Переход на сверхзвуковую скорость. Что такое звуковой барьер

Републикую свой старый текст на тему “звукового барьера”:

Оказывается, одним из широко распространённых околоавиационных заблуждений является так называемый “звуковой барьер”, который “преодолевают” самолёты.

Даже больше: со сверхзвуковым полётом связан целый букет заблуждений. Как же обстоит дело в реальности? (Рассказ с фотографиями.)

Заблуждение первое: “хлопок”, якобы сопровождающий “преодоление звукового барьера” (ранее, ответ на этот вопрос опубликован на сайте “Элементы”).

С “хлопком” происходит недоразумение, вызванное неверным пониманием термина “звуковой барьер”. Этот “хлопок” правильно называть “звуковым ударом”. Самолет, движущийся со сверхзвуковой скоростью, создает в окружающем воздухе ударные волны, скачки воздушного давления. Упрощенно эти волны можно представить себе в виде сопровождающего полет самолета конуса, с вершиной, как бы привязанной к носовой части фюзеляжа, а образующими, направленными против движения самолета и распространяющимися довольно далеко, например до поверхности земли.

Когда граница этого воображаемого конуса, обозначающая фронт основной звуковой волны, достигает уха человека, то резкий скачок давления воспринимается на слух как хлопок. Звуковой удар, как привязанный, сопровождает весь полет самолета, при условии что самолет движется достаточно быстро, пусть и с постоянной скоростью. Хлопком же кажется проход основной волны звукового удара над фиксированной точкой поверхности земли, где, например, находится слушатель.

Другими словами, если бы сверхзвуковой самолет с постоянной, но сверхзвуковой, скоростью принялся летать над слушателем туда-сюда, то хлопок слышался бы каждый раз, спустя некоторое время после пролета самолета над слушателем на достаточно близком расстоянии.

А “звуковым барьером” в аэродинамике называют резкий скачок воздушного сопротивления, возникающий при достижении самолетом некоторой пограничной скорости, близкой к скорости звука. При достижении этой скорости характер обтекания самолета воздушным потоком меняется кардинальным образом, что в свое время сильно затрудняло достижение сверхзвуковых скоростей. Обычный, дозвуковой, самолет не способен устойчиво лететь быстрее звука, как бы его ни разгоняли, – он просто потеряет управление и развалится.

Для преодоления звукового барьера ученым пришлось разработать крыло со специальным аэродинамическим профилем и придумать другие ухищрения. Интересно, что пилот современного сверхзвукового самолета хорошо чувствует “преодоление” своим летательным аппаратом звукового барьера: при переходе на сверхзвуковое обтекание ощущается “аэродинамический удар” и характерные “скачки” в управляемости. Вот только с “хлопками” на земле эти процессы напрямую не связаны.

Заблуждение второе: “срыв тумана” .

Если о “хлопке” почти все знают, то с “туманом” ситуация несколько более “специальная”. Есть множество снимков, где летящий самолёт (обычно это истребитель) как бы “выскакивает” из туманного конуса. Смотрится очень эффектно:

Туман и относят к “звуковому барьеру”. Мол, это на фотографии как раз запечатлён момент “преодоления”, а туман и есть “тот самый барьер”.

На самом же деле, возникновение тумана связано лишь с резким перепадом давления, сопровождающим полёт самолёта. В результате аэродинамических эффектов за элементами конструкции самолёта образуются не только области повышенного давления, но и области разрежения воздуха (возникают колебания давления). Именно в этих областях разрежения (протекающего, фактически, без теплообмена с окружающей средой, так как процесс “очень быстрый”) и конденсируется водяной пар. Причиной этому служит резкое падение “локальной температуры”, приводящее к резкому смещению так называемой “точки росы”.

Так что, если влажность воздуха и температура подходят, то такой туман – вызванный интенсивной конденсацией атмосферной влаги – сопровождает весь полёт самолёта. И не обязательно на сверхзвуковой скорости. Например, на фотографии ниже, бомбардировщик B-2, а это дозвуковой самолёт, сопровождается характерной дымкой:

Конечно, так как фотография фиксирует один миг полёта, то, в случае со сверхзвуковыми самолётами, создаётся ощущение “выскакивающего” из тумана истребителя. Особенно выраженного эффекта можно достичь при полёте на небольших высотах над морем, так как в этом случае атмосфера обычно очень влажная.

Именно поэтому большинство “художественных” снимков сверхзвукового полёта сделано с борта того или иного корабля, а запечатлены на снимках самолёты палубной авиации.

(Использованы фотографии U.S. Navy News Service и U.S. Air Force Press Service)

(Отдельное спасибо Игорю Иванову за ценное замечание по физике образования тумана.)

Далее - мнения и дискуссии

(Сообщения ниже добавляются читателями сайта, через форму, расположенную в конце страницы.)

Или превышающих её.

Энциклопедичный YouTube

    1 / 3

    Как САМОЛЕТ преодолевает ЗВУКОВОЙ БАРЬЕР

    Полет в "космос" на самолете U-2 / Вид из кабины пилота

    Звуковой барьер. Полеты на сверхзвуковой скорости.

    Субтитры

Ударная волна, вызванная летательным аппаратом

Уже в ходе Второй мировой войны скорость истребителей стала приближаться к скорости звука. При этом пилоты иногда стали наблюдать непонятные в то время и угрожающие явления, происходящие с их машинами при полётах с предельными скоростями. Сохранился эмоциональный отчёт лётчика ВВС США своему командиру генералу Арнольду:

Сэр, наши самолёты уже сейчас очень строги. Если появятся машины с ещё большими скоростями, мы не сможем летать на них. На прошлой неделе я на своём «Мустанге» спикировал на Me-109 . Мой самолёт затрясся, словно пневматический молоток, и перестал слушаться рулей. Я никак не мог вывести его из пике. Всего в трёхстах метрах от земли я с трудом выровнял машину…

После войны, когда многие авиаконструкторы и лётчики-испытатели предпринимали настойчивые попытки достичь психологически значимой отметки - скорости звука, эти непонятные явления становились нормой, и многие из таких попыток закончились трагически. Это и вызвало к жизни не лишённое мистики выражение «звуковой барьер» (фр. mur du son , нем. Schallmauer - звуковая стена). Пессимисты утверждали, что этот предел превзойти невозможно, хотя энтузиасты, рискуя жизнью, неоднократно пытались сделать это. Развитие научных представлений о сверхзвуковом движении газа позволило не только объяснить природу «звукового барьера», но и найти средства его преодоления.

При дозвуковом обтекании фюзеляжа, крыла и оперения самолёта на выпуклых участках их обводов возникают зоны местного ускорения потока . Когда скорость полёта летательного аппарата приближается к звуковой, местная скорость движения воздуха в зонах ускорения потока может несколько превысить скорость звука (рис. 1а). Миновав зону ускорения, поток замедляется, с неизбежным образованием ударной волны (таково свойство сверхзвуковых течений: переход от сверхзвуковой скорости к дозвуковой всегда происходит разрывно - с образованием ударной волны). Интенсивность этих ударных волн невелика - перепад давления на их фронтах мал, но они возникают сразу во множестве, в разных точках поверхности аппарата, и в совокупности они резко меняют характер его обтекания, с ухудшением его лётных характеристик: подъёмная сила крыла падает, воздушные рули и элероны теряют эффективность, аппарат становится неуправляемым, и всё это носит крайне нестабильный характер, возникает сильная вибрация . Это явление получило название волнового кризиса . Когда скорость движения аппарата становится сверхзвуковой ( > 1), течение вновь становится стабильным, хотя его характер изменяется принципиально (рис. 1б).

Рис. 1а. Аэрокрыло в близком к звуковому потоке. Рис. 1б. Аэрокрыло в сверхзвуковом потоке.

У крыльев с относительно толстым профилем в условиях волнового кризиса центр давления резко смещается назад, в результате чего нос самолёта «тяжелеет». Пилоты поршневых истребителей с таким крылом, пытавшиеся развить предельную скорость в пикировании с большой высоты на максимальной мощности, при приближении к «звуковому барьеру» становились жертвами волнового кризиса - попав в него, было невозможно выйти из пикирования не погасив скорость, что в свою очередь очень сложно сделать в пикировании. Наиболее известным случаем затягивания в пикирование из горизонтального полёта в истории отечественной авиации является катастрофа Бахчиванджи при испытании ракетного БИ-1 на максимальную скорость. У лучших истребителей Второй мировой войны с прямыми крыльями, таких как P-51 «Мустанг» или Me-109 , волновой кризис на большой высоте начинался со скоростей 700-750 км/ч. В то же время, реактивные Мессершмитт Me.262 и Me.163 того же периода имели стреловидное крыло, благодаря чему без проблем развивали скорость свыше 800 км/ч. Следует также отметить, что самолёт с традиционным винтом в горизонтальном полёте не может достичь скорости, близкой к скорости звука, поскольку лопасти воздушного винта попадают в зону волнового кризиса и теряют эффективность значительно раньше самолёта. Сверхзвуковые винты с саблевидными лопастями способны решить эту проблему, но на данный момент такие винты получаются слишком сложными в техническом плане и очень шумными, поэтому на практике не применяются.

Современные дозвуковые самолёты с крейсерской скоростью полёта, достаточно близкой к звуковой (свыше 800 км/ч), обычно выполняются со стреловидным крылом и оперением с тонкими профилями, что позволяет сместить скорость, при которой начинается волновой кризис, в сторону бо́льших значений. Сверхзвуковые самолёты, которым приходится проходить участок волнового кризиса при наборе сверхзвуковой скорости, имеют конструктивные отличия от дозвуковых, связанные как с особенностями сверхзвукового течения воздушной среды, так и с необходимостью выдерживать нагрузки, возникающие в условиях сверхзвукового полёта и волнового кризиса, в частности - треугольное в плане крыло с ромбовидным или треугольным профилем .

  • на дозвуковых скоростях полёта следует избегать скоростей, при которых начинается волновой кризис (эти скорости зависят от аэродинамических характеристик самолёта и от высоты полёта);
  • переход с дозвуковой скорости на сверхзвуковую реактивными самолётами должен выполняться насколько возможно быстрее, с использованием форсажа двигателя, чтобы избежать длительного полёта в зоне волнового кризиса.

Термин волновой кризис применяется и к водным судам, движущимся со скоростями, близкими к скорости волн на поверхности воды. Развитие волнового кризиса затрудняет рост скорости. Преодоление судном волнового кризиса означает выход на режим глиссирования (скольжения корпуса по поверхности воды).

В полётах со снижением на опытном истребителе

Иногда, когда в небе пролетает реактивный самолет, можно услышать громкий хлопок, по звуку напоминающий взрыв. Этот «врыв» является результатом преодоления самолетом звукового барьера.

Что такое звуковой барьер и почему мы слышим взрыв? И кто первым преодолел звуковой барьер ? Эти вопросы мы рассмотрим ниже.

Что такое звуковой барьер и как он образуется?

Аэродинамический звуковой барьер – ряд явлений, которые сопровождают движение любого летательного аппарата (самолета, ракеты и т.п.), скорость которого равна или превышает скорость звука. Другими словами, аэродинамический «звуковой барьер» - это резкий скачок сопротивления воздуха, который возникает при достижении самолетом скорости звука.

Звуковые волны перемещаются в пространстве с определенной скоростью, которая изменяется в зависимости от высоты, температуры и давления. Например, на уровне моря скорость звука составляет примерно 1220 км/час, на высоте 15 тыс. м – до 1000 км/час и т.д. Когда скорость самолета приближается к скорости звука, на него действуют определенные нагрузки. На обычных скоростях (дозвуковых) нос самолета «гонит» перед собой волну сжатого воздуха, скорость которой соответствует скорости звука. Скорость движения волны больше, чем обычная скорость самолета. В результате этого, воздух свободно обтекает всю поверхность самолета.

Но, если скорость самолета соответствует скорости звука, волна сжатия образуется не на носу, а перед крылом. В результате этого образуется ударная волна, увеличивающая нагрузки на крылья.

Чтобы летательный аппарат смог преодолеть звуковой барьер, кроме определенной скорости он должен иметь особую конструкцию. Именно поэтому авиаконструкторы разработали и применили в самолетостроении специальный аэродинамический профиль крыла и другие хитрости. В момент преодоления звукового барьера пилот современного сверхзвукового летательного аппарата ощущает вибрации, «скачки» и «аэродинамический удар», который на земле мы воспринимаем, как хлопок или взрыв.

Кто первым преодолел звуковой барьер?

Вопрос «первопроходцев» звукового барьера такой же, как и вопрос первых покорителей космоса. На вопрос «Кто первым преодолел сверхзвуковой барьер ?» можно дать разные ответы. Это и первый человек, преодолевший звуковой барьер, и первая женщина, и, как ни странно, первое устройство…

Первым, кто преодолел звуковой барьер, был летчик-испытатель Чарльз Эдвурд Йегер (Чак Игер). 14 октября 1947 года его экспериментальный самолет Bell X-1, оснащенный ракетным двигателем, выйдя в пологое пикирование с высоты 21379 м над Викторвиллем (Калифорния, США), достиг скорости звука. Скорость самолета в этот момент составила 1207 км/ч.

На протяжении своей карьеры военный летчик сделал большой вклад в развитие не только американской военной авиации, но и космонавтики. Чарльз Элвуд Йегер закончил свою карьеру в звании генерала ВВС США, побывав во многих уголках планеты. Опыт военного летчика пригодился даже в Голливуде при постановке эффектных воздушных трюков в художественном фильме «Летчик».

Историю Чака Йегера о преодолении звукового барьера рассказывает фильм «Парни что надо», который в 1984 году удостоился четырех статуэток Оскар.

Другие «покорители» звукового барьера

Кроме Чарльза Йегера, который первым преодолел звуковой барьер, были и другие рекордсмены.

  1. Первый советский летчик-испытатель – Соколовский (26 декабря 1948).
  2. Первая женщина – американка Жаклин Кохран (18 мая 1953 г.). Пролетая над военно-воздушной базой Эдвардс (Калифорния, США), ее самолет F-86 преодолел звуковой барьер на скорости 1223 км/час.
  3. Первый гражданский самолет – американский пассажирский авиалайнер Douglas DC-8 (21 августа 1961 г.). Его полет, проходивший на высоте около 12,5 тыс. м, был экспериментальным и организовывался с целью сбора данных, необходимых для будущего проектирования передних кромок крыльев.
  4. Первый автомобиль, преодолевший звуковой барьер - Thrust SSC (15 октября 1997 г.).
  5. Первый человек, преодолевший звуковой барьер в свободном падении – американец Джо Киттингер (1960 г.), прыгнувший с парашютом с высоты 31,5 км. Однако после него, пролетая 14 октября 2012 г. над американским городом Розуэлл (Нью-Мексико, США), австриец Феликс Баумгартнер поставил мировой рекорд, покинув воздушный шар с парашютом на высоте 39 км. Его скорость при этом составила около 1342,8 км/час, а спуск на землю, большая часть пути которого проходила в свободном падении, занял всего 10 минут.
  6. Мировой рекорд преодоления звукового барьера летательным аппаратом принадлежит гиперзвуковой аэробаллистической ракете Х-15 класса «воздух-земля» (1967 г.), находящейся сейчас на вооружении российской армии. Скорость ракеты на высоте 31,2 км составила 6389 км/час. Хотелось бы отметить, что максимально возможная скорость передвижения человека в истории пилотируемых летательных аппаратов – 39897 км/час, которую в 1969 г. достиг американский космический корабль «Аполлон-10».

Первое изобретение, преодолевшее звуковой барьер

Как ни странно, но первым изобретением, преодолевшим звуковой барьер был… простой хлыст, придуманный древними китайцами 7 тыс. лет назад.

До изобретения в 1927 году моментальной фотографии, никто не мог подумать, что щелчок хлыста – это не просто удар ремешка о рукоятку, а миниатюрный сверхзвуковой щелчок. Во время резкого взмаха формируется петля, скорость которой увеличивается в несколько десятков раз и сопровождается щелчком. Петля преодолевает звуковой барьер на скорости порядка 1200 км/час.

Правообладатель иллюстрации SPL

О впечатляющих фотографиях реактивных истребителей в плотном конусе водяного пара часто говорят, что это, мол, самолет преодолевает звуковой барьер. Но это ошибка. Обозреватель рассказывает об истинной причине феномена.

Это эффектное явление неоднократно запечатлевали фотографы и видеооператоры. Военный реактивный самолет проходит над землей на большой скорости, несколько сотен километров в час.

По мере того как истребитель ускоряется, вокруг него начинает формироваться плотный конус конденсата; создается впечатление, что самолет - внутри компактного облака.

Будоражащие фантазию подписи под такими фотографиями зачастую утверждают, что перед нами - визуальное свидетельство звукового удара при выходе самолета на сверхзвуковую скорость.

На самом деле, это не совсем так. Мы наблюдаем так называемый эффект Прандтля-Глоерта - физическое явление, возникающее при приближении самолета к скорости звука. С преодолением звукового барьера оно не связано.

  • Другие статьи сайта BBC Future на русском языке

По мере развития авиастроения аэродинамические формы становились все более обтекаемыми, а скорость летательных аппаратов неуклонно росла – самолеты начали делать с окружающим их воздухом такие вещи, на которые не были способны их более тихоходные и громоздкие предшественники.

Загадочные ударные волны, формирующиеся вокруг низколетящих самолетов по мере приближения к скорости звука, а затем и преодоления звукового барьера, свидетельствуют о том, что воздух на таких скоростях ведет себя весьма странным образом.

Так что же это за таинственные облака конденсата?

Правообладатель иллюстрации Getty Image caption Эффект Прандтля-Глоерта наиболее ярко выражен при полетах в теплой, влажной атмосфере

По словам Рода Ирвина, председателя аэродинамической группы Королевского общества воздухоплавания, условия, при которых возникает конус пара, непосредственно предшествуют преодолению самолетом звукового барьера. Однако фотографируют это явление обычно на скоростях чуть меньше скорости звука.

Приземные слои воздуха плотнее, чем атмосфера на больших высотах. При полетах на малых высотах возникает повышенные трение и лобовое сопротивление.

Кстати, летчикам запрещено преодолевать звуковой барьер над сушей. "Выходить на сверхзвук можно над океаном, но не над твердой поверхностью, - объясняет Ирвин. - Между прочим, это обстоятельство было проблемой для сверхзвукового пассажирского лайнера Concorde - запрет ввели уже после ввода его в эксплуатацию, и экипажу разрешалось развивать сверхзвуковую скорость только над водной поверхностью".

Более того, визуально зарегистрировать звуковой удар при выходе самолета на сверхзвук чрезвычайно трудно. Невооруженным глазом его не увидеть - только при помощи специального оборудования.

Для фотографирования моделей, продуваемых на сверхзвуковых скоростях в аэродинамических трубах, обычно используют специальные зеркала, чтобы засечь разницу в отражении света, вызванную формированием ударной волны.

Правообладатель иллюстрации Getty Image caption При перепаде воздушного давления температура воздуха понижается, и содержащаяся в нем влага превращается в конденсат

Фотографии, полученные так называемым шлирен-методом (или методом Теплера), используют для визуализации ударных волн (или, как их еще называют, скачков уплотнения), образующихся вокруг модели.

В ходе продувок вокруг моделей не создаются конусы конденсата, поскольку используемый в аэродинамических трубах воздух предварительно осушается.

Конусы водяного пара связаны со скачками уплотнения (а их несколько), формирующимися вокруг самолета по мере набора им скорости.

Когда скорость летательного аппарата приближается к скорости звука (около 1234 км/ч на уровне моря), в обтекающем его воздухе возникает перепад местного давления и температуры.

Как следствие, воздух теряет способность удерживать влагу, и формируется конденсат в форме конуса, как на этом видео .

"Видимый конус пара вызван скачком уплотнения, при котором возникает перепад давления и температуры окружающего самолет воздуха", - говорит Ирвин.

На многих из самых удачных фотографий этого явления запечатлены самолеты ВМС США - и это неудивительно, учитывая, что теплый, влажный воздух у поверхности моря, как правило, способствует более яркому проявлению эффекта Прандтля-Глоерта.

Такие трюки часто проделывают истребители-бомбардировщики F/A-18 Hornet – это основной тип самолетов палубного базирования американской морской авиации.

Правообладатель иллюстрации SPL Image caption Скачок уплотнения при выходе самолета на сверхзвук трудно обнаружить невооруженным глазом

На таких же боевых машинах летают члены пилотажной группы ВМС США Blue Angels, мастерски выполняющие маневры, при которых вокруг самолета образуется конденсационное облако.

Из-за зрелищности явления его нередко используют в целях популяризации морской авиации. Летчики намеренно маневрируют над морем, где условия для возникновения эффекта Прандтля-Глоерта наиболее оптимальны, а поблизости наготове дежурят профессиональные флотские фотографы - ведь сделать четкий снимок реактивного самолета, летящего со скоростью 960 км/ч, на обычный смартфон невозможно.

Наиболее эффектно конденсационные облака выглядят на так называемом трансзвуковом-режиме полета, когда воздух частично обтекает самолет на сверхзвуковой скорости, а частично - на дозвуковой.

"Самолет при этом необязательно летит на сверхзвуковой скорости, но воздух обтекает верхнюю поверхность его крыла с большей скоростью, чем нижнюю, что приводит к местному скачку уплотнения", - говорит Ирвин.

По его словам, для возникновения эффекта Прандтля-Глоерта необходимы определенные климатические условия (а именно - теплый и влажный воздух), с которыми истребители палубной авиации сталкиваются чаще других самолетов.

Все, что вам остается сделать, - попросить об услуге профессионального фотографа, и - вуаля! - ваш самолет запечатлели в окружении эффектного облака водяного пара, которое многие из нас ошибочно принимают за признак выхода на сверхзвук.

  • Прочитать можно на сайте

Звуковой барьер

Звуково́й барье́р

явление, возникающее в полёте самолёта или ракеты в момент перехода от дозвуковой к сверхзвуковой скорости полёта в атмосфере. При приближении скорости самолёта к скорости звука (1200 км/ч) в воздухе перед ним возникает тонкая область, в которой происходит резкое увеличение давления и плотности воздушной среды. Это уплотнение воздуха перед летящим самолётом называется ударной волной. На земле прохождение ударной волны воспринимается как хлопок, похожий на звук выстрела. Превысив , самолёт проходит сквозь эту область повышенной плотности воздуха, как бы прокалывает её – преодолевает звуковой барьер. Долгое время преодоление звукового барьера представлялось серьёзной проблемой в развитии авиации. Для её решения потребовалось изменить профиль и форму крыла самолёта (оно стало более тонким и стреловидным), сделать переднюю часть фюзеляжа более заострённой и снабдить самолёты реактивными двигателями. Впервые скорость звука была превышена в 1947 г. Ч. Йигером на самолёте Х-1 (США) с жидкостным ракетным двигателем, запущенном с самолёта В-29. В России звуковой барьер первым преодолел в 1948 г. О. В. Соколовский на экспериментальном самолёте Ла-176 с турбореактивным двигателем.

Энциклопедия «Техника». - М.: Росмэн . 2006 .

Звуковой барьер

резкое увеличение сопротивления аэродинамического летательного аппарата при Маха числах полёта M(∞), несколько превышающих критическое число M*. Причина состоит в том, что при числах M(∞) > M* наступает , сопровождающийся появлением волнового сопротивления. Коэффициент волнового сопротивления летательных аппаратов очень быстро возрастает с ростом числа M, начиная с M(∞) = M*.
Наличие З. б. затрудняет достижение скорости полёта, равной скорости звука, и последующего перехода к сверхзвуковому полёту. Для этого оказалось необходимым создать самолёты с тонкими стреловидными крыльями, что позволило значительно снизить сопротивление, и реактивными двигателями, у которых с ростом скорости тяга возрастает.
В СССР скорость, равная скорости звука, впервые была достигнута на самолёте Ла-176 в 1948.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "звуковой барьер" в других словарях:

    Звуковой барьер в аэродинамике название ряда явлений, сопровождающих движение летательного аппарата (например, сверхзвукового самолёта, ракеты) на скоростях, близких к скорости звука или превышающих её. Содержание 1 Ударная волна,… … Википедия

    ЗВУКОВОЙ БАРЬЕР, причина трудностей в авиации при увеличении скорости полета свыше скорости звука (СВЕРХЗВУКОВАЯ СКОРОСТЬ). Приближаясь к скорости звука, самолет испытывает неожиданное увеличение сопротивления и потерю аэродинамической ПОДЪЕМНОЙ… … Научно-технический энциклопедический словарь

    звуковой барьер - garso barjeras statusas T sritis fizika atitikmenys: angl. sonic barrier; sound barrier vok. Schallbarriere, f; Schallmauer, f rus. звуковой барьер, m pranc. barrière sonique, f; frontière sonique, f; mur de son, m … Fizikos terminų žodynas

    звуковой барьер - garso barjeras statusas T sritis Energetika apibrėžtis Staigus aerodinaminio pasipriešinimo padidėjimas, kai orlaivio greitis tampa garso greičiu (viršijama kritinė Macho skaičiaus vertė). Aiškinamas bangų krize dėl staiga padidėjusio… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    Резкое увеличение сопротивления аэродинамического при приближении скорости полёта ЛА к скорости звука (превышении кри тич. значения Маха числа полёта). Объясняется волновым кризисом, сопровождающимся ростом волнового сопротивления. Преодолеть 3.… … Большой энциклопедический политехнический словарь

    Звуковой барьер - резкое увеличение сопротивления воздушной среды движению ЛА при. подходе к скоростям, близким к скорости распространения звука. Преодоление 3. б. стало возможным за счёт совершенствования аэродинамических форм самолётов и применения мощных… … Словарь военных терминов

    звуковой барьер - звуковой барьер — резкое увеличение сопротивления аэродинамического летательного аппарата при Маха числах полёта M∞, несколько превышающих критическое число M*. Причина состоит в том, что при числах M∞ > Энциклопедия «Авиация»

    звуковой барьер - звуковой барьер — резкое увеличение сопротивления аэродинамического летательного аппарата при Маха числах полёта M∞, несколько превышающих критическое число M*. Причина состоит в том, что при числах M∞ > M* наступает волновой кризис,… … Энциклопедия «Авиация»

    - (франц. barriere застава). 1) ворота в крепостях. 2) в манежах и цирках загородка, бревно, шест, через которые прыгает лошадь. 3) знак, до которого доходят бойцы на поединке. 4) перила, решетка. Словарь иностранных слов, вошедших в состав… … Словарь иностранных слов русского языка

    БАРЬЕР, а, муж. 1. Преграда (род стенки, перекладина), поставленная на пути (при скачках, беге). Взять б. (преодолеть его). 2. Загородка, ограждение. Б. ложи, балкона. 3. перен. Преграждение, препятствие для чего н. Река естественный б. для… … Толковый словарь Ожегова