п.);

Умаление чести и достоинства субъекта (объявление выгово­
ра, увольнение со службы);

Признание недействительным актов субъекта (физического
или юридического), направленных на достижение определен­
ных юридических результатов (признание сделки недействи­
тельной, отмена принятого в нарушение компетенции право­
вого акта и т.п.).


Иногда ученые ошибочно отождествляют санкцию с юридиче­ской ответственностью. Однако санкция - элемент правовой нор­мы, реализуемый лишь при правонарушении. Он существует всегда, а ответственность наступает лишь при реальном нарушении этой нормы. Санкция как бы предваряет ответственность, предусматри­вая заранее, указывая правоприменительным органам вид и объем ответственности, которые можно применить к субъекту (гражданину) за совершенное им правонарушение. Субъекту-правонарушителю, в свою очередь, санкция указывает методы, к которым могут при­бегнуть соответствующие органы государства, порядок, предел мер взыскания, принудительные и карательные методы воздействия. Общепризнано, что санкции являются юридической основой всех видов ответственности.

Логическая структура нормы имеет большое значение для со­вершенствования практики применения правовых норм. Систем­ность права, неразрывная связь и согласованность норм, элементы которых содержатся в различных нормативных актах (или статьях, разделах закона), требуют при решении любого юридического дела тщательно изучить все те положения законодательства, которые связаны с применяемым правоположением.

Достоинством четырех элементной схемы как раз и является то, что эта схема побуждает ученых-юристов, практических работников не только к всестороннему анализу нормативного материала во всем его объеме, определению условий применения правовой нор­мы, ее содержания, последствий ее нарушения, но и к анализу про­блем субъекта, человека, гражданина и др. в демократическом обще­стве, его прав и свобод, защите этих прав и свобод, их выдвижению. Такой ориентации не дает ни дву- и не трехэлементная схема, отго­раживающая некой стеной право, права и свободы от человека, гражданина, индивида.

Права и свободы человека и гражданина в России признаются высшей ценностью (ст. 2 Конституции РФ). Получается, что эту высшую ценность субъекта (человека, гражданина) нельзя игнориро­вать в структуре нормы права как в исходном элементе права, а ее надо ставить на первое место в сравнении со всеми прочими эле­ментами этой нормы. При этом права и свободы человека и граж­данина и их меры важно учитывать и в комплексном исследовании внутренней и внешней формы права.

Однако внутренняя и внешняя форма норм часто не совпадают. Очень редко встречаются такие статьи законов, которые содержат в себе все составные части нормы права (субъекта, гипотезу, диспо­зицию, санкцию). Чаще всего встречаются статьи, в которых со­держатся диспозиция и санкция, а гипотеза должна либо подразу­меваться, либо содержаться в другой статье. Точно так же может

III. Проблемы теории права


10. Системный анализ норм права

Оказаться, что диспозиция содержится в одной статье, санкция - во второй, а субъект - в третьей. Так, в соответствии с УПК «при предъявлении обвинения следователь обязан разъяснить обвиняе­мому его права, предусмотренные законом, о чем делается отметка на постановлении о привлечении в качестве обвиняемого, которая удостоверяется подписью обвиняемого» (ст. 149).

В этой статье есть субъект - «обвиняемый», «его права», гипо­теза - «при предъявлении обвинения (обстоятельства)», есть дис­позиция - правило: «обязан разъяснить права и сделать отметку в постановлении». Однако отсутствует санкция, которая содержится в ст. 213-214 УПК: когда прокурор, утверждая обвинительное за­ключение, обнаружит, что не выполнены требования этой статьи, он не утвердит заключение, а, возвратив следователю, заставит по­следнего устранить это нарушение. Возврат дела на доследование и есть санкция.

В процессе правотворчества выработалась практика изложения норм права в статьях нормативных актов, состоящая в его многова­риантности, когда одна статья нормативного акта соответствует од­ной норме права (статья и норма совпадают), т.е. в одной статье имеются субъект, гипотеза, диспозиция, санкция. Это изложение правовой нормы встречается редко. Одна статья нормативного акта содержит только одну часть нормы права, например диспозицию; одна статья нормативного акта содержит несколько норм права; одна статья нормативного акта содержит две части нормы права, например гипотезу и санкцию (или гипотезу и диспозицию).

Наиболее распространен вариант изложения норм права, когда одна норма располагается в нескольких статьях нормативного акта и даже в нескольких нормативных актах, например субъект - в од­ном, гипотеза - во втором, а диспозиция - в третьем нормативном акте. Это связано с требованиями (правилами) законодательной техники, предполагающими краткость и компактность издания нормативного акта. В противном случае кодексы превратились бы из удобных для использования компактных изданий в пухлые, не­подъемные тома, которыми было бы очень сложно пользоваться.

Системный, комплексный анализ норм права требует выработки научно обоснованной классификации норм права, которые играют большую роль для правоприменительной практики государственных органов и иных субъектов. Теоретики государства и права часто на­чинают с дифференциации норм по отраслевому критерию (исходя из отраслей права). Потом они анализируют нормы материального и процессуального права, затем разграничивают нормы по форме предписания (на обязывающие, управомочивающие и запретитель­ные) и наконец характеризуют основные (программные нормы, нормы-правила поведения и общие нормы).


Классификацию норм, если придерживаться концепции циви-литарного права, необходимо начинать с программных, исходных норм права. Именно с них и начинается все «правовое начало» вся­кого демократического государства, весь (а не с отраслей) процесс общего познания, осмысления и в дальнейшем - построения всей нормативно-правовой системы демократического государства. Это программные, основные (исходные) нормы, нормы правила-поведения и общие нормы.

Программные, исходные нормы - это нормы-принципы, нор­мы-дефиниции, служащие отправным исходным началом для пра­вотворческих органов демократического государства. Ими необхо­димо руководствоваться всем субъектам, принимая все иные нормы. Это своего рода указатель, ориентир и одновременно требо­вание для законодателя. Такие нормы содержатся в основном в кон­ституциях. В конституционном праве содержится много программ­ных идей, которые важны для установления порядка во многих сферах общественных отношений, но не путем возникновения кон­кретных правовых отношений, а путем провозглашения самых об­щих правил и принципов, которые направлены на создание кон­кретных норм.

Примером может служить норма, содержащаяся в ст. 2 Консти­туции РФ: «Права и свободы человека в Российской Федерации яв­ляются высшей ценностью», или в ч. 1 ст. 68: «Государственным языком Российской Федерации на всей ее территории является рус­ский язык». Такой же нормой будет установленное ч. 1 ст. 129 по­ложение о том, что «прокуратура Российской Федерации составляет единую централизованную систему с подчинением нижестоящих прокуроров вышестоящим и Генеральному прокурору Российской Федерации».

Нормы - правила поведения - это основная масса правовых норм. Именно такие правила составляют большинство во всех от­раслях права. Среди них наиболее распространены регулятивные и охранительные нормы.

Общие нормы - это нормы, распространяющие свое действие не на оду отрасль или институт права, а на несколько отраслей и институтов. Наиболее очевиден такой вид норм в общих частях той или иной отрасли права (уголовного, административного, уго­ловно-исполнительного и др.). Общие нормы охватывают комплекс регулируемых ими отношений в качестве общего правила для их участников. К программным, исходным нормам могут примыкать нормы по способам воздействия на поведение субъектов.

Эта классификация правовых норм несет на себе следы первона­чального образования права. В период становления прав его источ-


Похожая информация.


Методы системного анализа

Системный анализ - научный метод познания, представляющий собой последовательность действий по установлению структурных связей между переменными или элементами исследуемой системы. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов.

Для решения хорошо структурированных количественно выражаемых проблем используется известная методология исследования операций, которая состоит в построении адекватной математической модели (например, задачи линейного, нелинейного, динамического программирования, задачи теории массового обслуживания, теории игр и др.) и применении методов для отыскания оптимальной стратегии управления целенаправленными действиями.

Системный анализ предоставляет к использованию в различных науках, системах следующие системные методы и процедуры:

· абстрагирование и конкретизация

· анализ и синтез, индукция и дедукция

· формализация и конкретизация

· композиция и декомпозиция

· линеаризация и выделение нелинейных составляющих

· структурирование и реструктурирование

· макетирование

· реинжиниринг

· алгоритмизация

· моделирование и эксперимент

· программное управление и регулирование

· распознавание и идентификация

· кластеризация и классификация

· экспертное оценивание и тестирование

· верификация

и другие методы и процедуры.

Следует отметить задачи исследования системы взаимодействий анализируемых объектов с окружающей средой. Решение данной задачи предполагает:

– проведение границы между исследуемой системой и окружающей средой, предопределяющей предельную глубину

влияния рассматриваемых взаимодействий, которыми ограничивается рассмотрение;

– определение реальных ресурсов такого взаимодействия;

– рассмотрение взаимодействий исследуемой системы с системой более высокого уровня.

Задачи следующего типа связаны с конструированием альтернатив этого взаимодействия, альтернатив развития системы во времени и в пространстве. Важное направление развития методов системного анализа связано с попытками создания новых возможностей конструирования оригинальных альтернатив решения, неожиданных стратегий, непривычных представлений и скрытых структур. Другими словами, речь здесь идёт о разработке методов и средств усиления индуктивных возможностей человеческого мышления в отличие от его дедуктивных возможностей, на усиление которых, по сути дела, направлена разработка формальных логических средств. Исследования в этом направлении начаты лишь совсем недавно, и единый концептуальный аппарат в них пока отсутствует. Тем не менее, и здесь можно выделить несколько важных направлений – таких, как разработка формального аппарата индуктивной логики, методов морфологического анализа и других структурно-синтаксических методов конструирования новых альтернатив, методов синтактики и организации группового взаимодействия при решении творческих задач, а также изучение основных парадигм поискового мышления.

Задачи третьего типа заключаются в конструировании множества имитационных моделей , описывающих влияние того или иного взаимодействия на поведение объекта исследования. Отметим, что в системных исследованиях не преследуется цель создания некоей супермодели. Речь идёт о разработке частных моделей, каждая из которых решает свои специфические вопросы.

Даже после того как подобные имитационные модели созданы и исследованы, вопрос о сведении различных аспектов поведения системы в некую единую схему остается открытым. Однако решить его можно и нужно не посредством построения супермодели, а анализируя реакции на наблюдаемое поведение других взаимодействующих объектов, т.е. путём исследования поведения объектов – аналогов и перенесения результатов этих исследований на объект системного анализа. Такое исследование даёт основание для содержательного понимания ситуаций взаимодействия и структуры взаимосвязей, определяющих место исследуемой системы в структуре суперсистемы, компонентом которой она является.

Задачи четвёртого типа связаны с конструированием моделей принятия решений. Всякое системное исследование связано с исследованием различных альтернатив развития системы. Задача системных аналитиков – выбрать и обосновать наилучшую альтернативу развития. На этапе выработки и принятия решений необходимо учитывать взаимодействие системы с её подсистемами, сочетать цели системы с целями подсистем, выделять глобальные и второстепенные цели.

Наиболее развитая и в то же время наиболее специфическая область научного творчества связана с развитием теории принятия решений и формированием целевых структур, программ и планов. Здесь не ощущается недостатка и в работах, и в активно работающих исследователях. Однако и в данном случае слишком многие результаты находятся на уровне неподтверждённого изобретательства и разночтений в понимании как существа стоящих задач, так и средств их решения. Исследования в этой области включают:

а) построение теории оценки эффективности принятых решений или сформированных планов и программ;

б) решение проблемы многокритериальности в оценках альтернатив решения или планирования;

в) исследования проблемы неопределённости, особенно связанной не с факторами статистического характера, а с неопределённостью экспертных суждений и преднамеренно создаваемой неопределённостью, связанной с упрощением представлений о поведении системы;

г) разработка проблемы агрегирования индивидуальных предпочтений на решениях, затрагивающих интересы нескольких сторон, которые влияют на поведение системы;

д) изучение специфических особенностей социально-экономических критериев эффективности;

е) создание методов проверки логической согласованности целевых структур и планов и установления необходимого баланса между предопределённостью программы действий и её подготовленностью к перестройке при поступлении новой

информации как о внешних событиях, так и изменении представлений о выполнении этой программы.

Для последнего направления требуется новое осознание реальных функций целевых структур, планов, программ и определение тех, которые они должны выполнять, а также связей между ними.

Рассмотренные задачи системного анализа не охватывают полного перечня задач. Здесь перечислены те, которые представляют наибольшую сложность при их решении. Следует отметить, что все задачи системных исследований тесно взаимосвязаны друг с другом, не могут быть изолированы и решаться отдельно как по времени, так и по составу исполнителей. Более того, чтобы решать все эти задачи, исследователь должен обладать широким кругозором и владеть богатым арсеналом методов и средств научного исследования.



АНАЛИТИЧЕСКИЕ И СТАТИСТИЧЕСКИЕ МЕТОДЫ. Эти группы методов получили наибольшее распространение в практике проектирования и управления. Правда, для представления промежуточных и окончательных результатов моделирования широко используются графические представления (графики, диаграммы и т.п.). Однако последние являются вспомогательными; основу же модели, доказательства её адекватности составляют те или иные направления аналитических и статистических представлений. Поэтому, несмотря на то что по основным направлениям этих двух классов методов в вузах читаются самостоятельные курсы лекций, мы всё же кратко охарактеризуем их особенности, достоинства и недостатки с точки зрения возможности использования при моделировании систем.

Аналитическими в рассматриваемой классификации названы методы, которые отображают реальные объекты и процессы в виде точек (безразмерных в строгих математических доказательствах), совершающих какие-либо перемещения в пространстве или взаимодействующих между собой. Основу понятийного (терминологического) аппарата этих представлений составляют понятия классической математики (величина, формула, функция, уравнение, система уравнений, логарифм, дифференциал, интеграл и т.д.).

Аналитические представления имеют многовековую историю развития, и для них характерно не только стремление к строгости терминологии, но и к закреплению за некоторыми специальными величинами определённых букв (например, удвоенное отношение площади круга к площади вписанного в него квадрата p » 3,14; основание натурального логарифма – е » 2,7 и т.д.).

На базе аналитических представлений возникли и развиваются математические теории различной сложности – от аппарата классического математического анализа (методов исследования функций, их вида, способов представления, поиска экстремумов функций и т.п.) до таких новых разделов современной математики, как математическое программирование (линейное, нелинейное, динамическое и т.п.), теория игр (матричные игры с чистыми стратегиями, дифференциальные игры и т.п.).

Эти теоретические направления стали основой многих прикладных, в том числе теории автоматического управления, теории оптимальных решений и т.д.

При моделировании систем применяется широкий спектр символических представлений, использующих «язык» классической математики. Однако далеко не всегда эти символические представления адекватно отражают реальные сложные процессы, и их в этих случаях, вообще говоря, нельзя считать строгими математическими моделями.

Большинство из направлений математики не содержат средств постановки задачи и доказательства адекватности модели. Последняя доказывается экспериментом, который по мере усложнения проблем становится также всё более сложным, дорогостоящим, не всегда бесспорен и реализуем.

В то же время в состав этого класса методов входит относительно новое направление математики математическое программирование, которое содержит средства постановки задачи и расширяет возможности доказательства адекватности моделей.

Статистические представления сформировались как самостоятельное научное направление в середине прошлого века (хотя возникли значительно раньше). Основу их составляет отображение явлений и процессов с помощью случайных (стохастических) событий и их поведений, которые описываются соответствующими вероятностными (статистическими) характеристиками и статистическими закономерностями. Статистические отображения системы в общем случае (по аналогии с аналитическими) можно представить как бы в виде «размытой» точки (размытой области) в n-мерном пространстве, в которую переводит систему (её учитываемые в модели свойства) оператор Ф. «Размытую» точку следует понимать как некоторую область, характеризующую движение системы (её поведение); при этом границы области заданы с некоторой вероятностью p («размыты») и движение точки описывается некоторой случайной функцией.

Закрепляя все параметры этой области, кроме одного, можно получить срез по линии а – b, смысл которого – воздействие данного параметра на поведение системы, что можно описать статистическим распределением по этому параметру. Аналогично можно получить двумерную, трёхмерную и т.д. картины статистического распределения. Статистические закономерности можно представить в виде дискретных случайных величин и их вероятностей, или в виде непрерывных зависимостей распределения событий, процессов.

Для дискретных событий соотношение между возможными значениями случайной величины xi и их вероятностями pi, называют законом распределения.

Метод "мозговой атаки"

Группа исследователей (экспертов) разрабатывает способы решения поставленной задачи, при этом любой способ (любая мысль, высказанная вслух) включается в число рассматриваемых, чем больше идей - тем лучше. На предварительном этапе качество предложенных способов не учитывается, то есть предметом поиска является создание возможно большего количества вариантов решения задачи. Но для достижения успеха должны соблюдаться следующие условия:

· наличие вдохновителя идей;

· группа экспертов не превышает 5-6 человек;

· потенциал исследователей соизмерим;

· обстановка спокойная;

· соблюдены равные права, может быть предложено любое решение, критика идей не допускается;

· продолжительность работы не более 1 часа.

После того, как прекращается "поток идей", эксперты осуществляют критический отбор предложений, учитывая ограничения организационного и экономического характера. Отбор лучшей идеи может осуществляться по нескольким критериям.

Данный метод наиболее продуктивен на этапе разработки решения по реализации поставленной цели, при раскрытии механизма функционирования системы, при выборе критерия решения проблемы.

Метод "концентрации внимания на целях поставленной проблемы"

Этот метод состоит в том, что отбирается один из объектов (элементов, понятий), ассоциируемых с решаемой проблемой. При этом известно, что принятый к рассмотрению объект связан непосредственно с конечными целями этой проблемы. Затем исследуется связь между этим объектом и каким-либо другим, выбранным наугад. Далее отбирается третий элемент, точно также наугад, и исследуется его связь с первыми двумя и так далее. Таким образом создается некая цепь связанных между собой объектов, элементов или понятий. Если цепь обрывается, то процесс возобновляется, создается вторая цепочка и так далее. Таким образом происходит исследование системы.

Метод "входы-выходы системы"

Исследуемая система рассматривается обязательно совместно с окружающей средой. При этом особое внимание обращается на ограничения, которые накладывает внешняя среда на систему, а также ограничения, свойственные самой системе.

На первом этапе изучения системы рассматриваются возможные выходы системы и оцениваются результаты ее функционирования по изменениям окружающей среды. Затем исследуются возможные входы системы и их параметры, позволяющие системе функционировать в рамках принятых ограничений. И, в конце концов, на третьем этапе выбирают приемлемые входы, не нарушающие ограничения системы и не приводящие ее в рассогласование с целями окружающей среды.

Данный способ наиболее эффективен на этапах познания механизма функционирования системы и принятия решений.

Метод сценариев

Особенность метода состоит в том, что группа высококвалифицированных специалистов в описательной форме представляет возможный ход событий в той или иной системе - начиная от сложившейся ситуации и заканчивая некоторой результирующей ситуацией. При этом соблюдаются искусственно воздвигаемые, но возникающие в реальной жизни ограничения на вход и выход системы (по сырью, энергетическим ресурсам, финансам и так далее).

Основная идея данного метода - выявление связей различных элементов системы, которые проявляются при том или ином событии или ограничении. Результатом такого исследования является совокупность сценариев - возможных направлений решения проблемы, из которых путем сопоставления по какому-либо критерию можно было бы выбрать наиболее приемлемые.

Морфологический метод

Данный метод предусматривает поиск всех возможных решений проблемы путем исчерпывающей переписи этих решений. Например, Ф.Р.Матвеев выделяет шесть этапов претворения в жизнь этого метода:

· формулировка и определение ограничений проблемы;

· поиск возможных параметров решений и возможных вариаций этих параметров;

· нахождение всех возможных комбинаций этих параметров в получаемых решениях;

· сравнение решений с точки зрения преследуемых целей;

· выбор решений;

· углубленное изучение отобранных решений.

Методы моделирования

Модель представляет собой некоторую систему, созданную с целью представления в упрощенной и понятной форме сложной реальности, другими словами - модель представляет собой имитацию этой реальности.

Проблемы, решаемые при помощи моделей, многочисленны и разнообразны. Важнейшие из них:

· с помощью моделей исследователи пытаются лучше понять протекание сложного процесса;

· с помощью моделей осуществляют экспериментирование в том случае, когда это невозможно на реальном объекте;

· с помощью моделей оценивают возможность осуществления различных альтернативных решений.

Кроме того модели обладают такими ценными свойствами как:

· воспроизводимостью независимыми экспериментаторами;

· изменчивостью и возможностью совершенствования путем введения в модель новых данных или модификаций связей внутри модели.

Среди основных типов моделей следует отметить символические и математические модели.

Символические модели - схемы, диаграммы, графики, блок-схемы и так далее.

Математические модели - абстрактные построения, которые в математической форме описывают связи, отношения между элементами системы.

При построении моделей необходимо соблюдать следующие условия:

· иметь достаточно большой объем информации о поведении системы;

· стилизация механизмов функционирования системы должна происходить в таких пределах, чтобы имелась возможность достаточно точно отразить число и природу отношений и связей существующих в системе;

· использование методов автоматической обработки информации, особенно когда количество данных велико или природа взаимоотношений между элементами системы весьма сложна.

Вместе с тем математические модели имеют некоторые недостатки:

· стремление отразить изучаемый процесс в форме условий приводит к модели, которая может быть понятна только ее разработчику;

· с другой стороны, упрощение ведет к ограничению числа факторов, включенных в модель; следовательно, появляется неточность в отражении действительности;

· автор, создав модель, "забывает", что не учитывает действие многочисленных, может быть малозначительных факторов. Но совместное воздействие этих факторов на систему бывает таково, что конечные результаты не могут быть достигнуты на данной модели.

С целью нивелирования указанных недостатков модель необходимо проверить:

· насколько она правдоподобно и удовлетворительно отражает реальный процесс;

· вызывает ли изменение параметров соответствующее изменение результатов.

Сложные системы, в силу наличия множества дискретно функционирующих подсистем, как правило не могут быть адекватно описаны с помощью только математических моделей, поэтому широкое распространение получило имитационное моделирование. Имитационные модели получили большое распространение по двум причинам: во-первых, данные модели позволяют использовать всю располагаемую информацию (графическую, словесную, математические модели…) и, во-вторых, потому, что эти модели не накладывают жестких ограничений на используемые исходные данные. Таким образом имитационные модели позволяют творчески использовать всю имеющеюся информацию об объекте исследования.

Системный анализ – это методология теории систем, заключающаяся в исследовании любых объектов, представляемых в качестве систем, проведении их структуризации и последующего анализа. Главная особенность

системного анализа заключается в том, что он включает в себя не только методы анализа (от греч. analysis – расчленение объекта на элементы), но и методы синтеза (от греч. synthesis – соединение элементов в единое целое).

Главная цель системного анализа – обнаружить и устранить неопределенность при решении сложной проблемы на основе поиска наилучшего решения из существующих альтернатив.

Проблема в системном анализе – это сложный теоретический или практический вопрос, требующий разрешения. В основе любой проблемы лежит разрешение какого-либо противоречия. Например, выбор инновационного проекта, который отвечал бы стратегическим целям предприятия и его возможностям, является определенной проблемой. Поэтому поиск наилучших решений при выборе инновационных стратегий и тактики инновационной деятельности нужно осуществлять на основе системного анализа. Реализация инновационных проектов и инновационной деятельности всегда связана с элементами неопределенности, которые возникают в процессе нелинейного развития, как самих этих систем, так и систем окружения.

В основе методологии системного анализа лежат операции количественного сравнения и выбора альтернатив в процессе принятия решения, подлежащего реализации. Если требование критериев качества альтернатив выполнено, то могут быть получены их количественные оценки. Для того чтобы количественные оценки позволяли вести сравнение альтернатив, они должны отражать участвующие в сравнении критерии выбора альтернатив (результат, эффективность, стоимость и др.).

В системном анализе решение проблемы определяется как деятельность, которая сохраняет или улучшает характеристики системы или создает новую систему с заданными качествами. Приемы и методы системного анализа направлены на разработку альтернативных вариантов решения проблемы, выявление масштабов неопределенности по каждому варианту и сопоставление вариантов по их эффективности (критериям). Причем критерии выстраиваются па приоритетной основе. Системный анализ можно представить в виде совокупности основных логических элементов:

  • – цель исследования – решение проблемы и получение результата;
  • – ресурсы – научные средства решения проблемы (методы);
  • – альтернативы – варианты решений и необходимость выбора одного из нескольких решений;
  • – критерии – средство (признак) оценки решаемости проблемы;
  • – модель создания новой системы.

Причем формулирование цели системного анализа играет определяющую роль, так как она дает зеркальное отражение существующей проблемы, желаемый результат ее решения и описание ресурсов, с помощью которых можно достигнуть этого результата (рис. 4.2).

Рис. 4.2.

Цель конкретизируется и трансформируется применительно к исполнителям и условиям. Цель более высокого порядка всегда содержит исходную неопределенность, которую необходимо учитывать. Несмотря на это, цель должна быть определенной и однозначной. Ее постановка должна допускать инициативу исполнителей. "Гораздо важнее выбрать “правильную” цель, чем “правильную” систему", – указал Холл, автор книги по системотехнике; "выбрать не ту цель – значит решить не ту задачу; а выбрать не ту систему – значит просто выбрать неоптимальную систему".

Если располагаемые ресурсы не могут обеспечить реализацию поставленной цели, то мы получим не планируемые результаты. Цель – это и есть желаемый результат. Поэтому для реализации целей должны быть выбраны соответствующие ресурсы. Если ресурсы ограничены, то надо корректировать цель, т.е. планировать те результаты, которые можно получить при данном наборе ресурсов. Поэтому формулирование целей в инновационной деятельности должно иметь конкретные параметры.

Основные задачи системного анализа:

  • задача декомпозиции, т.е. разложение системы (проблемы) на отдельные подсистемы (задачи);
  • задача анализа заключается в определении законов и закономерностей поведения системы посредством обнаружения системных свойств и атрибутов;
  • задача синтеза еводится к созданию новой модели еистемы, определению ее структуры и параметров на основе полученных при решении задач знаний и информации.

Общая структура системного анализа представлена в табл. 4.1.

Таблица 4.1

Основные задачи и функции системного анализа

Структура системного анализа

декомпозиция

Определение и декомпозиция общей цели, основной функции

Функциональноструктурный анализ

Разработка новой модели системы

Выделение системы из среды

Морфологический анализ (анализ взаимосвязи компонентов)

Структурный синтез

Описание воздействующих факторов

Генетический анализ (анализ предыстории, тенденций, прогнозирование)

П араметрически й синтез

Описание тенденций развития, неопределенностей

Анализ аналогов

Оценка новой системы

Описание как "черного ящика"

Анализ эффективности

Функциональная, компонентная и структурная декомпозиция

Формирование требований к создаваемой системе

В концепции системного анализа процесс решения любой сложной проблемы рассматривается в качестве решения системы взаимосвязанных задач, каждая из которых решается своими предметными методами, а затем производится синтез этих решений, оцениваемый критерием (или критериями) достижения решаемости данной задачи. Логическая структура процесса принятия решений в рамках системного анализа представлена на рис. 4.3.

Рис. 4.3.

В инновационной деятельности не может быть готовых моделей решений, так как условия осуществления инноваций могут меняться, нужна методика, позволяющая на определенном этапе формировать модель решения, адекватную существующим условиям.

Для принятия "взвешенных" проектных, управленческих, социальных, экономических и других решений необходим широкий охват и всесторонний анализ факторов, существенно влияющих на решаемую проблему.

Системный анализ основывается на множестве принципов, которые определяют его основное содержание и отличие от других видов анализа. Это необходимо знать, понимать и применять в процессе реализации системного анализа инновационной деятельности.

К ним относятся следующие принципы :

  • 1) конечной цели – формулирование цели исследования, определение основных свойств функционирующей системы, ее назначения (целеполагания), показателей качества и критериев оценки достижения цели;
  • 2) измерения. Суть этого принципа в сопоставимости параметров системы с параметрами системы высшего уровня, т.е. внешней среды. О качестве функционирования какой-либо системы можно судить только относительно ее результатов к надсистеме, т.е. для определения эффективности функционирования исследуемой системы надо представить ее в качестве части системы высшего уровня и проводить оценку ее результатов относительно целей и задач надсистемы или окружающей среды;
  • 3) эквифинальности – определение формы устойчивого развития системы по отношению к начальным и граничным условиям, т.е. определение ее потенциальных возможностей. Система может достигнуть требуемого конечного состояния независимо от времени и определяемого исключительно собственными характеристиками системы при различных начальных условиях и различными путями;
  • 4) единства – рассмотрение системы как целого и совокупности взаимосвязанных элементов. Принцип ориентирован на "взгляд внутрь" системы, на расчленение ее с сохранением целостных представлений о системе;
  • 5) взаимосвязи – процедуры определения связей, как внутри самой системы (между элементами), так и с внешней средой (с другими системами). В соответствии с этим принципом исследуемую систему, в первую очередь, следует рассматривать как часть (элемент, подсистему) другой системы, называемой надсистемой;
  • 6) модульного построения – выделение функциональных модулей и описание совокупности их входных и выходных параметров, что позволяет избежать излишней детализации для создания абстрактной модели системы. Выделение модулей в системе позволяет рассматривать ее как совокупность модулей;
  • 7) иерархии – определение иерархии функционально-структурных частей системы и их ранжирование, что упрощает разработку новой системы и устанавливает порядок ее рассмотрения (исследования);
  • 8) функциональности – совместное рассмотрение структуры и функций системы. В случае внесения новых функций в систему следует разрабатывать и новую структуру, а не включать новые функции в старую структуру. Функции связаны с процессами, которые требуют анализа различных потоков (материальных, энергии, информации), что в свою очередь отражается на состоянии элементов системы и самой системы в целом. Структура всегда ограничивает потоки в пространстве и во времени;
  • 9) развития – определение закономерностей ее функционирования и потенциала к развитию (или росту), адаптации к изменениям, расширению, усовершенствованию, встраивание новых модулей на основе единства целей развития;
  • 10) децентрализации – сочетание функций централизации и децентрализации в системе управления;
  • 11) неопределенности – учет факторов неопределенности и случайных факторов воздействия, как в самой системе, так и со стороны внешней среды. Идентификация факторов неопределенности в качестве факторов риска позволяет их анализировать и создавать систему управления рисками.

Принцип конечной цели служит для определения абсолютного приоритета конечной (глобальной) цели в процессе проведения системного анализа. Этот принцип диктует следующие правила:

  • 1) сначала необходимо сформулировать цели исследования;
  • 2) анализ проводится на основе основной цели системы. Это дает возможность определить ее основные существенные свойства, индикаторы качества и критерии оценки;
  • 3) в процессе синтеза решений любые изменения нужно оценивать с позиций достижения конечной цели;
  • 4) цель функционирования искусственной системы задается, как правило, надсистемой, в которой исследуемая система является составной частью .

Процесс реализации системного анализа при решении любой проблемы можно охарактеризовать в качестве последовательности основных этапов (рис. 4.4).

Рис. 4.4.

На этапе декомпозиции осуществляются:

  • 1) определение и декомпозиция общих целей решения проблемы, основной функции системы как ограничения развития в пространстве, состояния системы или области допустимых условий существования (определяются дерево целей и дерево функций);
  • 2) выделение системы из среды по критерию участия каждого элемента системы в процессе, приводящем к искомому результату на основе рассмотрения системы в качестве составной части надсистемы;
  • 3) определение и описание воздействующих факторов;
  • 4) описание тенденций развития и неопределенностей разного вида;
  • 5) описание системы как "черного ящика";
  • 6) декомпозиция системы по функциональному признаку, по виду входящих в нее элементов, но структурным особенностям (по виду отношений между элементами).

Уровень декомпозиции определяется исходя из поставленной цели исследования. Декомпозиция осуществляется в виде подсистем, которые могут представлять собой последовательное (каскадное) соединение элементов, параллельное соединение элементов и соединение элементов с обратной связью.

На этапе анализа осуществляется детальная проработка системы, которая включает:

  • 1) функционально-структурный анализ существующей системы, позволяющий сформулировать требования к новой системе. Он включает уточнение состава и закономерностей функционирования элементов, алгоритмы функционирования и взаимодействия подсистем (элементов), разделение управляемых и неуправляемых характеристик, задание пространства состояния, временны́х параметров, анализ целостности системы, формирование требований к создаваемой системе;
  • 2) анализ взаимосвязей компонентов (морфологический анализ);
  • 3) генетический анализ (предыстория, причины развития ситуации, имеющихся тенденций, построение прогнозов);
  • 4) анализ аналогов;
  • 5) анализ эффективности результатов, использования ресурсов, своевременности и оперативности. Анализ включает в себя выбор шкал измерения, формирование индикаторов и критериев эффективности, оценку результатов;
  • 6) формулирование требований к системе, формулирование критериев для оценки и ограничений.

В процессе анализа используют различные способы решения задач.

На этапе синтеза :

  • 1) создастся модель требуемой системы. Сюда входят: определенный математический аппарат, моделирование, оценивание модели на адекватность, эффективность, простоту, погрешности, баланс между сложностью и точностью, различные варианты реализации, блочность и системность построения;
  • 2) производится синтез альтернативных структур системы, позволяющих решить проблему;
  • 3) производится синтез различных параметров системы, с целью устранить проблему;
  • 4) производится оценка вариантов синтезированной системы с обоснованием самой схемы оценки, обработкой результатов и выбора самого эффективного решения;
  • 5) оценка степени решения проблемы осуществляется при завершении системного анализа.

Что касается методов системного анализа, то следует их рассмотреть более подробно, так как их количество достаточно велико и предполагает возможность их использования при решении конкретных задач в процессе декомпозиции проблемы. Особое место в системном анализе занимает метод моделирования, который реализует принцип адекватности в теории систем, т.е. описание системы в качестве адекватной модели. Модель – эго упрощенное подобие сложного объекта-системы, в котором сохраняются ее характерные свойства.

В системном анализе метод моделирования играет определяющую роль, так как любая реальная сложная система при исследовании и проектировании может быть представлена только определенной моделью (концептуальной, математической, структурной и т.п.).

В системном анализе применяются специальные методы моделирования:

  • – имитационное моделирование, на основе методов статистики и языков программирования;
  • – ситуативное моделирование, на основе методов теории множеств, теории алгоритмов, математической логики и представления проблемных ситуаций;
  • – информационное моделирование, на основе математических методов теории информационного поля и информационных цепей.

Кроме того в системном анализе широко используют методы индукционного и редукционного моделирования.

Индукционное моделирование осуществляется с целью получения сведений о специфике объекта-системы, ее структуре и элементах, способах их взаимодействия на основе анализа частного и приведения этих сведений к общему описанию. Индуктивный метод моделирования сложных систем используется в том случае, когда невозможно адекватно представить модель внутренней структуры объекта. Это метод позволяет создать обобщенную модель объекта-системы, сохраняя специфику организационных свойств, связей и отношений между элементами, что отличает ее от другой системы. При построении такой модели часто используют методы логики теории вероятностей, т.е. такая модель становится логической или гипотетической. Затем определяются обобщенные параметры структурно-функциональной организации системы и описываются их закономерности, с помощью методов аналитической и математической логики.

Редукционное моделирование используют для того, чтобы получить информацию о законах и закономерностях взаимодействия в системе различных элементов с целью сохранить целое структурное образование.

При таком методе исследования сами элементы заменяются описанием их внешних свойств. Использование метода редукционного моделирования позволяет решить задачи по определению свойств элементов, свойств их взаимодействия и свойств самой структуры системы, в соответствии принципам целого образования. Такой метод используют для поиска методов декомпозиции элементов и изменения структуры, придавая системе в целом новые качества. Этот метод отвечает целям синтеза свойств системы на основе исследования внутреннего потенциала к изменению. Практическим результатом использования метода синтеза в редукционном моделировании становится математический алгоритм описания процессов взаимодействия элементов в целом образовании .

Основные методы системного анализа представляют совокупность количественных и качественных методов, которые можно представить в виде табл. 4.2. По классификации В. Н. Волковой и А. А. Денисова, все методы можно разделить на два основных вида: методы формального представления систем (МФПС) и методы и методы активизации интуиции специалистов (МАИС).

Таблица 4.2

Методы системного анализа

Рассмотрим содержание основных методов формального представления систем , которые используют математические средства.

Аналитические методы, включающие методы классической математики: интегрального и дифференциального исчисления, поиска экстремумов функций, вариационного исчисления; математического программирования; методы теории игр, теории алгоритмов, теории рисков и т.п. Эти методы позволяют описать ряд свойств многомерной и многосвязной системы, отображаемой в виде одной-единственной точки, совершающей движение в n -мерном пространстве. Это отображение осуществляется с помощью функции f (s ) или посредством оператора (функционала) F (S ). Также возможно отобразить точками две системы или более или их части и рассматривать взаимодействие этих точек. Каждая из этих точек совершает движение и имеет свое поведение в n -мерном пространстве. Это поведение точек в пространстве и их взаимодействие описываются аналитическими закономерностями и могут быть представлены в виде величин, функций, уравнений или системы уравнений .

Применение аналитических методов обусловлено лишь тогда, когда все системные свойства можно представить в форме детерминированных параметров или зависимостей между ними. Получить такие параметры в случае с многокомпонентными, многокритериальными системами не всегда представляется возможным. Для этого требуется предварительно установить степени адекватности описания подобной системы с помощью аналитических методов. Это, в свою очередь, требует применения промежуточных, абстрактных моделей, которые можно исследовать аналитическими методами, или же разработку совершенно новых системных методов анализа.

Статистические методы являются основой следующих теорий: вероятностей, математической статистики, исследования операций, статистического имитационного моделирования, массового обслуживания, включая метод Монте-Карло и др. Статистические методы позволяют отобразить систему с помощью случайных (стохастических) событий, процессов, которые описываются соответствующими вероятностными (статистическими) характеристиками и статистическими закономерностями. Применяются статистические методы для исследования сложных недетерминированных (саморазвивающихся, самоуправляемых) систем.

Теоретико-множественные методы, согласно М. Месаровичу, служат основой создания общей теории систем. С помощью таких методов система может быть описана в универсальных понятиях (множество, элемент множества и т.д.). При описании возможно вводить любые отношения между элементами, руководствуясь математической логикой, которая используется как формальный описательный язык взаимосвязей между элементами разных множеств. Теоретико-множественные методы дают возможность описать сложные системы формальным языком моделирования.

Такие методы целесообразно использовать в случаях, если сложные системы не могут быть описаны методами одной предметной области. Теоретико-множественные методы системного анализа являются основой создания и развития новых языков программирования и создания систем автоматизированного проектирования.

Логические методы являются языком описания систем в понятиях алгебры логики. Наибольшее распространение логические методы получили иод названием булевой алгебры как бинарного представления о состоянии элементных схем компьютера. Логические методы позволяют описывать систему в виде более упрощенных структур на основе законов математической логики. На базе таких методов развиваются новые теории формального описания систем в теориях логического анализа и автоматов. Все эти методы расширяют возможность применения системного анализа и синтеза в прикладной информатике. Эти методы используются для создания моделей сложных систем, адекватных законам математической логики для построения устойчивых структур.

Лингвистические методы. С их помощью создаются особые языки, описывающие системы в виде понятий тезауруса. Тезаурус представляет собой множество смысловыражающих единиц некоторого языка с заданной на нем системой семантических отношений. Такие методы нашли свое применение в прикладной информатике.

Семиотические методы базируются на понятиях: символ (знак), знаковая система, знаковая ситуация, т.е. используемых для символического описания содержания в информационных системах.

Лингвистические и семиотические методы стали широко применяться в том случае, когда для первого этапа исследования невозможно формализовать принятие решений в плохо формализуемых ситуациях и нельзя использовать аналитические и статистические методы. Эти методы являются основой развития языков программирования, моделирования, автоматизации проектирования систем разной сложности .

Графические методы. Используются для отображения объектов в виде образа системы, а также позволяют отобразить в обобщенном виде системные структуры и связи. Графические методы бывают объемными и линейно-плоскостными. В основном используются в виде графика Ганта, гистограмм, диаграмм, схем и рисунков. Такие методы и получаемое с их помощью представление дают возможность наглядно отобразить ситуацию или процесс принятия решений в изменяющихся условиях.

Алексеева М. Б. Системный подход и системный анализ в экономике.
  • Алексеева М. Б., Балан С. Н. Основы теории систем и системного анализа.